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Abstract 

This thesis encompasses three chapters that aim to improve the understanding of a large-lowland 
river's radiative energy balance and the atmospheric-water surface interactions that control it. In 
Chapter 1, we develop a sensitivity analysis of a physically-based numerical energy balance 
model (FLUVIAL-EB) that takes a detailed account of heat energy fluxes in a river system to 
assess the role of atmospheric variables in river temperature change. We calculate the sensitivity 
of predicted river temperature to small individual perturbations to several meteorological 
variables across different seasons, including shortwave radiation, longwave radiation, air 
temperature, wind speed, vapor pressure, and air pressure. We pay special attention to the 
perturbation values as early results highlight the need to develop a specialized methodology for 
perturbing atmospheric variables because each variable operates on differing magnitudes. The 
coefficient of variation (CV) term is applied to each atmospheric dataset to determine the 
perturbation value of each variable for each season. We conclude that the CV method provides a 
standardized measure of the distribution of the observed weather variables and encompasses the 
seasonal variability within each atmospheric record. Results show that predicted river 
temperature is particularly susceptible to positive changes in shortwave radiation (+2.6°𝐶𝐶, 25km 
river distance and +10.3°𝐶𝐶, 150 km river distance) in summer seasons at the longitudinal river 
basin scale. In Chapter 2, we present a novel Gaussian variance-based, multi-variable error 
decomposition scheme on the simple standard error equation to account for the contribution of 
weather data to the error in predicted river temperature. The FLUVIAL-EB model incorporates 
key atmospheric variables for energy flux and river temperature predictions from the California 
Irrigation Management Information System (CIMIS) data network. We examine a possible 
source of error due to the utilization of this data set by using Taylor Series expansion 
approximations under finite-difference assumptions, where we expand the basic standard error 
equation to calculate the standard error of predicted river temperature. The equation includes 1) a 
weighting term (partial derivatives calculated in Chapter 1 that provide a measure of influence on 
the standard error based on predicted river temperature sensitivities to each atmospheric variable, 
2) a Pearson's correlation coefficient term which measures the direction and magnitude of the 
correlation between two uncorrelated atmospheric variables, and 3) a standard error value for 
each atmospheric variable that characterizes error due to misrepresentation of the atmosphere 
directly over the river channel, which we call standard error due to geographic displacement 
between the weather stations and river channel. Assuming predicted river temperature is only a 
function of the six critical atmospheric variables, results show error values to be small across all 
seasons and distances of the river. The most significant error in predicted river temperature 
occurs during the winter months (± 0.12 °𝐶𝐶) followed by spring, summer, and fall (±  0.08 °𝐶𝐶, ±  
0.03 °𝐶𝐶, ±  0.05 °𝐶𝐶, respectively) at the 150 km river distance. Chapter 3 introduces the 
FLUVIAL-EB model's ability to predict energy fluxes and river temperature along river distance 
by replacing CIMIS data with gridded regional climate model output. Initially, we hoped to 
present modeled river temperatures based on atmospheric predictions derived under a high 
greenhouse gas emission scenario (RCP 8.5) from the fifth-generation Canadian Regional 
Climate Model (CRCM5). The results presented in Chapter 3 highlight the FLUVIAL-EB 
model's efficacy in utilizing gridded climate data and motivate future work to incorporate climate 
predictions into the FLUVIAL-EB model to observe how river temperature reacts under a high-



 
emission greenhouse gas scenario. To conclude, results from this work highlight the need to 
improve the accuracy and representativeness of weather time-series observations to improve 
FLUVIAL-EB model predictions of temperature along the length of a river and to incorporate 
more sources of error to prediction results and model inputs. Results also emphasize the 
importance of a seasonally based approach to making water management decisions as river 
temperature sensitivity to the atmosphere fluctuates by a substantial amount depending on the 
seasons (± 10.3 °𝐶𝐶, in summer at river distance 150km given a + 1.1 𝑊𝑊𝑊𝑊−2 perturbation to 
shortwave radiation). Finally, the FLUVIAL-EB model can incorporate gridded climate data 
representing atmospheric conditions derived from high greenhouse gas emission scenarios, 
making it a valuable tool to assess changes in energy fluxes and river temperature of a large-
lowland river in anthropogenic-induced climatic conditions. 
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1 
Chapter 1 – A Sensitivity Analysis: Understanding how atmospheric conditions impact 

predicted river temperature within the FLUVIAL-EB model, a physically-based numerical 

model 

Introduction 

The atmosphere strongly impacts local hydrology and ecosystems, influencing 

agricultural productivity, municipal water supply, and fisher and wildlife management (Bunn & 

Arthington, 2002; Daniels & Danner, 2020; Lettenmaier & Gan, 1990). The San Joaquin River in 

California's Central Valley is susceptible to anthropogenic disruptions as the river has long been 

diverted for agricultural and municipal use. It is necessary to re-establish natural flow to the 

region in a way that focuses on ecosystem management while maintaining infrastructure that 

supports the agrarian economies and municipal functions provided by the San Joaquin River. 

Understanding the relationships and dynamics that govern local hydrological systems is vital to 

protecting regional ecosystems and informing regional policy (Rosbjerg & Rodda, 2019).  

Analytical and computational modeling techniques are increasingly utilized in research to 

establish scientifically based policies for managing water use and protecting endangered 

ecosystems. In this study, we employed a physically-based river energy balance model that 

accounts for multiple components of heat exchanges, absorptions, and transmissions between the 

atmosphere and water, as well as the bed and water surface. The selection of hydrological 

models should align with the specific research objectives, which often focus on watershed-scale 

projects, including total flow and water balance (Beven, 1989; Dugdale, Hannah, & Malcolm, 

2017). While it is important to consider all components of the instream hydrologic system 

including groundwater infiltration, rainfall inputs, and biotic fluctuations, this study focuses 



 

 

2 
specifically on atmosphere-water surface interactions to predict river temperature along river 

distance and across seasons, therefore, we selected a model that focuses only on the radiative 

energy balance of a large-lowland river.  

Regardless of the research goals and model type employed, it is necessary to perform a 

sensitivity analysis on the association between the model inputs and outputs in hydrological 

modeling(Devak & Dhanya, 2017). Examining the connection between model inputs and outputs 

provides a quantifiable degree of comprehension of how the input values utilized to initiate 

model computations impact the forecasts, which authenticate the model and improves the 

efficacy of the model results. Failure to provide such an analysis causes an incomplete 

understanding of predictions, which can significantly impact water resource management and 

environmental decision-making. Therefore, a sensitivity analysis is imperative to ensure the 

robustness and validity of the energy balance model presented in this study. 

This study investigates the physically-based numerical model (FLUVIAL-EB) that 

calculates the energy balance and river temperature along a 150 km section of the San Joaquin 

River. Specifically, the model assesses atmospheric control on predicted river temperature by 

developing a sensitivity analysis where we examine how sensitive predicted river temperature 

change is to adjustments to six important atmospheric variables. The results of this study will aid 

in a better understanding of the atmospheric variables that govern FLUVIAL-EB model-

predicted river temperature change so that we can provide local governments with scientifically-

based research that aids in water use management and maintaining healthy ecosystems.  

This study evaluates the physically-based numerical model FLUVIAL-EB, which 

estimates energy balance and river temperature along a 150 km stretch of the San Joaquin River. 



 

 

3 
The main objective of Chapter 1 is to investigate the relationship between the atmosphere and 

predicted river temperature by conducting a sensitivity analysis. Specifically, we examine how 

small, positive perturbations of six critical atmospheric variables affect predicted river 

temperature change. The findings of this study provide valuable insights into the impact of 

atmospheric variables on river temperature, which can aid in developing effective management 

strategies for the San Joaquin River and other large-lowland river systems.  

Background  

Hydrology models are increasingly developed and utilized as predictive tools to make 

informed decisions about water allocations for municipalities, agriculture, and ecological 

systems (Gleick, 1989; Taheri, Mohammadian, Ganji, Bigdeli, & Nasseri, 2022). Scientists use 

hydrological models to answer questions involving water storage, sediment transport, surface 

water-atmosphere interaction, and water chemistry. The environment these models are structured 

to replicate is unpredictable, making developing or selecting a model difficult (Horton, Schaefli, 

& Kauzlaric, 2022). It is essential for a hydrologist to choose or create a model that suits the 

needs of the research goals and subsequently analyze model functions and results to establish 

confidence in their research. We elected to utilize a physically-based energy balance model to 

assess the atmosphere's role in effecting changes to predicted river temperatures and in Chapter 

2, to ascertain possible sources of error that stem from the atmospheric dataset used for model 

predictions.  

Energy balance models have emerged as a valuable tool for assessing the relationship 

between the atmosphere and water temperature changes due to their ability to incorporate various 

physical and meteorological factors. These models estimate stream temperature by quantifying 



 

 

4 
the energy fluxes between the water surface and the surrounding environment, considering 

factors such as shortwave radiation, air temperature, wind speed, the albedo of the bed, 

suspended solids within the water column, and flow. 

Numerous studies have evaluated the performance of different energy balance models for 

predicting stream temperatures. For example, Christian E. Torgersen (2000) compared several 

energy balance models and found that more complex models produced more accurate 

predictions, which accounted for more environmental factors. Others observe the thermal 

structure of a proglacial river through energy balance modelling techniques by incorporating 

timelapse thermal imagery of snowmelt  to study the relationship between the atmosphere, warm 

glacial melt, and the radiative energy balance of a river (Cardenas et al., 2014) 

The relationship between atmospheric datasets and river temperature predictions in energy 

balance models has also been studied. Studies have investigated the influence of air temperature 

on river temperatures, finding that air temperature, shortwave radiation, and wind speed are 

critical factors in determining stream temperature within energy balance models (Brown, 1969; 

Caissie, 2006; Datt, Srivastava, Negi, & Satyawali, 2008; Verburg & Antenucci, 2010). 

Despite the advances in energy balance modeling, there are still limitations in accurately 

predicting stream temperatures, particularly in complex river systems with heterogeneous 

conditions. Limitations often stem from a lack of high-resolution meteorological data for remote 

or poorly monitored river systems, which can limit the accuracy of energy balance models 

(Wang et al., 2020). Additionally, energy balance model predictions are often highly 

parameterized which makes their output dependent on parameterizations. Therefore, the quality 

of model predications are a function on how well the model is parameterized (Sun, Salvucci, 
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Entekhabi, & Farhadi, 2011). The FLUVIAL-EB energy balance model used here specifically 

avoid parameterization of hydrologic components to avoid this common limitation. The model 

relies instead on a set of physically based equations that do not incorporate along stream 

parametrized features. Albedo of the bed surface is the only parameterized function and is held 

constant for the purposes of this work because we are only concerned with atmosphere-water 

surface interactions.  

Energy balance stream temperature models have shown great promise in predicting river 

temperatures but are sometimes limited by spatial and temporal coverage of meteorological 

datasets. Chapter 1 of this paper focuses on learning as much as possible about the relationship 

between an atmospheric dataset and FLUVIAL-EB model river temperature predictions. 

A chronological review of hydrological modeling 

 In this initial review of hydrological modeling, we will visit the types of models 

and their uses in past and current literature. First published in 1856, Henry Darcy was one of the 

first hydrologists to apply simple mathematical statements to represent a hydrological process 

(Simmons, 2008). In the 1960s, scientists began to recognize the potential of computer modeling, 

and in 1966, N. H. Crawford and Linsley (1966) developed the first watershed model called the 

Stanford Watershed Model (SWM). The SWM was one of the first models to create a continuous 

numerical simulation of interacting hydrology processes such as infiltration, soil moisture, 

evaporation, and channel flow hydraulics to arrive at physical and mathematical descriptions of 

the flow regime for a specific area (Norman H. Crawford, 2004). Some modern hydrology 

models utilize machine learning or neural network algorithms such as the LSTM-based 

Hydrological Model (LHSM) to predict river flow(Li, Marshall, Liang, Sharma, & Zhou, 2021). 
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The application of hydrology models should include specific research goals and spatial 

considerations. We chose to focus on physically-based numerical energy balance models as we 

consider the spectral energy balance of a large lowland river to be a first-order control of river 

temperature.  

Physically-based numerical energy balance models  

What are a physical-based numerical energy balance model's defining characteristics and 

applications? First, a physically-based model is a mathematical model used to simulate the 

hydrological cycle and can predict the movement of water through the atmosphere, land, and 

reservoirs. These models are based on fundamental physics principles and utilize equations that 

describe the physical processes that control water transport, such as precipitation, evaporation, 

infiltration, surface runoff, and groundwater flow. Freeze and Harlan (1969) help define a few 

seminal descriptions of a physically-based hydrological response model which are still 

perpetuated in the literature:  

1. A physically-based mathematical model represents time-dependent hydrological 

progressions defined by the continuity and conservation of mass and momentum 

equations.  

2. Also defined is a series of boundary conditions that delineate the overall shape of a 

particular basin. (i.e., elevation, channel depths, channel widths, vegetation, soil type, 

stream bed type.)  

3. Physically-based numerical models specify spatial nodes in which the discrete 

temporal aspect of the model is used to approximate model response at time = tn.  
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4. Often, meteorological observations are incorporated at each defined spatial node so 

that weather data can be utilized in the model set of physically representative 

governing equations.  

Physically-based numerical energy balance models are valuable tools for predicting 

various hydrological processes by simulating the energy balance of waterbodies. These models 

consider the energy inputs and outputs through equations representing the physical laws 

governing heat transfer between water, atmosphere, and land. A literature review of past and 

current energy balance modeling research shows that physically-based energy balance modeling 

has mainly focused on snow melt processes, although more recent work incorporated spectral 

energy balance equations for river temperature predictions. Arnold, Richards, Willis, and Sharp 

(1998) investigated glacial hydrology and found that physically-based energy balance models 

perform well in predicting detailed spatial and temporal patterns of subglacial processes such as 

melt rates, water pressures, and velocities. Furthermore, Griessinger et al. (2019) demonstrated 

that integrating a distributed multi-layer energy balance snow model improves the accuracy of 

snow simulations for hydrologic modeling in Alpine catchments. Datt et al. (2008) employed an 

energy balance model to study snowmelt in the Himalayas and found that air temperature and 

absorbed shortwave radiation from the snowpack led to a high thermal state resulting in higher 

rates of snow melt. 

Recently, researchers have applied spectral energy balance equations to energy flux and 

river temperature models to understand a water column's absorptive and evaporative 

characteristics and the radiative fluxes that govern them. (B.W. Webb, 1997; Caissie, 2006; 

Hannah & Garner, 2015; Webb, Hannah, Moore, Brown, & Nobilis, 2008). These models have 
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primarily focused on the advection component of the energy balance through approaches like 

RAFT (Daniels & Danner, 2020; Pike et al., 2013) and statistical forecasting (Null, Ligare, & 

Viers, 2013). However, these models tend to use simplified methods for calculating the radiation 

balance, despite it being the most significant component of the energy balance. Water 

management agencies use stream temperature models such as HEC-5Q (Willey, 1986) or 

CVTEMP (St-Hilaire, 2017), which utilize lumped exchange coefficients and empirically 

estimate shortwave absorption in water without specifying the wavelength. Finally, Bray, Dozier, 

and Dunne (2017) suggest that ignoring wavelength length in the energy balance masks how 

radiation attenuates through the water column, making it difficult to accurately predict 

absorption, scattering, and energy transport in and out of different components. 

Physically-based numerical energy balance models have drawbacks, as their prediction 

accuracy depends on the set of physical equations and data used and the spatial and temporal 

robustness of the data. An interpolation scheme or downscaling/upscaling techniques may be 

used without complete data, but the strength of these methods affects the results (Dugdale et al., 

2017).  

How atmospheric conditions affect the energy fluxes within rivers 

This study recognizes that radiative, latent, sensible, and advective heat exchanges 

display first-order control on river temperature. Other factors control river temperature change, 

such as managed flow releases from dams, flow, along stream riparian structure, atmospheric 

disturbances from wildfires, and ground water infiltration but their effects on river temperature 

change are dictated by the heat exchange between the atmosphere-water surface or atmosphere-

land surface interactions. Atmospheric conditions such as air temperature, shortwave radiation, 
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downwelling longwave radiation, and wind speed all contribute to the partitioning of evaporation 

and absorption characteristics of the river and affect the rate at which heat energy is exchanged at 

the bed-water and water-atmosphere surface layers. In sum, the absorptive and evaporative 

attributes of the water column are dictated by radiative heat exchange at each surface layer of the 

river which are controlled by the incidental atmospheric conditions acting upon the water 

surface. The FLUVIAL-EB model accounts for the above-mentioned spectral energy balance 

components, which are necessary to understand how the atmosphere drives changes to energy 

fluxes and predicted river temperature.  

FLUVIAL-EB model, a physically-based numerical energy balance model 

The FLUVIAL-EB (FLUVIAL-EB) model is a physically-based numerical river energy 

balance model previously developed by Bray et al. (2017). The Fluvial Energy Balance model 

simulates the spatially distributed spectral energy balance over a reach of a clear lowland river 

(in this case, the San Joaquin River). The model calculates the spectral energy balance through 

an Eulerian framework where energy fluxes and river temperatures are calculated at prescribed 

timesteps and distances along the river. The spectral energy balance and river temperature 

predictions are controlled by absorbed radiative fluxes propagating through the water column 

and the bed in upward and downward directions. Energy is either added or removed through 

atmosphere-water surface interactions and at the rate at which the river flow transports and 

accumulates energy in the water column. The FLUVIAL-EB model couples a spectral radiation 

balance with turbulent heat fluxes, bed conduction, and a 1D hydraulic model employed over the 

longitudinal profile of a river of varying depth and velocity with distance downstream of a dam. 

The model solves the one-dimensional heat advection equation through finite difference methods 
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from Sridhar, Sansone, LaMarche, Dubin, and Lettenmaier (2004). Equation 1 and the 

description is adopted from (Bray et al., 2017). 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑣𝑣
𝑄𝑄
𝜕𝜕(𝜕𝜕𝑄𝑄)
𝜕𝜕𝜕𝜕

=  
𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛
𝜌𝜌𝑐𝑐𝑝𝑝𝐷𝐷

+
𝑣𝑣
𝑄𝑄
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐷𝐷𝑙𝑙
𝑄𝑄
𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (1) 

𝜕𝜕 is the average cross-sectional river temperature at time 𝜕𝜕 and distance 𝜕𝜕 along the river, 𝑣𝑣 is 

flow velocity, 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 is the net energy exchange between the atmosphere, the bed, and the water, 𝑄𝑄 

without a subscript is river discharge, 𝜌𝜌 is water density, 𝑐𝑐𝑝𝑝 is the specific heat of the water, 𝐷𝐷 is 

depth, and 𝐷𝐷𝑙𝑙 is the longitudinal dispersion coefficient. The water is assumed to be clear and 

well-mixed. Since we are focusing here on the relationship between predicted river temperature 

and the atmosphere, we are most concerned with the net energy term (𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛), which incorporates 

atmospheric data into its calculations. The net energy term (𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛) is shown in Equation 2. 

𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐻𝐻 + 𝐿𝐿 + 𝐺𝐺 (2) 

𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 is the net shortwave radiation, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 is the net shortwave radiation, 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 is the net longwave 

radiation, 𝐻𝐻 is the sensible heat flux, 𝐿𝐿 is the latent heat flux, and 𝐺𝐺 is the bed conduction. The 

term 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 is responsible for energy exchanges between the atmosphere and water surface 

through the entire water column. Bray et al. (2017) gives a detailed account of how the model 

processes each of the components in the 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 energy balance term.  

The FLUVIAL-EB model couples spatially distributed values of width, depth, and 

velocity, output from HEC-RAS version 4.1.0 (U.S. Army Corps of Engineers, HEC-RAS, 

Hydrological Engineering Center, http://www.hec.usace.army.mil/software/hec-ras/). Width, 

depth, roughness, and velocity all vary spatially along the river but are defined based on a few 

specific discharge values. More information on the HEC-RAS component of the FLUVIAL-EB 

model is presented in the data section of Chapter 1. 

http://www.hec.usace.army.mil/software/hec-ras/
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The FLUVIAL-EB model solves Equation 1 by incorporating six vital atmospheric 

variables that govern atmosphere-water and water-bed interactions. Atmospheric data is first 

gathered from the available meteorological stations and then spatially interpolated to cover the 

spatial extent of the channel. The model interpolates measurements taken at each meteorological 

station for specific moments in time using the griddedInterpolant function in MATLAB. As the 

governing differential equation operates instantaneously at any given time and distance, it 

necessitates the availability of input variables for all x and t values. The model derives 

instantaneous data from hourly averages by computing a cumulative sum, employing a 

smoothing spline, and subsequently calculating the derivative. By following this process, we 

were able to establish a seamless spatial and temporal representation of the entire river, 

encompassing hourly meteorological data and modeled steady-state hydraulic values. We focus 

our attention on quantifying relationships between weather input and FLUVIAL-EB river 

temperature output because 1) this relationship has not yet been studied within the context of the 

FLUVIAL-EB model and 2) atmospheric time-series data from a network of meteorological 

stations presents a potential source of error to predicted river temperatures across seasons and 

along the length of the river.  

What is a sensitivity analysis?  

A sensitivity analysis (SA) examines the sensitivity of model output(s) with respect to 

small changes to model input(s). An SA is developed with specific research questions in mind. 

Typically, an SA will be specific to the model, or the input type (s) being examined. An SA will 

1) provide information on how influential specific input variables are on model results, 2) give 
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guidance for ongoing changes to model structure and parameterization, and 3) will give the 

necessary context in which to examine model output (Devak & Dhanya, 2017). 

Mathematically, an SA examines the change in output with respect to a given change in 

its input. The function describes an SA on model predictions: 

𝑜𝑜𝑜𝑜𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕 = 𝑓𝑓(𝑖𝑖𝑖𝑖𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕), 

where this input (𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕, … , 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑖𝑖) is the data series that is used to simulate 𝑖𝑖 number of results 

that are derived within the numerical structure of the model. Assuming simulated model results 

are only a function of specific inputs, we can perturb each 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕 value (𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕, … , 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑖𝑖) by a 

small perturbation value which we denote as 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛. We then run the model with the 

adjusted data series 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛, … , 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛,𝑖𝑖 to assess model simulation results 

(𝑜𝑜𝑜𝑜𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛, … , 𝑜𝑜𝑜𝑜𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛,𝑖𝑖) derived as a function of 

𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛, … , 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛,𝑖𝑖 where, 

𝑜𝑜𝑜𝑜𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛 = 𝑓𝑓(𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛). 

The sensitivity of the solution (𝑜𝑜𝑜𝑜𝜕𝜕𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛) with respect to the 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝜕𝜕𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛 

perturbation is approximated by the partial derivative, 

 [�𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛�
𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

]1,…,𝑖𝑖. 

The partial derivatives presented in this work represent how sensitive predicted river 

temperature is with respect to small perturbations to each atmospheric variable. Partial 

derivatives are calculated for all times and distances along the river. The partial derivatives aid in 

understanding the atmosphere-water surface physically-based numerical interactions computed 

within the FLUVIAL-EB, which provide insights into how a few critical atmospheric variables 

govern predicted river temperature change.  
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Research Goals 

The overall scope of Chapter 1 is to advance applications of a recently developed energy 

balance model (FLUVIAL-EB) by performing a sensitivity analysis on a predicted river 

temperature and the relative influence of a few critical atmospheric variables across seasons and 

along river distance. The goals of this study are:  

1. To find the best method for developing a partial derivative equation that represents 

predicted river temperature change with respect to shortwave radiation, longwave 

radiation, air temperature, wind speed, vapor pressure, and air pressure; 

2. To assess a "best value" for perturbing atmospheric variables that follow finite difference 

assumptions to observe predicted river temperature sensitivity to changes in the 

atmosphere; 

3. To rank which of the six atmospheric variables causes the most change to predicted river 

temperature, given a small change to each variable to determine which of the six-

atmosphere variables cause the most significant change to predicted river temperature, 

and; 

4. To analyze and comment on partial derivative values along all distances of the river reach 

studied across four different seasons. 

Study Region  

Overview of the San Joaquin River Basin 

The San Joaquin River is the second longest river in California (530 km) and the second 

largest river basin by area (82,880 km2). Headwaters of the San Joaquin River watershed 

originate in California's Sierra Nevada Mountain Range. Water flows west of the valley facing 
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the slopes of the Sierra Nevada Mountain range. As the river reaches the San Joaquin Valley 

floor, it flows northward, eventually flowing into the San Francisco Bay (Figure 1). The San 

Joaquin River system is part of a larger Sacramento-San Joaquin delta system, including the 

Sacramento River. The Sacramento River flows from north to south toward San Francisco Bay. 

Both river systems converge and drain into the San Francisco Bay delta system before entering 

the Pacific Ocean (Figure 2). 

Tributaries to the mainstem San Joaquin River channel include the Fresno River, 

Chowchilla River, Merced River, Tuolumne River, Stanislaus River, Calaveras River, 

Mokelumne River, and the Consumes River (Figure 1). The Merced, Tuolumne, and Stanislaus 

Rivers are the three major tributaries of the region. Of these eight rivers, the Consumes River (a 

tributary of the larger Mokelumne River) is the only river in the basin that does not have a 

significant dam. All other rivers have been heavily modified, and flow diverted for agricultural 

use, hydroelectric power, and municipal water storage, which serve San Joaquin Valley 

communities. 

The spatial extent of the FLUVIAL-EB model  

The FLUVIAL-EB model is currently developed to predict river temperature along the 

San Joaquin River, although it has the capability of predicting river temperature for any 

extensive lowland, clear river once coupled with specific physical characteristics unique to the 

model region. The modeled river channel begins just below Friant Dam and ends 150 km 

downstream near the confluence of the Merced River (Figure 3). The spatial extent of the model 

features, including the meteorological station network that the FLUVIAL-EB model uses to 
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collect atmospheric data at various distances along the river, encompasses approximately 10,092 

𝐾𝐾𝑊𝑊2 denoted by the dashed black box in Figure 3. 

Overview of seasonal atmospheric variability of the San Joaquin Valley 

 An overview of the seasonal climatology of the San Joaquin River is provided to 

understand seasonal patterns reflected in river temperature predictions. The San Joaquin Valley 

is characterized by hot, dry summers and cool, rainy winters. The region is classified as inland 

Mediterranean, although due to the longitudinal length of the valley, some regions are 

categorized as desert conditions (Fernandez-Bou et al., 2021). Over a 30-year period, the 

National Weather Service reports, the average wintertime air temperature value (DJF) for the 

region is 13.3 ℃ (56 ℉) with occasional freezing conditions. Springtime (MAM) average daily 

temperature is 21.8 ℃ (71.3 ℉). Summer (JJA) months air temperature average is 31.1 ℃ (88.0 

℉) with an average of 40 days per year over 37.7 ℃ (99.9 ℉). Fall (SON) months air 

temperature average is 24.6 ℃ (76.3 ℉) (Baker, 1994). 

The weather during the summer season is dictated by the semi-permanent sub-tropical 

high-pressure feature (Pacific High) that sits off the West coast of North America. Weather 

associated with the Pacific High includes high temperatures due to compressed, descending air 

and low relative humidity. In the winter, the Pacific High typically migrates south along the 

West coast of North America. This allows cool air and low-pressure systems from high latitudes 

to sweep into the San Joaquin Valley. The subtropical jet stream sometimes also produces 

wintertime weather events, bringing moist low-pressure systems through the valley. The weather 

during wintertime is dominated by internment periods of cool, rainy days which are dictated by 

the Pacific High and south-traveling low-pressure features that originate over the North Pacific 
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Ocean or atmospheric river events dictated by the subtropical jet stream (The Joaquin Valley Air 

Pollution Control District (SJVUAPCD), 2003). 

The atmospheric variables that are the specific focus of this thesis include shortwave 

radiation, longwave radiation, air temperature, windspeed, vapor pressure, and air pressure 

(Table 1), all of which vary seasonally as a function of the dominant climatology described in the 

previous paragraph. (See Appendix A, Figure A1 through Figure A4 for all six atmospheric 

variables from the surrounding meteorological station network and interpolated across the length 

of the river for all four seasons.) One of the key features that will be highlighted in the results 

section is that due to atmospheric governance over the spectral energy balance processes of the 

FLUVIAL-EB model, we can attribute seasonal variation of predicted river temperature to 

seasonal variation within the weather data time series, and the background climatology of the 

region. The dominating climatic features that control the weather within the study area cause 

stable non-variable weather for much of the summer (dry, stable air mass) as opposed to the 

winter season (subtropical and polar jet-dominated weather patterns) when weather is more 

variable. Intermediate months (Spring and Fall seasons) are often more predictable transitional 

periods between the observed extremes during winter and summer periods.  

 Data 

HEC-RAS version 4.1.0 

The FLUVIAL-EB model makes predictions that utilize river velocity, channel depth, 

and water surface elevation, which were previously calculated by an HEC-RAS version 4.1.0 

(Hydraulic Engineering Center River Analysis System) model developed by the U.S. Army 

Corps of Engineers (USACE, www.hec.usace.army.mil) specifically for the San Joaquin River. 

http://www.hec.usace.army.mil/
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HEC-RAS output includes physical boundaries of the San Joaquin River (SJR) from Friant Dam 

to the confluence with the Merced River. The FLUVIAL-EB model incorporates HEC-RAS 

derived channel and flow characteristics to interpolate these hydraulic variables continuously 

over all distances along the river using the MATLAB function gridded Interpolant. River 

channel variables retrieved from the HEC-RAS model along the river account for estimated flow 

losses, estimated tributary inflows, and assumed hydraulic operating rules at the structures along 

the reach (Mussetter Engineering, 2006). The data incorporated into the FLUVIAL-EB model 

includes 1) hydraulic depth for the cross-section, defined as the area/surface width of the active 

flow, 2) velocity, and 3) discharge. 

California Irrigation Management Information System (CIMIS) 

The meteorological variables used to synthesize energy fluxes and river temperature 

predictions are pulled from the California Irrigation Management Information System (CIMIS) 

network of weather stations throughout the San Joaquin Valley. CIMIS is a Department of Water 

Resources entity that manages a network of over 145 automated weather stations throughout 

California. 

The meteorological variables used in the FLUVIAL-EB model include shortwave 

radiation (𝑆𝑆, 𝑊𝑊𝑊𝑊−2), air temperature (𝜕𝜕𝑝𝑝,℃), relative humidity (𝑅𝑅ℎ,%), windspeed at 2 m height 

(𝑈𝑈,𝑊𝑊𝑚𝑚−1), and air pressure (𝑜𝑜, mbar). The CIMIS meteorological network that is used in this 

paper is shown in Table 2 and Figure 4. The FLUVIAL-EB model uses relative humidity and 

temperature to derive vapor pressure (𝑉𝑉𝑝𝑝, mbar) using methods found in (Hardy, 1998). Net 

longwave emitted by the atmosphere is also derived internally using techniques found in Dilley 

and O’Brien (1997). 
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In Figure 4, the modeled extent of the San Joaquin River is shown in black. The green 

triangle denotes the location of each CIMIS station. Note that air pressure was not available 

within the CIMIS weather station network. We used air pressure data from the United States 

Bureau of Reclamation (USBR). Air pressure data from USBR was only available at the weather 

station at the beginning of the reach near Friant Dam (station: FRT). The hydrostatic equation 

calculates air pressure at the remaining stations based on station elevation. Because air pressure 

is not readily available at each station and must be calculated along the distance of the river, it 

presents a possible source of error in energy balance predictions. However, we assume that the 

contribution to the total error in river temperature predictions due to air pressure is relatively 

small as air pressure does not significantly change from the beginning of reach to the most 

downstream extent of the modeled river channel. The six meteorological variables used in energy 

balance calculation within the FLUVIAL-EB model are shown in Table 2. Detailed descriptions 

of CIMIS equipment and site information can be found online (https://cimis.water.ca.gov/). 

United States Geological Survey (USGS) and the California Data Exchange Center (CDEC) 

Flow and temperature data was downloaded from the California Data Exchange Center 

(CDEC) data portal (https://cdec.water.ca.gov/), which is managed by the United States 

Geological Survey (USGS). Time series data for water temperature and flow from the 2009, 

2010, and 2011 water years were used. For this paper, only 2011 data was used. Table 2 and 

Figure 5 show the location of each stream gauge denoted by an orange diamond. The stream 

gauge station where the data is collected is located directly beneath the dam, providing flow 

release values in cubic feet per second (𝑐𝑐𝑓𝑓𝑚𝑚). We identify periods of constant flow (within 

± 30 𝑐𝑐𝑓𝑓𝑚𝑚) for each of the four seasons (Table 3). We identify periods of continuous flow for 

https://cdec.water.ca.gov/
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each season to choose model run dates. Table 4 is the select four temporal ranges (for each 

season) that exhibit constant flow. 

Water temperature time-series data was also used from the SJF station for each 

continuous flow period found in Table 5 so that observed water temperatures could be used as 

the upstream boundary conditions in the FLUVIAL-EB model. Initial water temperature 

conditions used in the model simulations were calculated by taking the 14-day average across 

four seasons for the selected simulation periods.  

Methods 

Choosing consistent flow for FLUVIAL-EB model stability  

An initial step was taken to find periods of consistent flow release from the dam within 

the stream gauge time-series data (Table 3). We choose a constant flow release profile of 1530 

cfs across all seasons and all model-run experiments. This flow profile mitigates fluvial 

advective processes that affect river temperature predictions so that we can focus on predicted 

river temperature change due to the six atmospheric variables used in this study. It also avoids 

dry riverbed conditions within the model, leading to deterioration in numerical stability.  

Choosing temporal ranges for model experiments based on consistent flow from a USGS 

stream gauge FLUVIAL-EB model stability.  

Hydrological responses vary by season; thus, we observe model output for each of the 

four seasons. The periods associated with the consistent flow were used to define model 

prediction periods (Table 4). Model prediction periods include a 15-day modeled period for each 

season in 2011 (Table 4).  
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Moreover, to conduct a sensitivity analysis on the sensitivity of predicted river 

temperature to the atmosphere, a 15-day simulation period within each of the four seasons is 

deemed adequate for observing predicted river temperature change. The first eight days are 

removed to spin up the model, which removes equilibrium errors usually present within the first 

timesteps of model simulations (Seck, Welty, & Maxwell, 2015). The last seven days of the 15-

day model simulation period are gathered, and all subsequent results are 7-day simulation 

periods representing each season in 2011. 

Estimating FLUVIAL-EB model boundary temperatures  

Initial boundary conditions for predicted river temperature are selected based on 

measurements taken downstream of the dam for a 14-day period from each of the four seasons 

during the year 2011. Water temperature data is collected for each 15 days described in the prior 

subsection, and the mean river temperature is calculated across the entire time series for each 

season, as shown in Table 5. Mean observed water temperature values are then used as boundary 

temperature conditions in the riverExplicitSoln MATLAB function, the front-facing command 

line used to predict river temperature with distance along the river. 

Execute FLUVIAL-EB model simulations. 

The riverExplicitSoln function is the front-end command line function for the entire 

FLUVIAL-EB model. The function was executed in MATLAB with the prescribed flow profile, 

temporal range, spatial and temporal resolution, and initial and boundary temperatures specified 

in Table 6. We obtain a total of 28 model experiments. The last 7-day period of each simulation 

is selected for each season. Each simulation provides predicted radiative fluxes and river 

temperatures along each distance of the river.  
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All predictions are calculated using different atmospheric conditions. A small positive 

value perturbates a single atmospheric variable while the remaining variables are implemented as 

their observed values for each of the four seasons. The riverExplicitSoln model function is 

executed for each of the six atmospheric variables. These runs are referred to as the 

"perturbation" runs. The model was also executed under normal atmospheric conditions for each 

of the four seasons, which we refer to as the "baseline" runs. The following section describes 

how each perturbation and baseline model experiment is used to observe the predicted energy 

balance and river temperature dependence on the atmosphere. 

Sensitivity analysis  

The partial derivatives that are defined here, specific to each of the key atmospheric 

variables studied, represent the change of simulated FLUVIAL-EB river temperature that results 

from a small positive unit change of a single atmospheric variable while holding the remaining 

atmospheric variables constant. Sensitivity coefficients are calculated using the finite-difference 

method to approximate the partial derivative of predicted river temperature with respect to a 

small positive perturbation to an atmospheric variable (Figure 5). 

Partial Derivative Equation  

 One goal of Chapter 1 was to quantify each atmospheric variable's influence on river 

temperature predictions. To do this, we develop a sensitivity analysis where each atmospheric 

variable undergoes a small, positive perturbation. River temperature is then simulated using 

observed weather values except for a single perturbed variable. This output is presented as a 

partial derivative which represents the total change in predicted river temperature between 
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baseline atmospheric conditions and perturbed atmospheric conditions with respect to the small 

positive perturbation made to the atmospheric variable.  

 First, we perturb each atmospheric variable, one at a time, and run the model for each of 

the four select seasonal periods within 2011. We approximate the partial derivative by applying 

the one-sided finite difference method to find the partial derivative. The partial derivative 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜

≈  
𝜕𝜕(𝑤𝑤 +  𝑜𝑜, … , 𝑤𝑤𝑖𝑖 + 𝑜𝑜) − 𝜕𝜕(𝑤𝑤, … , 𝑤𝑤𝑖𝑖)

𝑜𝑜
 (3) 

where 𝜕𝜕, is the difference between the predicted river temperature simulated under perturbation 

conditions for a single atmospheric variable (𝜕𝜕(𝑤𝑤 + 𝑜𝑜, … ,𝑤𝑤𝑖𝑖 + 𝑜𝑜))  and the predicted river 

temperature simulated under baseline atmospheric conditions (𝜕𝜕(𝑤𝑤, … ,𝑤𝑤𝑖𝑖)). 𝜕𝜕 is a measure of 

the amount of change in predicted river temperature between perturbation experiments where 

one atmospheric variable is perturbed while the rest are constant and the normal observed 

atmospheric conditions. 𝑜𝑜, is the perturbation value for each atmospheric variable. Figure 5 

illustrates how the partial derivatives were developed, where a 7-day mean of predicted river 

temperature run under baseline atmospheric conditions (𝜕𝜕(𝑤𝑤, … , 𝑤𝑤𝑖𝑖), red line) and predicted 

river temperature run under a hypothetical perturbation to a single atmospheric variable 

(𝜕𝜕(𝑤𝑤 +  𝑜𝑜, … , 𝑤𝑤𝑖𝑖 + 𝑜𝑜), blue line)  

Examining which atmospheric variable most strongly controls river temperature is 

difficult. The FLUVIAL-EB model operates on a complex series of equations that determines 

how latent heat, sensible heat, and other radiative fluxes are partitioned into evaporation and 

absorption, making it challenging to ascertain which atmospheric variable affects the most 

change in predicted river temperature based on initial partial derivative values. Additionally, 

baseline magnitudes of each weather variable operate on different scales making it difficult to 
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compare the influence of each atmospheric variable on predicted river temperature. Therefore, 

we manipulate the partial derivative values by scaling and normalizing across all times and 

distances along the river.  

 We use the interquartile range of each variable's time series to scale the partial term. The 

interquartile range captures the middle range of the distribution and omits outliers that might 

make it challenging to assess partial derivative values along the length of the river. This is an 

effective strategy highlighted best by shortwave radiation, which goes to 0 𝑊𝑊𝑊𝑊−2 at night. By 

ignoring the lower (and upper) quartile range of the shortwave radiation distribution and scaling 

all values toward the middle quartile of the distribution, we can more easily observe which 

atmospheric variables most strongly/weakly control river temperature. Scaling partial derivative 

values also changes the units to degrees Celsius (river temperature), which makes the scaled 

partial terms easier to comprehend in the context of actual river temperature change due to 

atmospheric perturbations. 

 Additionally, we normalize the scaled terms by the atmospheric variable that exhibits the 

most considerable contribution to predicted river temperature change, which we find to be 

shortwave radiation. Normalizing scaled partial derivative terms to the scaled partial derivative 

that contributes the most to changes in predicted river temperature allows us to standardize 

partial derivative terms making it easier to assess which atmospheric variable affects the most 

change to the predicted energy balance and river temperature across all seasons and along river 

distance.  

 The scaled partial derivative is presented as  
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�
𝜕𝜕𝜕𝜕

𝜕𝜕𝑊𝑊𝜕𝜕𝜕𝜕𝜕𝜕ℎ𝜕𝜕𝑒𝑒�
(𝐼𝐼𝑄𝑄𝑅𝑅𝑤𝑤𝑛𝑛𝑝𝑝𝑛𝑛ℎ𝑛𝑛𝑝𝑝) (4) 

Where 𝜕𝜕𝜕𝜕 is the river temperature between baseline and perturbed scenarios, 𝜕𝜕𝑊𝑊𝜕𝜕𝜕𝜕𝜕𝜕ℎ𝜕𝜕𝑒𝑒 refers 

to the perturbation value used to adjust the atmospheric variable of interest, and 𝐼𝐼𝑄𝑄𝑅𝑅 refers to the 

interquartile range of the weather time series data for the simulation period. The scaled partial 

derivatives are expressed in river temperature units, providing readers with a realistic context for 

interpreting the partial derivate terms. The normalized terms are dimensionless by definition:  

𝑆𝑆𝑐𝑐𝜕𝜕𝑆𝑆𝜕𝜕𝑆𝑆𝑤𝑤𝑛𝑛𝑝𝑝𝑛𝑛ℎ𝑛𝑛𝑝𝑝
𝑆𝑆𝑐𝑐𝜕𝜕𝑆𝑆𝜕𝜕𝑆𝑆𝑠𝑠𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑟𝑟𝑖𝑖𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛

 (5) 

 
Expanded normalized term: 

 
 
And rearrange by term: 

 
 
Ultimately, we present original, scaled, and normalized partial derivatives (Figure A5-A8, Table 

B1, Figure 5-8, Table 7, Figure 10-13, and Table 8, respectively), although the results section of 

this paper will focus on scaled and normalized values as they are most effective in conveying the 

contribution of each atmospheric variable to changes in FLUVIAL-EB simulation results.  

Estimating unique perturbation values for partial derivatives 

Partial derivatives are derived by adjusting some atmospheric variables (𝑤𝑤) by a 

perturbation value (𝑜𝑜), considering river temperature (𝜕𝜕) is a function of that atmospheric 

variable (𝜕𝜕(𝑤𝑤 +  𝑜𝑜, … ,𝑤𝑤𝑖𝑖 + 𝑜𝑜). How do we decide the best perturbation method and value for 

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑊𝑊𝜕𝜕𝜕𝜕𝜕𝜕ℎ𝜕𝜕𝑒𝑒)(𝐼𝐼𝑄𝑄𝑅𝑅𝑤𝑤𝑛𝑛𝑝𝑝𝑛𝑛ℎ𝑛𝑛𝑝𝑝)

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚𝑜𝑜𝑆𝑆𝜕𝜕𝑒𝑒)(𝐼𝐼𝑄𝑄𝑅𝑅𝑠𝑠𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝)

 (6) 

� 𝜕𝜕𝜕𝜕 𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑊𝑊
𝜕𝜕𝜕𝜕 𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝

� �𝜕𝜕𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜕𝜕𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝

�. (7) 
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this application? The magnitudes of each weather variable operate on different scales in relation 

to each other, making it difficult to compare the influence of each atmospheric variable on 

predicted energy fluxes and river temperatures across all seasons and along river distances. 

Therefore, the value of 𝑜𝑜 is given careful consideration. 

We undergo a series of trial model runs whereby we observe predicted river temperature 

simulated under various perturbation values. First, we perturbed all six atmospheric variables by 

a +1.0-unit change for all variables and all seasons. Given that the goal of this research is to 

present partial derivatives at all distances along the river for all times and all four seasons, the 

concern with a +1.0-unit change across all variables and seasons is that a +1.0 unit change does 

not replicate the natural magnitude of change of the six atmospheric variables at the diurnal and 

seasonal temporal scale. For example, 7-day average shortwave radiation values are between 305 

𝑊𝑊𝑊𝑊−2 and 340 𝑊𝑊𝑊𝑊−2 , while the 7-day averages for windspeed are between 1.0 𝑊𝑊𝑚𝑚−1 and 2.5 

𝑊𝑊𝑚𝑚−1 for the summer months (Figure A3). In other words, a +1.0-unit change to windspeed 

might show a greater magnitude of change in predicted river temperature than a +1.0-unit change 

to shortwave radiation. We conducted experiments where we adjusted the perturbation values for 

several weather variables. As an example, shortwave radiation we perturbed by values of +5.0 

𝑊𝑊𝑊𝑊−2, +10.0 𝑊𝑊𝑊𝑊−2, and +15.0 𝑊𝑊𝑊𝑊−2. All results produced no discernible significance 

reflected in the partial derivative values for predicted river temperature. There was no 

discernable difference in sensitivity values at all distances of the river and across all seasons.   

Next, following the methods in Rakovec et al. (2014), I perturbed all six atmospheric 

variables by +1.0% (Equation 7, adopted from (Rakovec et al., 2014).  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜

≈  
𝜕𝜕(𝑤𝑤𝑖𝑖 +  𝑤𝑤𝑖𝑖(0.01)) − 𝜕𝜕(𝑤𝑤𝑖𝑖)

𝑤𝑤𝑖𝑖(0.01)  (8) 
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Where 𝑜𝑜 = 𝑤𝑤𝑖𝑖(0.01), and 𝑤𝑤𝑖𝑖 is any of the six atmospheric variables for 𝜕𝜕 = 𝑖𝑖. This method was 

promising as it provided a realistic way of perturbing atmospheric variables within the 

FLUVIAL-EB model because it preserves the natural variations of the dataset. We also tested 

another perturbation method called the coefficient of variation (CV) method. The coefficient of 

variation describes the extent of variability in relation to the mean of the population in question. 

Where 𝜎𝜎 is the standard deviation of a weather variable (𝑤𝑤�). This step highlighted the 

need to define a perturbation method that can 1) encapsulate the natural variability of each 

weather variable and 2) be adjusted based on seasonal changes in the range of each atmospheric 

variable. We test both the Rakovec and CV methods. We apply both methods to each weather 

observation within the time-series of the simulation period. The CV method was ultimately used 

as it was computationally inexpensive and captured the seasonal variability of each variable. 

Perturbation values calculated under both methods are presented in Table 9. 

Our sensitivity analysis methodology differs from traditional approaches, as we do not 

apply a single perturbation value to each variable. While such an approach provides insight into 

the model's response to a constant input change, we recognize that the natural variability of 

weather variables across seasons and their effects on predicted river temperature are essential 

considerations. Therefore, we utilize the coefficient of variation method to develop unique 

individual perturbations and assess predicted river temperature sensitivity to these perturbations. 

We present the resulting partial derivative values as scaled/normalized versions of the original 

partial derivatives, referred to as partial derivatives. This approach provides more insight into the 

model's sensitivity to the atmosphere across each season.  

𝐶𝐶𝑉𝑉 =
𝜎𝜎𝑤𝑤
𝑤𝑤�

 (9) 
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Note: When we originally set up model experiments our partial derivative values were 

undistinguishable from each other making it difficult to analyze predicted river temperature 

response to small changes made to the meteorology. We realized that the method in which the 

FLUVIAL-EB model handled manual changes to the surrounding meteorology was non 

effective. For this reason, we choose to develop the CV method. Subsequently, we develop a 

MATLAB script that allows the FLUVIAL-EB model to better interpret manual changes to the 

meteorology. Future work might allow the user to perform a more classic sensitivity analysis 

where the perturbation value is the same across each variable and seasons although we still find 

the methods listed above to be useful in determining seasonal changes to predicted river 

temperature. 

Results  

In this study, we performed a sensitivity analysis to investigate the impact of changes in 

critical atmospheric variables on the spectral energy balance of the water column and predicted 

river temperature within the FLUVIAL-EB model. We examined the sensitivity of predicted 

river temperature to air pressure, air temperature, shortwave radiation, longwave radiation, vapor 

pressure, and windspeed for each of the four seasons (winter (DJF), spring (MAM), summer 

(JJA), and fall (SON)) using a 7-day mean. We calculated scaled and normalized partial 

derivatives using the coefficient of variation method, as described in the methods section, to 

understand better the predicted river temperature's sensitivity to each weather variable 

adjustment. Table 7 and Figure 6-9 show the 7-day mean of the scaled partial derivatives for 

each atmospheric variable at every distance of the river (0km – 150 km) calculated at a 10m 

resolution (x-axis) and presented in terms of degrees Celsius. We estimated the sensitivity terms 
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by subtracting predicted river temperature values simulated under small positive perturbations 

made to each atmospheric variable from predicted river temperature values simulated under 

observed weather conditions. Positive/negative sensitivity values represent a warming/cooling 

trend in predicted river temperatures simulated under small positive changes to atmospheric 

variables. Physically speaking, these sensitivity values indicate the impact of each atmospheric 

variable on the river temperature. Table 8 and Figure 10-13 show the normalized partial 

derivative values. Normalization was done with respect to shortwave radiation, which exhibited 

the most change in predicted river temperature. We highlighted shortwave radiation values in 

grey in each table to emphasize that all other values were scaled to this variable. The normalized 

partial derivatives provided a better understanding of the quantitative trends in the sensitivity of 

predicted river temperature to each of the six atmospheric variables. Overall, the sensitivity 

analysis results provided insight into the atmosphere-water surface interaction occurring within 

the FLUVIAL-EB model, which is essential for predicting river temperature and understanding 

how changes influence it in the atmosphere. 

DJF 

For each season, we assess partial derivate values calculated for predicted river 

temperature output simulated under small positive perturbations made separately to each of the 

atmospheric variables used in this study. Figure 6 and Table 7 show scaled sensitivity results 

along all distances of the river for a 7-day mean in DJF.   

At the 150km river distance (end of modelled river), predicted river temperature is most 

influenced by perturbations made to (1) shortwave radiation followed by (2) air temperature, (3) 

longwave radiation, (4) windspeed, (5) vapor pressure, and (6) air pressure for the DJF season. 
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All sensitivity values increase in magnitude along the length of the river, although the 

direction of river temperature changes with respect to each small positive change made to an 

atmospheric variable change depending on the variable. All atmospheric perturbation 

experiments show that under a small change, river temperature is immediately effective by the 

change within the first few kilometers of the dam.  

Windspeed and air pressure sensitivity values are negative along the length of the river, 

while shortwave radiation, longwave radiation, air temperature, and vapor pressure are positive, 

showing that river temperature is cooling/heating respectively under a slight positive 

perturbation made to each atmospheric variable. 

MAM 

Figure 7 and Table 7 show scaled sensitivity results along all distances of the river for a 

7-day mean in MAM. At the 150km river distance, predicted river temperature is most 

influenced by perturbations made to (1) shortwave radiation followed by (2) longwave radiation, 

(3) air temperature, (4) vapor pressure, (5) windspeed, and (6) air pressure for the MAM season. 

All predicted river temperature sensitivity values increase in magnitude along the length 

of the river. Shortwave radiation, longwave radiation, and air pressure depart from zero (no 

change between baseline and perturbation river temperature experiments) immediately within the 

first few kilometers from the dam. Air temperature, windspeed, and vapor pressure increase in 

magnitude gradually with distance away from the dam; thus, their effect on river temperature is 

gradual along the length of the river for the MAM season compared to all other variables. 

Perturbations made to shortwave radiation, longwave radiation, air temperature, vapor 

pressure, and air pressure all exhibit positive (warming) changes in predicted river temperature 
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for the MAM season. The MAM perturbation value (+0.471 ms-1) made to windspeed affects an 

overall net negative (cooling) change in predicted river temperature. Windspeed is the only 

variable shown to cause a cooling trend along river distance for the MAM season.  

JJA 

Figure 8 and Table 7 show scaled sensitivity results along all distances of the river for a 

7-day mean in JJA. At the 150km river distance, predicted river temperature is most influenced 

by perturbations made to (1) shortwave radiation followed by (2) air temperature, (3) longwave 

radiation, (4) windspeed, (5) vapor pressure, and (6) air pressure for the JJA season.  

All partial derivatives increase in magnitude downstream. Positive perturbations made to 

Shortwave radiation and longwave radiation (+1.14 𝑊𝑊𝑊𝑊−2 and +0.08 𝑊𝑊𝑊𝑊−2, respectively) 

effect predicted river temperatures immediately downstream of the dam, while a positive 

perturbation to air temperature, windspeed, vapor pressure, and air pressure (+0.27℃, +0.3 

𝑊𝑊𝑚𝑚−1, +0.074 ℎ𝑃𝑃𝜕𝜕, +0.0013 ℎ𝑜𝑜𝜕𝜕, respectively) all affect predicted river temperature at a slower 

rate along the river. 

Like the MAM season, the small perturbation applied to windspeed causes a decrease 

(cooling) in predicted river temperature. Shortwave radiation, longwave radiation, air 

temperature, vapor pressure, and air pressure all impart positive (warming) values for predicted 

river temperature. 

SON 

Figure 9 and Table 7 show scaled sensitivity results along all distances of the river for a 

7-day mean in SON. At the 150km river distance, predicted river temperature is most influenced 
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by perturbations made to (1) shortwave radiation followed by (2) longwave radiation, (3) air 

temperature, (4) windspeed, (5) vapor pressure, and (6) air pressure for the SON season. 

Perturbations made to each of the six atmospheric variables lead to a change in predicted 

river temperature. Shortwave radiation, longwave radiation, and air pressure all affect predicted 

river temperature within the first few kilometers from the dam under their unique perturbation 

values (+1.27 𝑊𝑊𝑊𝑊−2, +0.12 𝑊𝑊𝑊𝑊−2, +0.003 ℎ𝑃𝑃𝜕𝜕, respectively). A more gradual rate of change 

of predicted river temperature along the river is shown when air temperature, windspeed, and 

vapor pressure are perturbed by values of +0.25 ℃,+0.32 𝑊𝑊𝑚𝑚−1,+0.13ℎ𝑃𝑃𝜕𝜕, respectively. 

Except for the winter season (DJF), where a perturbation to air pressure also leads to a 

slight cooling of the predicted river temperature, windspeed is the only variable that exhibits a 

negative (cooling) difference in the predicted river temperature under a perturbation. 

Perturbations to all other variables result in a positive (warming) change in the predicted river 

temperature. 

General findings on scaled partial derivatives 

Several key takeaways can be drawn from the sensitivity analysis performed on the 

FLUVIAL-EB model for all seasons. Firstly, atmospheric factors increasingly influence river 

temperature as water flows downstream from the dam (0 km). Moreover, river temperature is 

most sensitive to atmospheric changes at greater distances from the source, indicating that the 

FLUVIAL-EB model can capture the complex interplay between the atmosphere and the water 

surface. Secondly, perturbations made to different atmospheric variables elicit varying responses 

in the rate at which predicted river temperature deviates from its boundary condition temperature 

at distance = 0km. For instance, changes in downwelling shortwave and longwave radiation 
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cause immediate increases in predicted river temperature, while fluctuations in air temperature, 

windspeed, vapor pressure, and air pressure cause a more gradual increase that takes place 

further downstream.  

Lastly, a vital feature of this study is the ability to examine specific spatial and temporal 

relationships between individual atmospheric variables and river temperature. For example, 

during the MAM season, a + 1.4 𝑊𝑊𝑊𝑊−2 increase in shortwave radiation causes a net +2.04 ℃ 

change in river temperature along the downstream distances of the river (distance = 75km – 

150km), while a change in shortwave radiation causes a net +2.1 ℃ change in river temperature 

along the initial portion of the river (distance = 0km – 50km). Observations such as this 

underscores the utility of Chapter 1 results to determine river temperature sensitivity to key 

atmospheric variables at key distances and times along the river which help inform location and 

seasonal based water management decisions. 

Normalized partial derivatives 

While the previous analysis focused on scaled partial derivative values, it is essential to 

highlight the utility of observing normalized values (Table 8 and Figure 10-13). Normalization 

involves dividing the partial derivative values by the scaled partial derivatives that cause the 

most significant change to predicted river temperature (i.e., shortwave radiation). This process 

results in uniform, unitless values ranging from -1 to 1. These normalized values provide context 

by indicating how sensitive river temperature is in the positive (warming) or negative (cooling) 

directions when a perturbation is made to an atmospheric variable. Normalized values are 

beneficial for observing predicted river temperature sensitivity since they offer a simple 

numerical map of cooling and warming trends. Many other studies utilize this tool. Most notably, 
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greenhouse gas concentrations are often reported as normalized values where the suite of 

influential greenhouse gasses are normalized by carbon dioxide. Methane concentrations, for 

example, exist in a much lower magnitude than their carbon dioxide counterpart. Thus, it 

becomes necessary to normalize methane values to the magnitude of carbon dioxide's part per 

mass concentration so that these two gasses are comparable from a global greenhouse gas 

perspective. Relating the greenhouse normalization analogy to the study, windspeed values have 

a much lower magnitude than values of shortwave radiation. Thus, to compare the response and 

sensitivity of predicted river temperature to vital atmospheric variables, it is necessary to 

normalize them. 

Atmospheric energy fluxes 

 The seasonal variation of atmosphere-water interactions in a river was 

investigated in this study (Figure 14). The results of the baseline model experiment revealed that 

net absorbed shortwave radiation (𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛) is the most significant heat flux in the river energy 

balance across all seasons. Latent (𝐿𝐿), sensible (𝐻𝐻), and net longwave (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛) fluxes were found to 

be negative (i.e., cooling the river) across all seasons. Sensible heat flux alternates between 

heating (+) and cooling (-) between day and night, but its magnitude remains small in all seasons. 

The latent heat fluxes exhibited a consistent diurnal cycle, balancing the sensible heat flux in all 

seasons. The dominant source of cooling is longwave radiation (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛), as latent heat fluxes are 

consistently negative. (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛) depends on emissivity calculated from air temperature, vapor 

pressure, a shortwave index (Prata, 1996), and a cloud correction (T. M. Crawford & Duchon, 

1999). From the sensitivity analysis results, longwave radiation is a relatively strong control of 

river temperature change. However, small perturbation to downwelling longwave from the 
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atmosphere does not significantly cool predicted river temperature. As the river heats the 

atmosphere, the vapor pressure above the water surface rises, cooling the river. However, an 

increase in vapor pressure also increases downwelling longwave radiation, resulting in (𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛) 

being less strongly negative and, therefore, less effective cooling. 

In conclusion, this analysis provides an understanding of the seasonal variation of 

atmosphere-water interactions in a river, highlighting the importance of the critical climate 

variables of interest and their impact on the predicted energy balance and river temperatures. 

Limitations 

There are a few limitations present in Chapter 1. First, we acknowledge that a 15-day 

simulation period reduced to a 7-day simulation period to allow for model spin-up is not a 

sufficiently long enough time period to present a true seasonal analysis. We are limited in data 

storage capabilities required to handle model output and the computational expense of running 

the FLUVIAL-EB model. However, results and conclusions presented in Chapter 1 highlight the 

importance of taking a seasonal based approach in understanding how predicted river 

temperature changes as a function of the atmosphere along distances of the river. Second, inflow 

and outflow of water along the main channel are not given enough consideration in this chapter. 

A key signature that is prevalent across all results for each season is that the rate of change in 

sensitivity of predicted river temperature follows a uniform increase in magnitude (not 

necessarily direction) within the 75 km to 100 km river distance. The theory for this reoccurring 

theme within the sensitivity results is that flow is diverted away from the main channel thus 

decreasing water depth. Decrease in water depth allows the atmosphere to heat the water column 

quicker causing predicted river temperatures to rise along the 75 km to 100 km river distance at a 
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quicker rate compared to the rest of the longitudinal river profile. More consideration should be 

given here to explain the fluctuation of the sensitivity values so that we can discern the role of 

the atmosphere on predicted river temperature changes based on water depth fluctuations due to 

water diversion and input locations along the river channel. Lastly, longwave radiation is the 

only atmospheric variable that is not empirically calculated. We calculate longwave radiation 

using air temperature, a solar index, and either vapor pressure or precipitable water following 

methods laid forth in Dilley and O’Brien (1997). The main limitation here is that as we add a 

perturbation value to air temperature the longwave radiation value also gets adjusted as a 

function of air temperature change. We then additionally perturb longwave radiation by a small 

positive value, which means longwave radiation is perturbed at two different times under the 

current model calculations. This limits our ability to understand how longwave radiation 

influences predicted river temperature because it is dependent on air temperature in its 

calculations. 

Conclusion 

 In conclusion, this study utilized the FLUVIAL-EB model to investigate the sensitivity of 

predicted river temperature to changes in critical atmospheric variables across four seasons (DJF, 

MAM, JJA, SON). The results reveal that shortwave radiation has the most significant impact on 

predicted river temperatures across all seasons. Furthermore, partial derivative values increased 

in magnitude downstream, and the effect of each atmospheric variable varied depending on 

season and distance downstream from the dam. Small perturbations to shortwave and longwave 

radiation cause an immediate change in predicted river temperature within the first 10 km 
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downstream of the dam. The remaining variables affect change in predicted river temperature at 

a much slower rate, given their respective small perturbations.  

This analysis explains the seasonal variation between the atmosphere and water column 

relationship as they relate to river temperature and energy balance FLUVIAL-EB model 

predictions. We highlight the substantial control that absorbed shortwave radiation and incoming 

shortwave radiation has on river temperature, which implies a top-down atmosphere to the water 

surface to water column dominance over river temperature. The six atmospheric variables 

observed here are apportioned through the model to calculate radiative, sensible, and latent heat 

energy exchange into evaporation and absorption characteristics of the river.  

We conclude that incoming shortwave and longwave radiation substantially control river 

temperature for wide, shallow rivers such as the San Joaquin River. Small rivers and streams are 

often shaded or bordered by overhanging vegetation which limits the amount of radiation (𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛) 

that can be absorbed by the water column. However, it is challenging to prevent the primary 

heating source in a wide shallow river with clear-sky conditions or where vegetative canopy 

shading can only influence narrow margins of the river along the banks. We find that radiative 

heating generally controls river temperature, which can increase predicted river temperature by 

up to 10.3 ℃ in the summer months (Table 7).  

Finally, this chapter has satisfied the requirements of an SA postulated by Devak and 

Dhanya (2017) as it provides valuable information on the influence of specific input variables on 

model results. By identifying which variables have the most significant impact on the output, this 

SA can guide future FLUVIAL-EB efforts in prioritizing efforts to refine and improve model 

inputs. Additionally, this SA guides ongoing changes to the model structure as we can now better 
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understand the top-down influence of each atmospheric variable on the energy balance of the 

water column. Understanding model sensitivity to atmospheric inputs can focus future work on 

model adjustments or improvements to the input dataset to improve accuracy and effectiveness. 

Finally, this SA provided the necessary context for examining energy balance and river 

temperature by better understanding their sensitivities to each of the six atmospheric variables.  
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Chapter 2 – Developing a Standard Error Equation for FLUVIAL-EB Predicted River 

Temperatures 

Introduction  

It is crucial to quantify sources of error in a model experiment to improve the accuracy of 

model predictions (Pechlivanidis, Jackson, & Mcintyre, 2011). Estimating sources of uncertainty 

and quantifying errors associated with model uncertainty has not yet been done for the 

FLUVIAL-EB model. This chapter addresses a possible source of error in FLUVIAL-EB energy 

balance and river temperature predictions, where we develop a novel standard error equation that 

quantifies data uncertainties within the meteorological time-series data across all seasons and 

along each distance of the river. We hypothesize that the CIMIS-provided atmospheric dataset 

does not represent atmospheric conditions directly over the river channel and therefore is not 

representative of the actual atmospheric conditions directly over the river that affect the 

absorptive and evaporative characteristics at the water-atmosphere surface level. 

Standard error values of predicted river temperatures are calculated using an auto-

correlated, variance-based decomposition of the basic standard error equation under first-order 

Taylor Series assumptions. The expanded standard error equation includes the following: 

1. A weighting term (partial derivatives calculated in Chapter 1) that measures the 

unique influence each atmospheric variable imparts on model predictions; 

2. A Pearson’s correlation coefficient term, which measures the direction and magnitude 

of the correlation between two uncorrelated atmospheric variables;  
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3.  A standard error value for each atmospheric variable that characterizes error due to 

misrepresentation of the atmosphere directly over the river channel, which we call 

standard error due to geographic displacement between the weather station and the 

river channel. 

It is important to note that this approach for quantifying data uncertainties is an initial effort and 

does not claim to provide a complete analysis of all possible sources of error in FLUVIAL-EB 

model predictions. However, the methods presented in Chapter 2 provide a first step in 

quantifying a source of error inherent to the atmospheric dataset used in this study and further 

enhances our understanding of the seasonal and distal characteristics of predicted river 

temperatures along the river. 

Uncertainty analysis and sources of error in physically-based numerical river temperature 

models 

Uncertainty in hydrological model predictions is a well-known challenge that hinders 

confidence in model results (Pechlivanidis et al., 2011). Uncertainty is quantifiable by examining 

different sources of error that contribute to the total error in model predictions (Bobba, Singh, & 

Bengtsson, 1995). Model prediction errors can stem from natural, data, parameter, and structural 

uncertainties. Bobba et al. (1995)describe natural uncertainties as random natural effects inherent 

to datasets used to calculate model predictions, such as temporal and spatial variability observed 

in the natural record. Chapter two assesses natural uncertainties in FLUVIAL-EB model 

predictions stemming from the CIMIS meteorological data network.  

Natural uncertainties of meteorological datasets are prevalent in hydrology literature. 

Spatial and temporal data resolution limits process-based energy balance model results  



40 

 
 

(Rivington, Matthews, Bellocchi, & Buchan, 2006; Westhoff et al., 2007). For instance, heat 

fluxes at the air-water and water-bed surfaces vary by region as a function of the prevailing 

meteorology/climatology processes within the basin (Dugdale et al., 2017). Therefore, the 

accuracy of model predictions made by numerical energy balance models mainly depends on the 

set physical properties that govern heat fluxes. The FLUVIAL-EB radiative scheme is governed 

by the observed downwelling atmospheric fluxes that act upon the water surface. This motivates 

the goal of understanding natural errors in river temperature predictions caused by solar 

radiation, longwave radiation, air temperature, wind speed, vapor pressure, and air pressure. 

Data 

The data utilized in this chapter is a compilation of sources previously discussed in 

Chapter 1, focusing on two specific weather stations (Firebaugh and Westlands, Table 2), which 

are part of the CIMIS meteorological network within the region. The data extracted from the 

CIMIS network includes air temperature, shortwave radiation, air pressure, and wind speed. As 

described in the data section of Chapter 1, longwave radiation is determined empirically using a 

clear-sky algorithm (Prata, 1996) and cloud correction equations from (T. M. Crawford & 

Duchon, 1999). Additionally, partial derivative values derived from the methodology described 

in Chapter 1 are used as weighting coefficients in the final standard error equation. 

Methods 

Definition of the standard error equation in the context of the FLUVIAL-EB model 

The basic standard error equation is a statistical measure of the standard deviation of a 

sampled distribution. The standard error of predicted river temperature quantifies the error in 

river temperature predictions due to the natural variability of the atmospheric data and the spatial 
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array of the CIMIS station network. The basic standard error equation is the standard deviation 

divided by the square root of the number of samples (Equation 10). 

𝑆𝑆𝑆𝑆 =
𝜎𝜎
√𝑖𝑖

 (10) 

Where 𝜎𝜎 is the standard deviation of the sample, and 𝑖𝑖 is the number of samples. We use the 

standard error equation to measure accuracy in FLUVIAL-EB model river predictions (Equation 

11). 

𝑆𝑆𝑆𝑆𝜕𝜕 =
𝜎𝜎𝜕𝜕
𝑖𝑖

 (11) 

𝜎𝜎𝜕𝜕 is the standard deviation of predicted river temperature, and 𝑖𝑖 is the number of atmospheric 

samples used to calculate radiative characteristics of the energy balance scheme of the 

FLUVIAL-EB model. 

 We could, in theory, execute the basic standard error equation (Equation 11) on any set of 

river predictions along each river distance. Doing so would not be particularly useful as the 

results would not allow us to discern errors in predicted river temperature contributable from the 

six atmospheric variables used in this study. In order to incorporate atmospheric sources of error 

into the basic standard error equation (Equation 11), we expand the equation to include terms 

that account for weather data uncertainties.  

Defining a standard error equation – Taylor series, variance-based expansion of the basic 

standard error equation  

We present a novel Gaussian variance-based, multi-variable error decomposition scheme 

on the simple standard error equation to account for the contribution of each meteorological 

variable on the overall error in river temperature predictions. Using first-order Taylor Series 
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expansion approximations under the finite-difference assumptions, we expand the basic standard 

error equation to include a set of variance and covariance terms that incorporate a standard error 

value that characterizes error due to the possible misrepresentation of the atmosphere directly 

over the river channel. Again, this error term is the standard error due to geographic 

displacement between the weather station and the river channel (we explain the methodology 

used to develop the term below). 

 First, we assume that predicted river temperature (𝜕𝜕) and the associated standard error 

are a function of only the weather inputs: air temperature (𝜕𝜕𝑝𝑝), air pressure (𝑜𝑜), longwave 

radiation (↓ Φ), shortwave radiation (𝑆𝑆), vapor pressure (𝜕𝜕0), and windspeed (𝑈𝑈). 

𝜕𝜕 = 𝑓𝑓(𝜕𝜕𝑝𝑝,𝑃𝑃,𝛷𝛷 ↓, 𝑆𝑆, 𝜕𝜕0,𝑈𝑈)  

 

𝑆𝑆𝑆𝑆𝜕𝜕 = 𝑓𝑓�𝑆𝑆𝑆𝑆𝜕𝜕𝑝𝑝 , 𝑆𝑆𝑆𝑆𝑃𝑃, 𝑆𝑆𝑆𝑆𝛷𝛷↓, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑛𝑛0 , 𝑆𝑆𝑆𝑆𝑈𝑈� (12) 

Equation 12 is expanded using first-order Taylor Series expansion: 

𝜕𝜕 ≈ 𝑓𝑓(𝜕𝜕𝑝𝑝,𝑃𝑃,Φ ↓, 𝑆𝑆, 𝜕𝜕0,𝑈𝑈) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃

(𝑃𝑃 − 𝑃𝑃�) 

+
𝜕𝜕𝜕𝜕
𝜕𝜕Φ ↓

�Φ ↓ −Φ ↓������ +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

(𝑆𝑆 − 𝑆𝑆̅) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕0

(𝜕𝜕0 + 𝜕𝜕0� ) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝑈𝑈 − 𝑈𝑈�). 

(13) 

 

𝜕𝜕� ≈ 𝑓𝑓�𝜕𝜕𝑝𝑝���,𝑃𝑃�,Φ ↓�����, 𝑆𝑆̅, 𝜕𝜕0� ,𝑈𝑈��. (14) 

We assume river temperature operates as a function of the six atmospheric variables of interest. 

Therefore, we can state that the mean of the river temperature is also a function of the mean of 

all six atmospheric variables during that same period. 

We substitute Equation 14 for the mean predicted river in Equation 13, 
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𝜕𝜕 ≈ 𝑓𝑓�𝜕𝜕𝑝𝑝���,𝑃𝑃�,Φ ↓�����, 𝑆𝑆̅, 𝜕𝜕0� ,𝑈𝑈�� +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃

(𝑃𝑃 − 𝑃𝑃�)

+
𝜕𝜕𝜕𝜕
𝜕𝜕Φ ↓

�Φ ↓ −Φ ↓������ +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

(𝑆𝑆 − 𝑆𝑆̅) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕0

(𝜕𝜕0 + 𝜕𝜕0� )

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝑈𝑈 − 𝑈𝑈�) 

(15) 

which can be simplified: 
 

𝜕𝜕 − 𝜕𝜕� ≈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃

(𝑃𝑃 − 𝑃𝑃�) +
𝜕𝜕𝜕𝜕
𝜕𝜕Φ ↓

�Φ ↓ −Φ ↓������ +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

(𝑆𝑆 − 𝑆𝑆̅)

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕0

(𝜕𝜕0 + 𝜕𝜕0� ) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝑈𝑈 − 𝑈𝑈�). 

(16) 

Using Equation 16, we can decompose the first-order terms by incorporating the variance 

definition. Variance is the measure of the variability within the time series using the average of 

the squared deviations from the mean predicted river temperature values: 

𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕) =
∑(𝜕𝜕 − 𝜕𝜕�)2

𝑁𝑁
 (17) 

Substituting the approximation for predicted river temperature as a function of the six 

atmospheric variables (Equation 16) to the variance equation (Equation 17) yields: 

𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕) =
1
𝑁𝑁
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃

(𝑃𝑃 − 𝑃𝑃�) +
𝜕𝜕𝜕𝜕
𝜕𝜕Φ ↓

�Φ ↓ −Φ ↓������

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

(𝑆𝑆 − 𝑆𝑆̅) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕0

(𝜕𝜕0 + 𝜕𝜕0� ) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝑈𝑈 − 𝑈𝑈�)�
2

 

(18) 

Squaring the numerator in Equation 18 and simplifying yields the fully expanded variance of 

predicted river temperature 
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𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕) = 1
𝑁𝑁
�� 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑝𝑝
(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���)�

2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

(𝑜𝑜 − �̅�𝑜)�
2

+ � 𝜕𝜕𝜕𝜕
𝜕𝜕Φ↓

�Φ ↓

−Φ ↓�������
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

(𝑆𝑆 − 𝑆𝑆̅)�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛0

(𝜕𝜕0 − 𝜕𝜕0� )�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝑈𝑈 − 𝑈𝑈�)�
2

+

2� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���)(𝑜𝑜 − �̅�𝑜)� + 2� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕Φ↓

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���)�Φ ↓ −Φ ↓������� +

2� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���)(𝑆𝑆 − 𝑆𝑆̅)� + 2� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛0

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���)(𝜕𝜕0 − 𝜕𝜕0� )� +

2� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝜕𝜕𝑝𝑝 − 𝜕𝜕𝑝𝑝���)(𝑈𝑈 − 𝑈𝑈�)� + 2�𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕Φ↓

(𝑜𝑜 − �̅�𝑜)�Φ ↓ −Φ ↓������� +

2�𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

(𝑜𝑜 − �̅�𝑜)(𝑆𝑆 − 𝑆𝑆̅)� + 2�𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛0

(𝑜𝑜 − �̅�𝑜)(𝜕𝜕0 − 𝜕𝜕0� )� + 2�𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝑜𝑜 −

�̅�𝑜)(𝑈𝑈 − 𝑈𝑈�)� + 2 � 𝜕𝜕𝜕𝜕
𝜕𝜕Φ↓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
�Φ ↓ −Φ ↓������(𝑆𝑆 − 𝑆𝑆̅)� + 2� 𝜕𝜕𝜕𝜕

𝜕𝜕Φ↓
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛0

�Φ ↓

−Φ ↓������(𝜕𝜕0 − 𝜕𝜕0� )� + 2 � 𝜕𝜕𝜕𝜕
𝜕𝜕Φ↓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈
�Φ ↓ −Φ ↓������(𝑈𝑈 − 𝑈𝑈�)� + 2�𝜕𝜕𝜕𝜕

𝜕𝜕𝑆𝑆
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛0

(𝑆𝑆 −

𝑆𝑆̅)(𝜕𝜕0 − 𝜕𝜕0� )� + 2 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝑆𝑆 − 𝑆𝑆̅)(𝑈𝑈 − 𝑈𝑈�)� + 2�𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈

(𝜕𝜕0 − 𝜕𝜕0� )(𝑈𝑈 −

𝑈𝑈�)��  

(19) 

Next, we express Equation 19 in terms of variance and covariance. Writing Equation 14 

in terms of variance and covariance is helpful in statistics and data analysis for several reasons. 

First, variance and covariance terms describe the relationships between each atmospheric 

variable. The variance measures the spread or variability around the mean of the dependent 

variables. The covariance between the dependent and independent variables measures the degree 
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to which two variables vary together. Second, observing covariance and variance results allows 

one to calculate other statistical measures such as correlation coefficients, regression analysis, 

and hypothesis testing. Third, variance and covariance are widely understood statistical 

measures. Therefore, expressing an equation in these terms can make it easier to compare results 

with future work where alternative atmospheric data sets are chosen for river temperature 

simulations or to compare results with other studies. Lastly, these measures help to identify 

potential problems with the data. Large covariance and variance terms values indicate outliers or 

measurement errors with the data, and by identifying these issues, we can improve the accuracy 

and reliability of FLUVIAL-EB model predictions. We rewrite Equation 19 to include variance 

(Equation 17) and covariance (Equation 20) terms. 

First, the definition of covariance between any two weather variables 𝑤𝑤1,𝑖𝑖 and 𝑤𝑤2,𝑖𝑖 is 

defined as follows: 

𝐶𝐶𝑜𝑜𝑣𝑣(𝑤𝑤1,𝑤𝑤2) =  
∑�𝑤𝑤1,𝑖𝑖 − 𝑤𝑤1������𝑤𝑤2,𝑖𝑖 − 𝑤𝑤2�����

𝑁𝑁
 (20) 

Rewriting Equation 14 in terms of variance and covariance (Equation 17 and Equation 20) 

yields: 
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𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕) =  �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

�
2

𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕𝑝𝑝) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜�

2

𝑉𝑉𝜕𝜕𝑒𝑒(𝑜𝑜) + �
𝜕𝜕𝜕𝜕
𝜕𝜕Φ ↓�

2

𝑉𝑉𝜕𝜕𝑒𝑒(Φ ↓)

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕S�

2

𝑉𝑉𝜕𝜕𝑒𝑒(𝑆𝑆) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕0

�
2

𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕0) + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈�

2

𝑉𝑉𝜕𝜕𝑒𝑒(𝑈𝑈)

+  2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑜𝑜

𝐶𝐶𝑜𝑜𝑣𝑣(𝜕𝜕𝑝𝑝,𝑜𝑜)� + 2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕Φ ↓

𝐶𝐶𝑜𝑜𝑣𝑣(𝜕𝜕𝑝𝑝,Φ ↓)�

+ 2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

𝐶𝐶𝑜𝑜𝑣𝑣(𝜕𝜕𝑝𝑝, 𝑆𝑆)� + 2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕0
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𝐶𝐶𝑜𝑜𝑣𝑣(𝜕𝜕0,𝑈𝑈)� 

(21) 

Equation 21 helps assess dependent and independent relationships between weather 

variables and predicted river temperature. However, we still have not incorporated a measure of 

error that represents error due to the geographic proximity between the weather station network 

and the river channel. Therefore, we adjust Equation 20 to include Pearson’s r correlation 
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coefficient and the standard error due to the geographic proximity between weather stations and 

the river channel.  

Pearson’s r correlation coefficient and the standard error due to the geographic proximity 

between weather stations and the river channel are incorporated because they simplify our 

explanation of the statistical relationship between weather input values and predicted river 

temperature predictions. Pearson’s r correlation coefficient measures the strength and direction 

of the linear relationship between two weather variables. The standard error of weather term 

provides the most significant possible error estimation for error in predicted river temperature 

due to a geographically-inaccurate representation of the atmosphere directly over the river 

channel. (See the Misrepresentation of the atmosphere directly over the river channel (Error due 

to geographic proximity) subsection below for a full description of this term. We omit the 

description in this section to focus on expanding the basic standard error equation.) 

We rewrite the variance term on the right-hand side of Equation 21. First, we define 

variance for each weather variable (𝑤𝑤) in terms of standard error 𝑆𝑆𝑆𝑆𝑤𝑤 =  �𝑉𝑉𝑝𝑝𝑝𝑝(𝑤𝑤)
𝑁𝑁

. Squaring both 

sides and solving for the variance of the weather term yields. 

𝑉𝑉𝜕𝜕𝑒𝑒(𝑤𝑤) = 𝑁𝑁 ∙ 𝑆𝑆𝑆𝑆𝑤𝑤2 (22) 

The covariance equation (Equation 20) is also changed to include the standard error of weather 

due to geographic distance from the weather channel and Pearson’s r correlation coefficient. 

First, we define Pearson’s correlation coefficient. (𝑒𝑒) In terms of covariance and standard 

deviation (𝜎𝜎) between two weather variables: 
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𝑒𝑒(𝑤𝑤1,𝑤𝑤2) =
𝐶𝐶𝑜𝑜𝑣𝑣(𝑤𝑤1,𝑤𝑤2)
𝜎𝜎𝑤𝑤1𝜎𝜎𝑤𝑤2

 (23) 

Next, we rewrite the denominator of Equation 23 in terms of standard error.  

𝑆𝑆𝑆𝑆𝑤𝑤 =  
𝜎𝜎𝑤𝑤
√𝑁𝑁

 (24) 

Solving the identity for standard deviation and substituting Equation 24 into Equation 23 yields: 

𝑒𝑒(𝑤𝑤1,𝑤𝑤2) =
𝐶𝐶𝑜𝑜𝑣𝑣(𝑤𝑤1,𝑤𝑤2)

𝑁𝑁�𝑆𝑆𝑆𝑆𝑤𝑤1 + 𝑆𝑆𝑆𝑆𝑤𝑤2�
 (25) 

Finally, rearranging the covariance term results in an expression for covariance written in terms 

of the standard error of weather due to geographic proximity between weather stations and river 

channel and Pearson’s correlation coefficient. 

𝐶𝐶𝑜𝑜𝑣𝑣(𝑤𝑤1,𝑤𝑤2) = 𝑁𝑁�𝑆𝑆𝑆𝑆𝑤𝑤1 + 𝑆𝑆𝑆𝑆𝑤𝑤2�𝑒𝑒(𝑤𝑤1,𝑤𝑤2) (26) 

Equation 21 is now rewritten in terms of the standard error and Pearson’s correlation coefficient: 
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(27) 

Finally, we rewrite the normal standard error equation 𝑆𝑆𝑆𝑆 = 𝜎𝜎
√𝑛𝑛

 in terms of the variance of 

predicted river temperature (Equation 22) using the identity 𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕) =  𝜎𝜎2,  

𝑆𝑆𝑆𝑆𝜕𝜕 =  �
𝑉𝑉𝜕𝜕𝑒𝑒(𝜕𝜕)
𝑁𝑁

. (28) 
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The methodology described here yields an autocorrelated variance-based decomposition 

of the standard error equation that approximates the standard error of predicted river temperature 

as a function of the six atmospheric variables upon which we focus in this study. These terms can 

be assessed separately by observing correlated and uncorrelated relationships, although we only 

focus on analyzing the total standard error across each season and along each distance of the 

river.  

Components of the standard error equation  

Equation 28, presented above, is an autocorrelated variance-based decomposition of the 

standard error equation that approximates the standard error of predicted river temperature as a 

function of the six atmospheric variables used in this study. These terms can be assessed 

separately, although we focus on analyzing the total standard error, which is a rewritten 

composition of both correlated (variance) and uncorrelated (covariance) terms. The total standard 

error equation is made up of these three terms: 

1) Partial derivatives: Partial terms are weighting constants that measure the sensitivity of 

predicted river temperature to the atmosphere. For example, in Chapter 1, shortwave 

radiation influences predicted river temperature most significantly compared to all other 

weather variables. Therefore, the partial derivative for predicted river temperature with 

respect to a small positive perturbation to shortwave radiation will influence the standard 

error of river temperature in the positive direction more than any other partial derivative 

value across all seasons and along the distance of the river.  

2) The standard error of each atmospheric variable might arise due to geographic 

misrepresentation of the weather over the channel. This term is the standard error due to 
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the geographic proximity between a meteorology station and the river channel. We 

develop this term uniquely, which will be discussed in the subsequent subsection.  

3) Pearson’s correlation coefficient (𝑒𝑒): Pearson’s r measures the direction and magnitude of 

the correlation between two atmospheric variables. The values of Pearson’s 𝑒𝑒 are always 

between -1 and 1. At -1 and 1, the relationship is maximized, while 0 indicates no 

relationship between each variable.  

Error due to geographic proximity – a possible source of error in FLUVIAL-EB model 

predictions due to misrepresentation of the atmosphere directly over the river channel 

One of the main proposed challenges affecting FLUVIAL-EB model results is the quality 

of the atmospheric data used to predict energy balance and river temperature. Ideally, we would 

sample the atmosphere directly over the river channel as these values would better represent the 

governing weather variables that control the energy balance of the water column. We are, 

however, limited in the spatial coverage and representativeness of the weather directly over the 

channel and suggest that the data gathered from the CIMIS stations are not representative of the 

atmosphere directly over the river channel and therefore present a source of error in predicted 

river temperature. The data resolution limits the effectiveness of the griddedInterpolant 

MATLAB function in calculating weather values at discrete times and distances along the river. 

To account for this source of error, we developed a method that accounts for errors from the 

observed weather data.  

We assert that weather data from the Merced CIMIS station introduces the most error in 

predicted river temperature since it is the farthest station from the river channel. We measure all 

distances recorded in Table 2 and Figure 15 using the ArcGIS Pro tool, Generate Near Table 
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(Analysis), which calculates distances between point (weather stations) and line (river channel) 

data classes. The Merced weather station is 28.9 km from the channel (Station: Merced, Table 2, 

Figure 15). Next, we find two weather stations with an equal or similar distance between each 

other than the distance between Merced station and the channel. We find that a distance of 30.5 

km separates Firebaugh and Westlands CIMIS stations (Station: Firebaugh and Westlands, Table 

2, Figure 15). The distance separating Firebaugh and Westlands stations characterizes the 

misrepresentation of the atmosphere due to the geographic proximity between the furthest 

weather station (Merced) and the channel. Finally, we gather time series data for each season at 

both stations (Firebaugh and Westlands) for each variable and calculate the standard error values 

of each weather variable between the two stations. 

The standard error value described above represents a combined error value from the 

difference in weather values between the two stations. Statistically, the values calculated here are 

the standard error of the difference between the means. The standard error of the difference 

between the means is a measure of the precision with which the difference between two sample 

means estimates the difference between two population means. In our case, the sample mean 

represents weather data gathered from Firebaugh and Westlands, which estimates the population 

means for all weather data gathered from the CIMIS network. Conveniently, the distance 

between the two stations (Firebaugh and Westlands, 30.5 km) chosen to represent the sample 

population is approximately equal to the distance of the furthest weather station from the channel 

(Merced, 28.5 km). Recall that this distance and the weather values recorded at any of the 

stations within the CIMIS network represent a possible source of error because data is not 

representative of the atmosphere directly over the river channel. Therefore, the standard error 
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calculated for the sample population signifies the maximum possible error introduced from the 

weather data in energy balance and river temperature predictions. To summarize, the standard 

error of the difference between the means is a measure of the standard deviation of the sampling 

distribution of the difference between the two sample means. It reflects how much variability we 

expect to see in the difference between the means across samples which we then include into the 

total standard error equation to represent error due to geographic proximity between weather 

stations and the channel.  

 Mathematically, the standard error of the difference between weather values gathered 

from Firebaugh and Westlands stations, which we write in terms of standard deviation, is 

described as:  

𝑆𝑆𝑆𝑆𝑤𝑤 = �𝜎𝜎𝑤𝑤,𝐹𝐹𝑖𝑖𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹ℎ
2 + 𝜎𝜎𝑤𝑤,𝑊𝑊𝑛𝑛𝑠𝑠𝑛𝑛𝑙𝑙𝑝𝑝𝑛𝑛𝑟𝑟𝑠𝑠

2

𝑖𝑖
 (29) 

𝜎𝜎𝑤𝑤,𝑤𝑤𝑛𝑛𝑝𝑝𝑛𝑛ℎ𝑛𝑛𝑝𝑝 𝑠𝑠𝑛𝑛𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛is the standard deviation of a weather variable time-series recorded at either 

Firebaugh or Westlands, 𝑖𝑖 is the sample size of the weather variable time-series (in this case, the 

sample size is the same for all variables), and 𝑆𝑆𝑆𝑆𝑤𝑤is the standard error of the difference between 

each weather variable, which we described as the error due to geographic proximity between the 

weather station and channel.  

Limitations 

There are a few limitations present in Chapter 2. First, we do not account for error due to 

elevation differences between the atmosphere over the river channel and the atmosphere 

recorded at Firebaugh and Westlands meteorological stations. Both stations are ~57 m (averaged 

elevation of the two stations above channel elevation) above the river channel. The derivation of 
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the total standard error equation does not include a term for error due to elevation difference and 

thus our standard error due to the meteorological data is limited. Second, the standard error 

equation presented in Chapter 2 does not include instrument error. Instrument errors for CIMIS 

weather stations are provided by CIMIS and can be included into the standard error equation in 

an additive manner. Future work should consider adding this error to the total standard error 

values. Third, the error values presented in Chapter 2 are small, which causes questions 

regarding other possible sources of error. These sources of error might include a 

misrepresentation of river channel physical features, fluvial dynamics, the weather interpolation 

scheme, etc. Future error development for this model should consider other sources of error and 

incorporate them to the current error values presented in this work.  

Results  

We evaluate the standard error of FLUVIAL-EB predicted river temperature for all 

seasons and along all river distances. The standard error presented here only represents 

uncertainties due to the meteorological dataset provided by the CIMIS network. Specifically, we 

hypothesize that one source of uncertainty in FLUVIAL-EB model results stems from the fact 

that the weather stations are separated from the main channel (the maximum distance from 

station to channel is 28.5 km). Therefore, weather data is unrepresentative of the atmosphere 

directly over the river. To quantify model uncertainty attributed to the meteorological dataset, we 

present a Gaussian variance-based, multi-variable error expansion of the basic standard error 

equation that represents the error in predicted river temperature due to the geographic separation 

between the river channel and weather stations.  
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FLUVIAL-EB model predictions contain more uncertainty than what we account for in 

Chapter 2. For example, predicted river temperature error could be due to misrepresenting river 

channel physical features, fluvial dynamics, weather interpolation, and much more. However, the 

primary purpose of this paper is to observe the sensitivity of predicted river temperature to each 

atmospheric variable, so we only focus on presenting errors inherent to the atmospheric dataset 

in Chapter 2. We consider this work a first step in quantifying error values associated with model 

predictions, where we assume that predicted river temperature error is only a function of the six 

atmospheric variables used in this study.  

The standard error of the 7-day mean simulation period for the four seasons and along all 

river distances is plotted in Figure 16 and quantified in Table 10. Table 10 is color-coded to 

observe the distance-wise trends in standard error values. Green represents a small error value, 

while red represents a high error value.  

At the 150 km river distance, the winter season (DJF) shows the most significant error 

associated with predicted river temperature at (±0.12℃) followed by MAM (±0.083℃), SON 

(±0.052℃), and JJA (±0.029℃). These results demonstrate that the standard error is highest 

during the coldest seasonal weather patterns and lowest during the warmest ones. Specifically, 

the standard error is maximized during the DJF winter season and minimized during the JJA 

summer season. During the transitional seasons of spring and fall, where climatic 

maximums/minimums are transitioning, we observe standard error values that fall within the 

range of those observed during the winter and summer months. 

Not surprisingly, error values are small at distance = 0km. The partial derivatives are also 

trivially small at a distance = 0km because there is very little difference between the perturbed 
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predicted river temperature experiments and baseline predicted river temperature experiments 

near the dam. Partial derivative terms utilized as weighting constants are multiplied through the 

standard error equation, which means that when the partial derivatives are small, so is the error. 

That is why we observe trivially small error values at river distance = 0km. Standard error values 

follow the same distance-wise pattern as the partial derivatives along all river distances, where 

error increases with distance from the dam across all seasons.  

 Interestingly, the error in predicted river temperature that result from geographic 

proximity between a weather station and the nearest section of the river is much smaller in 

magnitude than the changes to predicted river temperature that result from small positive 

perturbations made to each of the six atmospheric variables used in this study. These variables 

are shown in Figures 6 through 13 and Tables 7 and 8. The only exception is air pressure, as 

perturbations made to this variable had a negligible impact on river temperature, with changes 

ranging from 10.4 to 10.3 °C. 

The main takeaway from the results presented in Figure 16 and Table 10 is that standard 

error values are small across all seasons and distances along the river. We can claim that the total 

error in predicted river temperature is small and that the FLUVIAL-EB model is accurate if we 

consider the spatial network of the weather stations used in this work to be the only possible 

source of uncertainty within model predictions. 

Discussion 

If seasonal signatures within the observed meteorology data, directly and indirectly, 

influence the standard error values developed in Chapter 2, can we comment on the role of the 

background climatology of the San Joaquin region discussed in Chapter 1? The results presented 



57 

 
 

in Figure 16 shows that standard error values for simulated river temperatures vary with season. 

Notably, the transitional seasons of MAM and SON, which mark the transition from winter to 

summer and vice versa, have error values that fall within the range of those observed during the 

winter and summer months. This suggests that periods of high climatic variability introduce 

more error into model predictions, and periods of low climatic variability introduce less. 

Notably, during the DJF, when weather is more variable, the error in predicted river temperature 

is higher. Conversely, the most minor error in predicted river temperature values is seen during 

the JJA season when the weather is less variable than other seasons. 

Our findings indicate that the DJF winter season has the highest standard error values 

compared to the other seasons, which could be attributed to the increased variability in climatic 

conditions during this season. California experiences most of its inclement weather during the 

winter months due to the shift of the high-pressure ridge towards the Pacific Ocean, allowing 

low-pressure systems to travel through the state from north to south/southeast. This winter 

climatology leads to more variability in observed weather conditions in the study area, which 

could explain why we observe larger error values in DJF. 
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Chapter 3 – Appling Gridded Climate Data to a Physically-based Numerical Energy 

Balance Model (FLUVIAL-EB)  

The goal of Chapter 3 is to apply gridded climate data to the FLUVIAL-EB model. 

Applying a gridded climate dataset will allow us to observe how a new atmospheric data set 

governs energy balance and river temperature results. Additionally, by applying gridded climate 

data that incorporates climate change predictions to the physical processes that make up the 

structure of the FLUVIAL-EB model to predict river temperature, we can observe how predicted 

river temperature will change in altered climate scenarios. Results presented in Chapter 3 show 

the FLUVIAL-EB model's efficacy in incorporating gridded climate data for river temperature 

predictions for all four seasons in 2010 which motivates future work to explore how river 

temperature might change under climate change atmospheric conditions. 

Introduction 

Water temperature fluctuation in large lowland rivers is partially controlled by 

atmospheric conditions such as shortwave radiation, longwave radiation, air temperature, wind 

speed, vapor pressure, and air pressure. The relationship between these six atmospheric variables 

and predicted river temperature is highlighted in Chapters 1 and 2, but how will climate change 

affect the absorptive and evaporative characteristics of the water column? To answer this 

question, we explore the FLUVIAL-EB model's efficacy in predicting river temperature using 

projected climate change gridded datasets as its atmospheric input rather than the observed 

weather station CIMIS network.  
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Gridded climate datasets have become valuable for model applications in regions where 

station data coverage lacks temporal and spatial consistency. Gridded climate datasets refer to 

data interpolated into a standardized gridded pattern, typically with a spatial resolution of a few 

kilometers to tens of kilometers (Daly, 2006). Gridded data can assist in modeling applications 

that rely on robust data sets to calculate results, such as energy balance terms and river 

temperature, because they provide a smooth, continuous data set over the entire region in both 

time and space (Eum, Dibike, Prowse, & Bonsal, 2014). Additionally, gridded climate data may 

represent an extensive range of atmospheric variables and are often available from historical to 

future projected periods (Choi, Moore, & Rasmussen, 2007). We incorporate gridded data for 

FLUVIAL-EB model calculations because they offer high-resolution coverage of the study area 

in time and space and represent the six atmospheric variables used in this study calculated under 

projected future climate change scenarios.  

We utilized gridded climate data from a regional climate model (RCM). Regional climate 

models (RCMs) provide gridded climate datasets on smooth temporal and spatial scales by 

incorporating data from various sources, including weather stations, satellite observations, and 

other climate models. RCM models use sophisticated mathematical algorithms and physics-

based equations to simulate the interactions between earth system processes and predict how 

they will change over time (Rummukainen, 2010). We are specifically interested in incorporating 

RCM data, including future climate change projections, into the FLUVIAL-EB model to observe 

changes to the energy balance along river distances in altered climatic states. 

Future climate change projections often include what is known as a Representative 

Concentration Pathway (RCP). An RCP is a set of scenarios used in climate modeling to project 



60 

 
 

future greenhouse gas concentrations and associated radiation forcing. There are four scenarios 

in total. We download the "high emissions" scenario (RCP 8.5), which assumes that greenhouse 

gas emissions will continue to increase throughout the 21st century, leading to a radiation-forcing 

level of 8.5 𝑊𝑊𝑊𝑊−2 by 2100 (Riahi et al., 2011). Due to time constraints, atmospheric data 

calculated under RCP8.5 conditions was not incorporated into the FLUVIAL-EB model. 

However, upcoming work will include future climatic predictions to observe how the radiative 

structure of the river changes across seasons and along river distance under altered climate 

conditions.  

Climate change and FLUVIAL-EB model predictions 

The San Joaquin River is a central feature of California's hydrologic system. Once a 

robust wetland environment with many ephemeral rivers and lakes, the San Joaquin Valley has 

lost 95% of its original wetland environment(Ortiz-Partida et al., 2022). Environmental hardship 

can be attributed to poor management of water and land use, although climate change is also an 

increasing concern within the region. According to California's Fourth Climate Change 

Assessment (Ortiz-Partida et al., 2022), climate change negatively impacts the hydrological 

regime of the San Joaquin River region. Namely, 

1. Deterioration of the Sierra Nevada snowpack due to warmer temperatures and 

inconsistent snow seasons will change flow dynamics and water temperatures.  

2. Moreover, wetlands may experience increased water temperatures and evaporation 

rates under climate change.  

The outcomes documented in the San Joaquin Valley Region Report motivate the need to 

comprehend the region's fluvial dynamics. The goal of Chapter 3 is broadly aimed at enhancing 
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our scientific knowledge of how the San Joaquin River's spectral energy balance and river 

temperature profile might operate under high greenhouse gas emission scenarios, using 

predictions generated by the FLUVIAL-EB model to assist in the development of targeted 

restoration of the San Joaquin River.  

Methods  

Methods for this work largely follow previous methodologies, although we are only 

concerned with incorporating gridded climate data into the FLUVIAL-EB model, and therefore it 

is not necessary to conduct the SA presented in Chapter 1. Here, we gather the six key 

atmospheric variables presented throughout this paper from a particular RCM. We modified the 

FLUVIAL-EB model with unique functions that allow the model to interpolate the six 

atmospheric variables from an RCM across the study area, which replaces the need for the 

CIMIS meteorological network. Finally, the model was executed using 2010 RCM data to prove 

its efficacy in applying gridded climate data to the energy balance equations to predict radiative 

fluxes and river temperature.  

The most crucial step is that the FLUIVAL-EB model can now interpret gridded climate 

data. Before, the model utilized the network of weather stations near the river reach. Previously, 

the model synthesized weather observations through a gridded interpolation scheme. The gridded 

interpolation scheme incorporated atmospheric values into the physically-based numerical 

structure of the FLVUAL-EB model based on station proximity to the river's main stem. Now, 

the model can format and interpolate gridded climate data (NetCDF data formats). NetCDF 

(Network Common Data From) is a file format commonly used to store climate model output 

because it can handle large, multidimensional datasets such as the RCM output used in this work. 
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The updates here allow the FLUVIAL-EB model to accept raw NetCDF data, build an 

interpolation scheme within a bounding box specific to the region, and execute the main physical 

and radiative processes based on climate model prediction of the six atmospheric variables used 

in this study.  

Data  

We collected gridded climate data to replace the CIMIS meteorological station network 

and prove the FLUVIAL-EB model's ability to predict radiative fluxes and observe changes in 

radiative fluxes using gridded climate data.  

Canadian Regional Climate Model version 5 (CRCM5) 

Future projected climate change data is collected from the CRCM5 (Canadian Regional 

Climate Model version 5) regional climate model that simulates the Earth's climate system over 

the Northern Hemisphere. CRCM5 can simulate a range of climate variables, including the 

critical atmospheric variable used in this study, in historical and future periods. Its high spatial 

resolution and ability to simulate local climate processes make it a valuable tool for climate 

change research and decision-making (Bukovsky & Mearns, 2020; Whan & Zwiers, 2014).  

Before predicting river temperature using CRCM5 climate predictions, we want to see 

how FLUVIAL-EB model results compared when run under CIMIS data versus gridded climate 

data. The available CIMIS data included 2009, 2010, and 2011 coverage for the six atmospheric 

variables. Unfortunately, CRCM5's historical output does not include these years, making 

comparing predicted river temperatures under each dataset challenging. Therefore, we utilize 

another gridded climate data set to prove the model's ability to incorporate gridded climate data 



63 

 
 

and to compare predicted river temperatures run under gridded climate data to results calculated 

under CIMIS observations. 

ERA-Interim reanalysis-driven data 

CRCM5 climate model output also includes predictions output driven by ERA-Interim 

reanalysis data. We used this data set and not the CRCM5 RCP8.5 data set because we needed to 

compare the predicted river temperature run under the available CIMIS data with the predicted 

river temperature run under gridded climate data. We could not do so with the CRCM RCP8.5 

simulations because the periods between the future climate projection dataset and CIMIS data 

did not align. ERA-Interim is a global atmospheric reanalysis dataset produced by the European 

Centre for Medium-Range Weather Forecasts (ECMWF). It provides a comprehensive record of 

the Earth's atmosphere over 36 years, from 1979 to 2014, and is widely used in climate research 

(Dee et al., 2011). The Era-Interim reanalysis data set is used to drive CRCM5 model 

simulations at lower lateral boundaries and includes a proven compilation of reanalysis data that 

matches the observed record for the suite of climate variables calculated within the CRCM5 

model (Martynov et al., 2013). 

Table 11 presents all gridded climate model data utilized for the scope of this chapter. 

The results presented in this chapter compare predicted river temperature calculated using 3-

hourly CRCM5 ERA-interim driven climate output calculated at 0.11-degree spatial resolution 

for the year 2010. 

Limitations 

The main limitation in Chapter 3 is computational expense. First, one benefit of using 

gridded climate data is that it provides a complete temporal record of past, present, and future, 
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atmospheric data. Due to the computational expense of running the FLUVIAL-EB model and the 

data storage requirements of the model output, we are limited in utilizing the full functionality of 

the long-term data record provided by gridded climate data. Ideally, we would be able to conduct 

a full seasonal analysis with gridded climate data in past, preset, and future climates to observe 

seasonal changes in predicted river temperatures. Currently, it is unfeasible to run the 

FLUVIAL-EB model for this amount of time. Future work might incorporate shorter simulation 

periods calculated under future gridded climate change data if model validation is conducted 

under present atmospheric data.  

Results  

We conduct a model simulation using ERA-interim data to show the total scope of work 

done regarding adjustments made to allow the FLUVIAL-EB model to accept gridded climate 

data. This study compared river temperature simulations forced by observed weather data and 

regional climate model data. The results show that the two datasets produced different river 

temperature responses. The regional climate model data produces higher predicted temperatures. 

Specifically, the mean daily temperature forced by the regional climate model data was 

consistently higher than that forced by observed weather data. This difference was most 

pronounced in the winter months (DJF) when the mean difference between CRCM and CIMIS 

forced predicted river temperature values across all times, and river distance was 1.9 ℃—

followed by a 1.5 ℃ change in SON ℃, a 1.3 change in JJA ℃, and a 0.3 ℃ change in predicted 

river temperature. The regional climate model data also produced a wider temperature range, 

with higher maximum and lower minimum temperatures than observed weather data. 
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Conclusion 

The differences between the two datasets could be attributed to several factors, including 

spatial and temporal resolution differences and the physical representation of hydrologic 

processes. For example, the regional climate model may have more accurate representations of 

regional climate patterns and atmospheric circulation than observed weather data because our 

sample weather size is so small. Additionally, the regional climate model may better capture the 

feedback between land surface processes and atmospheric conditions, which can affect the 

energy balance and river temperature. The gridded climate data application is not necessarily key 

in this application, where our observed data set is relatively complete. Moving forward, our 

study aims to expand on this work by incorporating RCM data calculated under high-emission 

climate scenarios. This will enable us to obtain river temperature and energy flux values 

representing predicted atmospheric levels. By doing so, we can assess the potential impacts of 

climate change on river temperatures in the region and develop more informed water resource 

management strategies. This study serves as a critical first step towards a better understanding of 

the impacts of climate change on river temperatures in the region. It will be essential for 

informing future research on hydrological processes and ecosystem management in changing 

climate conditions. 

In conclusion, this study successfully incorporated gridded climate data into the 

FLUVIAL-EB model to predict river temperatures in a specific region. Comparing predicted 

river temperatures using observed weather data and regional climate model data highlighted 

significant differences in predicted temperatures, with the regional climate model data producing 

consistently higher values. These differences could be attributed to various factors, including 
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spatial and temporal resolution and the physical representation of hydrologic processes. 

Nevertheless, this study provides valuable insights into the potential impacts of climate change 

on river temperatures in the region, and the incorporation of future climate scenarios will enable 

us to develop more informed strategies for water resource management. 

The successful incorporation of gridded climate data into the FLUVIAL-EB model 

illustrates the potential for regional climate models to enhance our understanding of hydrological 

processes and ecosystem management under changing climate conditions. This study is a critical 

first step toward developing more accurate and reliable models for predicting regional river 

temperatures. Future research should focus on further refining and expanding the model 

framework to incorporate additional climate variables and improve accuracy. Overall, the 

findings of this study have significant implications for the management of water resources and 

the conservation of ecosystems, emphasizing the need for continued research in this area to 

address the challenges posed by climate change. 
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Figure 1. Overview of the San Joaquin River (black) and major tributaries (blue). Also shown (orange lines) are the 

Friant-Kern Canal and the Madera Canal. 
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Figure 2. Overview of the Sacramento-San Joaquin River Delta system 
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Figure 3. Overview of the model extent. The FLUVIAL-EB model predicts energy 

fluxes and river temperature from Friant Dam to the confluence of the Merced River 
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Figure 4. Site map of the study area, including the extent of modeled river channel (black 
line), weather stations (CIMIS, yellow diamonds), stream gauge sites (USGS, USBR, 

CADWR, CDFW, green triangles), and the location of Friant Dam (yellow star).  
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Figure 5. Perturbation Theory. Perturbed predicted river temperature values are 

subtracted from baseline predicted river temperature values for each time and distance 

along the river. The difference is divided by the unique perturbation value. The result is a 

partial derivate value for each time and distance along the river, representing river 

temperature sensitivity to an atmospheric variable. 
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Figure 6. Scaled partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day DJF (Winter) model simulation period. 
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Figure 7. Scaled partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day MAM (Spring) model simulation period. 
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Figure 8. Scaled partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day JJA (Summer) model simulation period. 
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Figure 9. Scaled partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day SON (Fall) model simulation period. 
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Figure 10. Normalized partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day DJF (Winter) model simulation period. 
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Figure 11. Normalized partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day MAM (Spring) model simulation period. 
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Figure 12. Normalized partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day JJA (Summer) model simulation period. 
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Figure 13. Normalized partial derivatives representing predicted river temperature 

sensitivity along river distance for the 7-day SON (Fall) model simulation period. 
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Figure 14. Baseline energy fluxes (𝑾𝑾𝑾𝑾−𝟐𝟐) for each of 4 seasonal simulation periods. 

 



82 

 
 

Figure 15. Methodology map for error due to geographic proximity to the river channel. Weather values from 

Firebaugh and Westland CIMIS stations are used to calculate the standard error of each weather variable.  
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Figure16. Total standard error due to uncertainties in weather values collected from the CIMIS station network within 

the study area along river distance and across all seasons. 
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Figure 17. Predicted river temperature calculated using gridded climate data (dashed lines) 

and predicted river temperature calculated using weather time-series data from the CIMIS 

station network (solid line) are shown for each season and along river distance. 
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Tables 

Table 1. Notation Table 

  

Energy Balance 
𝑸𝑸 river discharge 𝑊𝑊3𝑚𝑚−1 
𝑻𝑻 water temperature °K or °C 

𝑸𝑸𝒏𝒏𝒏𝒏𝒏𝒏 net energy exchange between the atmosphere, the bed, and the water  𝑊𝑊 𝑊𝑊−2 
𝑭𝑭𝒏𝒏𝒏𝒏𝒏𝒏 net energy transferred into or out from a unit area of the river 𝑊𝑊 𝑊𝑊−2 
𝑺𝑺𝒏𝒏𝒏𝒏𝒏𝒏 net shortwave radiation 𝑊𝑊 𝑊𝑊−2 
𝚽𝚽𝒏𝒏𝒏𝒏𝒏𝒏 net longwave radiation 𝑊𝑊 𝑊𝑊−2 
𝑯𝑯 sensible heat exchange 𝑊𝑊 𝑊𝑊−2 
𝑳𝑳 latent heat exchange 𝑊𝑊 𝑊𝑊−2 
𝑮𝑮 heat exchange due to bed conduction 𝑊𝑊 𝑊𝑊−2 
x distance along the river m 
𝒏𝒏 time s 
𝝊𝝊 water velocity m s-1 
𝑫𝑫 physical depth of the water 𝑊𝑊 
𝑫𝑫𝑳𝑳 longitudinal dispersion coefficient  
𝝆𝝆 density of water 𝑘𝑘𝑘𝑘 𝑊𝑊−3 
𝒄𝒄𝒑𝒑 specific heat of water 𝐽𝐽 𝑘𝑘𝑘𝑘−1 °𝐾𝐾−1 

Atmospheric Variables 
𝑻𝑻 water temperature °C 
𝑻𝑻𝒂𝒂 air temperature °K 
𝑷𝑷 air pressure kPa 
𝚽𝚽 ↓ net longwave radiation emitted by the atmosphere 𝑊𝑊 𝑊𝑊−2 
𝑺𝑺 shortwave radiation incident upon the water’s surface 𝑊𝑊 𝑊𝑊−2 
𝒏𝒏𝟎𝟎 vapor pressure kPa 
𝑼𝑼 windspeed 𝑊𝑊 𝑚𝑚−1 

Sensitivity Analysis 
𝒘𝒘 weather variable unit of variable 
𝑪𝑪𝑪𝑪 coefficient of variation unit of variable 
𝒑𝒑 perturbation value unit of variable 
𝝈𝝈 standard deviation unit of variable 
𝑰𝑰𝑸𝑸𝑰𝑰 interquartile range unit of variable 
𝑺𝑺𝑺𝑺 standard error unit of variable 
𝒏𝒏 sample size  - 
𝒓𝒓 Pearson’s correlation coefficient  - 
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Table 2. Observed hydrometeorological data from 11 sites and observed water temperature 

from 8 sites used to predict the energy balance continuously along the San Joaquin River, 

CA, USA. Denair II and Patterson are not within the study area and therefore are not 

considered part of the standard error calculations. Data sources include the California 

Irrigation Management Information System (CIMIS), the US Bureau of Reclamation 

(USBR), the US Geological Survey (USGS), the CA Dept. of Fish and Game (CADFG), the 

CA Dept. of Water Resources (CADWR), and the California Data Exchange Center 

(CDEC) 

Observed Water Temperature Data 

ID Latitude Longitude Elevation 
(m) 

Distance from Friant 
Dam (km) Agency Source 

SJF 36.9844 -119.7243 89 2.24 USGS CDEC 
H41 36.8762 -119.7932 78 19.43 USBR CDEC 
DNB 36.8335 -119.9658 64 42.12 USBR CDEC 
GRF 36.7980 -120.1600 55 64.03 USBR CDEC 

SJRMP 36.7921 -120.3712 41 101.07 USBR/CDFW USBR 
SDP 36.9940 -120.5015 33 137.86 CADWR CDEC 
FFB 37.3099 -120.9310 16 228.11 USGS CDEC 
SMN 37.3472 -120.9762 12 239.35 USGS CDEC 

Observed Meteorological Data 

ID Latitude Longitude Elevation 
(m) 

Distance from 
channel (km) Station Name Source 

FRT 36.9840 -119.7230 176 0.1 Friant Dam USBR 
080 36.8208 -119.7423 103 7.33 Fresno State CIMIS 
145 37.0165 -120.1864 70 22.97 Madera CIMIS 
148 37.3141 -120.3867 61 28.9 Merced CIMIS 
105 36.6340 -120.3818 58 16.92 Westlands CIMIS 
007 36.8512 -120.5909 56 12.01 Firebaugh CIMIS 
124 36.8901 -120.7314 56 22.65 Panoche CIMIS 
161 37.4389 -121.1385 49 17.45 Patterson CIMIS 
206 37.5459 -120.7545 46 29.3 Denair II CIMIS 
056 37.0967 -120.7539 29 6.65 Los Banos CIMIS 
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Table 3. Periods of consistent flow from SJF stream gauge data. 

Periods of Consistent Flow 
Start Date End Date Flow (±30 (cfs)) Season 

1/1/09 0:00 2/15/09 17:30 96.6 DJF 
2/15/09 17:45 3/7/09 7:45 94.6 DJF 
3/7/09 15:15 3/18/09 7:45 109 MAM 
3/25/09 16:30 4/20/09 8:30 144 MAM 
5/1/09 15:15 6/5/09 6:15 180 MAM 
7/10/09 6:30 7/21/09 2:30 180 JJA 
7/21/09 2:45 8/28/09 22:30 210 JJA 
8/28/09 22:45 9/9/09 7:00 180 JJA 
9/7/09 9:30 9/18/09 15:45 190 SON 

10/9/09 17:00 10/23/09 7:00 365 SON 
10/23/09 9:00 11/1/09 10:30 389 SON 
11/11/09 14:00 11/21/09 10:30 353 SON 
11/21/09 13:30 12/22/09 8:00 96.4 SON 
12/22/09 13:15 1/22/10 7:15 92.8 DJF 
2/11/10 16:00 2/23/10 7:00 410 DJF 
3/29/10 17:00 4/12/10 15:15 1300 MAM 
5/1/10 18:00 5/13/10 13:15 1670 MAM 
5/28/10 13:00 6/8/10 11:15 866 MAM 
6/8/10 15:15 7/17/10 2:30 372 JJA 
7/17/10 2:45 8/13/10 15:45 339 JJA 
8/13/10 20:00 8/23/10 12:00 331 JJA 
8/27/10 19:00 10/8/10 7:00 331 JJA 
10/15/10 16:00 11/15/10 15:30 335 SON 
2/1/11 11:15 2/11/11 6:15 221 DJF 
3/4/11 16:15 3/19/11 20:15 700 MAM 
7/17/11 1:00 8/12/11 10:30 310 JJA 
8/12/11 21:30 9/12/11 6:15 320 SON 
11/18/11 10:30 12/5/11 9:45 96.8 DJF 
12/8/11 20:15 12/28/11 7:15 96.8 DJF 
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Table 4. Selected periods of consistent flow from SJF stream gauge station. Start and end 

times will be used for model simulation. 

Select 2011 Periods of Consistent Flow 
Start Date End Date Flow (±30 (cfs)) Season 

12/8/11 20:15 12/28/11 7:15 96.8 DJF 
3/4/11 16:15 3/19/11 20:15 700 MAM 
7/17/11 1:00 8/12/11 10:30 310 JJA 
8/12/11 21:30 9/12/11 6:15 320 SON 
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Table 5. Mean water temperature values from USGS station: SJF for initial boundary 

conditions across all seasons.  

Water Temperatures for FLUVIAL-EB Initial Boundary Conditions 
Season Water Temperature (℃) 

DJF 9.5 
MAM 8.0 
JJA 14.5 

SON 14.5 



90 

 
 

Table 6. FLUVIAL-EB model run commands for prescribed flow profile, temporal range, spatial and temporal resolution, and 

initial and boundary temperatures specified 

 

 

 FLUVIAL-EB Model Run Parameters  

Season Model Start Time Model End Time Selected Time Range 
Flow 

Profile 
(cfs) 

Distance 
Resolution 

(m) 

Temporal 
Resolution 

(sec) 

Boundary 
Temperature

(℃) 

Initial 
Temperature

(℃) 
DJF 12/15/2011 12/28/2011 12/20/2011 - 12/28/2011 1530 100 30 9.7 11 

MAM 03/4/2011 03/19/2011 03/11/2011 - 03/19/2011 1530 100 30 8.1 11 
JJA 07/29/2011 08/12/2011 08/04/2011 - 08/12/2011 1530 100 30 14.3 11 
SON 08/30/2011 09/12/2011 09/04/2011 - 09/12/2012 1530 100 30 14.2 11 
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Table 7. Scaled sensitivity terms along river distance and across seasons for each 

atmospheric variable. Scaled 7-day mean partial derivative terms at different distances 

along the river for the 7-day DJF, MAM, JJA, and SON model simulation periods. Color 

gradient corresponds to negative terms (green) and positive terms (red). 

 



92 

 
 

Table 8. Normalized sensitivity terms along river distance and across seasons for each 

atmospheric variable. Normalized 7-day mean partial derivative terms at different 

distances along the river for the 7-day DJF, MAM, JJA, and SON model simulation 

periods. Normalized partial derivatives are unitless. Color gradient corresponds to the 

negative terms (green) and positive terms (red). 
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Table 9. Summary of perturbation values for sensitivity analysis.  

DJF Coefficient of Variation 
(CV) Method 

Rakovec et al., (2014) 
Method 

Shortwave radiation (W m-2) 1.548 1.012 
Longwave radiation (W m-2) 0.084 2.364 

Air temperature (°C) 1.314 0.038 
Windspeed (m s-1) 0.271 0.014 

Vapor pressure (hPa) 0.183 0.006 
Air pressure (hPa) 0.005 1.015 
   

MAM Coefficient of Variation 
(CV) Method 

Rakovec et al., (2014) 
Method 

Shortwave radiation (W m-2) 1.387 1.700 
Longwave radiation (W m-2) 0.100 2.955 

Air temperature (°C) 0.374 0.124 
Windspeed (m s-1) 0.471 0.020 

Vapor pressure (hPa) 0.236 0.010 
Air pressure(hPa) 0.002 1.010 

 

JJA Coefficient of Variation 
(CV) Method 

Rakovec et al., (2014) 
Method 

Shortwave radiation (W m-2) 1.136 3.135 
Longwave radiation (W m-2) 0.082 3.092 

Air temperature (°C) 0.271 0.238 
Windspeed (m s-1) 0.297 0.020 

Vapor pressure (hPa) 0.074 0.014 
Air pressure (hPa) 0.001 1.000 

 

SON Coefficient of Variation 
(CV) Method 

Rakovec et al., (2014) 
Method 

Shortwave radiation (W m-2) 1.267 2.400 
Longwave radiation (W m-2) 0.115 3.280 

Air temperature (°C) 0.252 0.246 
Windspeed (m s-1) 0.318 0.020 

Vapor pressure (hPa) 0.130 0.014 
Air pressure (hPa) 0.003 1.000 
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Table 10. Standard error values across all seasons and select distances along the river. 

 0 km 10 km 25 km 50 km 75 km 100 km 125 km 150 km 

DJF (±℃) 0.000 0.009 0.022 0.039 0.063 0.097 0.108 0.124 

MAM (±℃) 0.000 0.007 0.018 0.033 0.052 0.074 0.077 0.083 

JJA (±℃) 0.000 0.002 0.006 0.012 0.017 0.023 0.025 0.029 

SON (±℃) 0.000 0.005 0.013 0.024 0.037 0.048 0.049 0.052 
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Table 11. CRCM5 gridded climate data.  

Model Experiment type Spatial 
Resolution 

Temporal 
resolution 

Simulation 
period 

CRCM5 ERA-interim 0.11 deg 3 hourly 2010 
CRCM5 ERA-interim 0.22 deg 3 hourly 2010 
CRCM5 ERA-interim 0.44 deg 3 hourly 2010 
CRCM5 ERA-interim 0.11 deg 3 hourly 2009 
CRCM5 ERA-interim 0.22 deg 3 hourly 2009 
CRCM5 ERA-interim 0.44 deg 3 hourly 2009 
CRCM5 Historical 0.44 deg 3 hourly 1950 -2005 
CRCM5 RCP 8.5 0.44 deg 3 hourly 1950 – 2100 

RCP 8.5 greenhouse forcings begin in 2006 for future projection experiment. 
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Appendix A: Auxiliary Figures 
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Figure A1. Interpolated weather values at distance along the river for a mean 7-day 

model simulation period for the DJF season. 
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Figure A2. Interpolated weather values at distance along the river for a mean 7-day 

model simulation period for the MAM season. 
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Figure A3. Interpolated weather values at distance along the river for a mean 7-day 

model simulation period for the JJA season. 
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Figure A4. Interpolated weather values at distance along the river for a mean 7-day 

model simulation period for the SON season. 
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Figure A5. Partial derivatives representing predicted river temperature sensitivity 

along river distance for the 7-day DJF (Winter) model simulation period.  

  



103 

 
 

Figure A6. Partial derivatives representing predicted river temperature sensitivity 

along river distance for the 7-day MAM (Spring) model simulation period.  
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Figure A7. Partial derivatives representing predicted river temperature sensitivity 

along river distance for the 7-day JJA (Summer) model simulation period.  
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Figure A8. Partial derivatives representing predicted river temperature sensitivity 

along river distance for the 7-day SON (Fall) model simulation period. 
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Figure A9. Predicted river temperature (blue line) simulated during the winter 

(DJF) season. Grey area represents how confident we are in predicted river temperature 

(±℃) for the DJF seasons assuming that predicted river is only a function of the six 

atmosphere variables used in this study and uncertainty in predictions only come from 

error due to geographic proximity between weather station and channel.  
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Appendix B: Auxiliary Tables  
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Table 7. Sensitivity terms along river distance and across seasons for each atmospheric 

variable. Scaled 7-day mean partial derivative terms at different distances along the river 

for the 7-day DJF, MAM, JJA, and SON model simulation periods. Color gradient 

corresponds to negative terms (green) and positive terms (red). 
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