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Understanding how climate change and variability will interact with groundwater 

resources is crucial for sustainable groundwater management. To better understand this 

relationship at the management scale, I investigate the effects of interannual to 

multidecadal climate variability on groundwater resources of the Tulelake Irrigation 

District (TID) in northern California using singular spectrum analysis (SSA) and lag 

correlations. The SSA results indicate that while the El Nino-Southern Oscillation 
(ENSO) and Pacific Decadal Oscillation (PDO) influence precipitation, streamflow, and 
groundwater levels, there is a larger contribution of PDO-like variability in the 
groundwater levels but with low to moderate lag correlation coefficients. I also explored 
the effects of future climate change by using HYDRUS-1 D models to simulate recharge 
beneath the two dominant soil textures (Tulebasin clay and Laki sandy loam) of the TID 
from 1950 to 2099 using downscaled output from four global climate models (GCMs) at 
representative concentration pathways (RCP) 4.5 and 8.5. Median recharge values range 
from 77 to 182 mm/year for the Tulebasin and Laki sediments, with the greatest recharge 
rates simulated during the historic time period (1950 to 2005). Although simulated 
recharge rates under the RCP 4.5 and 8.5 scenarios are not statistically different, they are 
statistically significant and as much as 50% lower simulated recharge during the end of 
the 21 st century as compared to the historic time period. The simulated decreasing trend 
in future recharge is more sensitive to decreases in air temperature and evapotranspiration 
than increases in average annual precipitation. Moreover, the semi-arid climate and 
relatively shallow depth to water ( <4 m) of the TID create recharge dynamics that are 
relatively sensitive to forecasted air temperature and evapotranspiration. The findings 
from this thesis can be used by water resources managers in the TID or other similar 
agencies to forecast future groundwater budgets and plan for the likely decreases in 
recharge over the coming decades of the 21 st century. 

I certify that the Abstract is a correct representation of the content of this thesis. 
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1.0 Introduction 

 Groundwater is an important freshwater resource and component of the 

hydrologic cycle. This water resource supports ecosystem functions, public and domestic 

water supplies, irrigation water for agriculture, and other industrial uses. During drought, 

groundwater is often used when surface water resources are not available in a 

management practice known as conjunctive use. However, in many parts of the world, 

especially arid and semi-arid regions, groundwater is mismanaged and the resulting 

impacts on water quality and water quantity threaten the sustainability of the local 

freshwater resources. Groundwater sustainability challenges are further exacerbated by 

climate variability and climate change (Green et al. 2011; Taylor et al., 2012); thus 

understanding the response in groundwater resources to such climate perturbations is 

important to help inform best management practices and policy decisions (Famiglietti 

2014; Meixner et al. 2016).  

 In 2014, California passed the Sustainable Groundwater Management Act 

(SGMA), which signified a statewide shift in water resource management towards 

sustainability. Through basin prioritization, defining sustainable yield, and mitigation of 

undesirable results, SGMA aims to achieve sustainable groundwater use by 2040 for 

critically overdrafted groundwater basins and by 2042 for high and medium priority 

groundwater basins (CA DWR 2017). Given that groundwater supports many sectors of 

California’s economy, understanding how the impacts of climate change and climate 

variability may influence groundwater resources is a critical aspect of sustainable 

management. 
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1.1 Climate Variability and Groundwater Resources 

 Climate variability and climate change can directly and indirectly influence many 

components of a groundwater budget, including recharge (Meixner et al. 2016). Climate 

variability can occur on all spatial and temporal scales, beyond singular weather or storm 

events. Specifically, climate variability is defined as the difference between the current 

climatic conditions and the mean climatic conditions, which are calculated over longer 

temporal scales (Kuss and Gurdak, 2014). Global-scale climate variability is often 

characterized by fluctuations in sea surface temperatures (SST), sea level pressures 

(SLP), geo-potential heights, wind speed, and other atmospheric-oceanic variables (Ghil, 

2002). 

 There are several quasi-periodic atmospheric-oceanic oscillations that have 

teleconnection patterns with climate variability across the western United States. Two of 

the most prominent oscillations and foci of this study are the El Niño-Southern 

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). ENSO and PDO have quasi-

periodic oscillations over 2-7 years and 15-35 years, respectively (Ghil, 2002; Kuss and 

Gurdak, 2014; Mantua and Hare, 2002). Common indices that are used to characterize 

these oscillations are the Multivariate ENSO Index (MEI) and Pacific Decadal 

Oscillation (PDO) Index (Figure 1ab).  

Previous research has demonstrated that the interannual variability of ENSO and 

decadal to multidecadal variability of PDO may have different teleconnections to the 

terrestrial hydrologic processes that can affect groundwater budgets (e.g., Corona et al., 

2018; Gurdak et al., 2007; Hanson et al., 2004; Kuss and Gurdak, 2014). For example, 
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these teleconnection patterns may influence fluctuations in groundwater levels (Corona et 

al., 2018; Gurdak et al., 2007; Hanson et al., 2004; Kuss and Gurdak, 2014; Tremblay et 

al., 2011; Velasco et al., 2015). Kuss and Gurdak (2014) found that ENSO and PDO have 

a greater control on groundwater level variations across the U.S. than the Atlantic 

teleconnection patterns associated with the North Atlantic Oscillation (NAO) and 

Atlantic Multidecadal Oscillation (AMO). In particular, the positive phases of PDO were 

associated with increased wet conditions and therefore greater recharge fluxes in the 

western and central principal aquifers of the U.S. While some of these teleconnection 

patterns of climate variability and groundwater processes have been defined at the 

regional aquifer scale, understanding how these teleconnection patterns impact local scale 

groundwater budgets is not well defined. 

1.2 The El Niño-Southern Oscillation 

 The El Niño-Southern Oscillation (ENSO) is a recurring climate pattern that 

occurs approximately 2-7 years over the Pacific Ocean and is characterized by anomalies 

in sea surface temperature (SST) and sea level pressures (SLP) in the equatorial Pacific 

Ocean (Hanson et al., 2004). ENSO is also a critical teleconnection pattern in the Pacific 

Ocean due to its high frequency, seasonal effects on weather, and global impact on 

average and extreme weather events (McCabe and Dettinger, 1999; Ropelewski and 

Halpert, 1987; Velasco et al., 2015). ENSO consists of two phases; a positive or warm 

phase known as El Niño and a negative or cool phase known as La Niña. The 

Multivariate ENSO index (MEI) characterizes the intensity and duration of the El Niño 

and La Niña phases (Figure 1a). The MEI is a comprehensive index of ENSO because it 
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is based on multiple variables of the Combined Oceanic-Atmospheric Dataset, and 

represents an average of SLP, zonal and meridional winds, SST, and total cloudiness in 

the equatorial Pacific Ocean (Wolter and Timlin, 2011). Positive values of the MEI 

correspond to positive phases of ENSO (El Niño) and negative values correspond to the 

negative phase of ENSO (La Niña)  (NOAA, 2018). Generally, the Southwestern U.S. 

may experience above average winter precipitation and the Northwestern U.S. may 

experience more extreme dry conditions during the El Niño phase, which creates a shift 

in the jet stream resulting from warm waters of the equatorial Pacific Ocean migrating 

eastward (McCabe and Dettinger, 1999; Ropelewski and Halpert, 1987). The El Niño 

phase results in above average precipitation in California, whereas there are decreases in 

precipitation observed in the Pacific Northwest. During the La Niña phase, the 

Southwestern U.S. and California may experience drier than average conditions and the 

Northwestern U.S. may experience increases in average winter precipitation, which is due 

to cooler SSTs in the equatorial Pacific Ocean (Ropelewski and Halpert, 1987). These 

effects during El Niño and La Niña years contribute to a known “dipole” effect (Brown 

and Comrie, 2004b). 

1.3 The Pacific Decadal Oscillation 

 The Pacific Decadal Oscillation (PDO) is also a recurring Pacific climate pattern 

that generally has similar teleconnections patterns as ENSO in terms of climate 

variability for the Western U.S., except that the PDO has a decadal to interdecadal 

periodicity (Kuss and Gurdak, 2014; Mantua and Hare, 2002; Velasco et al., 2015; Zhang 

et al., 1997). PDO has one main period of 15 to 35 years, with a secondary period of 50-
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70 years. Like ENSO, PDO is characterized by climate anomalies of SST and SLP in the 

Northern Pacific Ocean. During the positive phase of PDO, SSTs are cooler than average 

temperatures on the western coast of the U.S. Cooler SSTs can lead to increases in winter 

precipitation for the southwestern U.S. and increased drought conditions in the 

northwestern U.S. During negative phases of PDO, SSTs are warmer than average and 

lead to the reverse observations creating a dipole effect in the climate (Hanson et al., 

2004; Mantua and Hare, 2002; Velasco et al., 2015). These climate and oceanic 

anomalies are used to construct the PDO Index (Figure 1b) (NOAA 2019). Changes in 

phase can impact other Pacific teleconnection patterns, specifically ENSO. For example, 

during the positive phase of PDO, there is a greater probability of the occurrence of the 

positive phase of ENSO, and the same pattern is observed for the negative phase of PDO 

(Brown and Comrie, 2004a; Kuss and Gurdak, 2014). Additionally, if PDO and ENSO 

are aligned in phase, the observed effects from can be more extreme. For example, if 

PDO and ENSO are both in the positive phase, El Niño events may be more intense and 

areas such as California which are normally impacted by El Niño would observe wetter 

conditions. Conversely, if PDO and ENSO are both in the negative phase, areas that are 

impacted by La Niña events would experience more intense effects. During a La Niña 

year that is in phase with PDO, California may experience increased drier conditions 

whereas the Pacific Northwest may experience increased intensity in precipitation.  

1.4 Study Area 

 The Tulelake Irrigation District (TID) is located approximately 150 miles 

northeast of Redding, California and within the Upper Klamath River watershed (Figure 
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2). The northern boundary of the TID is the Oregon-California state line and the southern 

boundary of the TID is located near the Lava Beds National Monument. The TID 

encompasses 96,000 acres and approximately 60,000 acres are used for agriculture (City 

of Tulelake, 2020). The two main aquifer units within the TID are the sedimentary 

aquifer and the deep volcanic aquifer. The sedimentary aquifer is primarily composed of 

basin-fill sediments that result in moderate yield due to low to moderate permeability. 

Underlying the sedimentary aquifer is the deep volcanic aquifer, which is comprised of 

highly permeably basaltic lava flows. Both units are saturated, however the deep volcanic 

aquifer is the primary aquifer that can support irrigation in the TID. Historically, the TID 

primarily relied on surface-water diversions from the Klamath River to irrigate crops. 

However, in recent years the TID has become increasingly reliant on groundwater 

pumping to supplement decreases in surface-water diversions (Pischel and Gannett, 

2015). As a result, the California Department of Water Resources (CA DWR) has 

categorized the TID as a medium priority groundwater basin under SGMA. The medium 

prioritization is attributed to declines in long-term water-level hydrographs from wells, 

the relatively high percentage of irrigated lands within the TID, and the dependence upon 

groundwater supplies (CA DWR Basin Prioritization, 2019). Simulated water balance 

models indicate that the increases in groundwater pumping and drought conditions are 

resulting in overdraft groundwater conditions for the TID (Pishel and Gannett, 2015).  

 Additionally, the TID is located between the dipole of known hydroclimatologic 

effects from ENSO and PDO (Brown and Comrie, 2004b). For example, the positive 

(negative) phase of ENSO is associated with below (above) average winter precipitation 
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for Washington state and other parts of the Pacific Northwest, and above (below) average 

winter precipitation for southern California. Beebee and Manga (2004) found that PDO 

and ENSO were not highly correlated with respective positive and negative phases in 

southern and southeastern Oregon as compared to northern Pacific Northwest. The 

teleconnections between climate variability associated with ENSO and PDO and 

groundwater resources in the TID are not well defined. More broadly, there is a lack of 

published research linking global-scale climate variability and local- to basin-scale 

groundwater hydrology and corresponding implications for groundwater management. 

The future trends in many hydrologic processes, including recharge due to human-

induced climate change can only be fully appreciated when combined with understanding 

of the overprinted global-scale climate variability (Corona et al., 2018).  

1.5 Scope and Purpose 

The purpose of this research is to fill knowledge gaps about how climate 

variability and climate change influences groundwater resources at the local-basin scale 

by focusing on the TID. To do this, I will first quantify the effects of interannual to 

multidecadal climate variability associated with ENSO and PDO on the temporal 

variability of precipitation, streamflow, and groundwater levels in the TID. Second, I will 

evaluate the role of local-scale hydrogeologic properties in affecting recharge response to 

climate variability and change. The role of hydrogeologic properties will be explored by 

evaluating the spatial patterns in groundwater level responses across the TID to natural 

climate perturbations and by evaluating recharge beneath the two main soil textures 

across the TID under historic and future climate projections. To meet these objectives, I 
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analyzed long-term hydrologic time series using Singular Spectral Analysis (SSA) and 

built HYDRUS-1D (Šimůnek et al., 2008) models for a crop type and a range of soil 

hydraulic properties representative of the TID to simulate how climate variability and 

change influences recharge rates.  By answering these questions within the TID, this 

research will provide insight into the role of interannual to multidecadal climate 

variability and future climate change on sustainable groundwater management for other 

similar basins in California that must comply with SGMA or more broadly across the 

western U.S. 

2.0 Methodology 

2.1 Data Selection 

 There are two general types of data used in this study; observed and simulated. 

The observed data include precipitation, air temperature, streamflow discharge, 

groundwater elevations, depth to water levels, and climate indices that are calculated 

based on observed atmospheric and oceanic data (Table 1). The observed data were 

largely used to evaluate the influence of ENSO and PDO on historical variability of the 

climate and hydrologic variables, including recharge rates in the TID. The simulated data 

were generated from global climate models (GCMs) and HYDRUS-1D (Šimůnek et al., 

2008) simulations and include historic and projected climate variables, such as 

precipitation, air temperature, and groundwater recharge rates. The simulated data were 

largely used to evaluate the influence of climate change on historical and projected 

recharge rates in the TID. 
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2.1.1 Observed Data 

 All observed datasets were obtained from public data repositories. Climate indices 

were obtained from the Earth System Research Laboratory, Physical Sciences Division of 

NOAA (NOAA, 2019). The MEI spans from 1950 to 2017, and the PDO index spans 

from 1854 to 2019 (Figure 1). Precipitation data was obtained from the Climate Data 

Online portal, National Centers for Environmental Information of NOAA (NOAA CDO, 

2019). This data spans from 1932 to 2018 and was collected in the city of Tulelake, 

which is centered in the TID (Figure 2). The span of the dataset makes it a reasonable 

choice for identifying ENSO and PDO signals. Air temperature data was also obtained 

from the Climate Data Online portal, National Centers for Environmental Information of 

NOAA (NOAA CDO, 2019), and spans from 1932 and 2018. This weather station (Air 

Temperature (Tulelake), (GHCND:USC0049053) is located within the bounds of the 

Tulelake Irrigation District. One additional weather station is used to fill any data gaps in 

the Tulelake air temperature dataset and is located approximately 15 miles south of the 

City of Tulelake near the Lava Beds National Monument (Air Temperature (Lava Beds 

NM), GHCND:USC00044838) (Figure 2). 

 Streamflow discharge was obtained from a stream gauge on the Klamath River 

(USGS 11501000) that is monitored by the U.S. Geological Survey (USGS) in the 

National Water Information System (NWIS) (USGS NWIS). This stream gauge is located 

on the Sprague River near Chiloquin, Oregon, approximately 47 miles from the northern 

border of the TID (Figure 2). The discharge data spans from 1921 to 2018. As there are 

no measurements of surface-water flow in the TID, this location on the Sprague River 
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near Chiloquin is used to represent approximate variability in surface water inflows to the 

TID. This gauging station was selected because it is the closest station to the TID that is 

not affected by dam releases and thus represents natural stream discharge response to 

hydroclimatologic variability, as well as the climate near Chiloquin, Oregon is similar to 

what is observed in the TID.  

 Groundwater level data from several wells in the TID was compiled from the 

California State Groundwater Elevation Monitoring System (CASGEM) (CASGEM, 

2019). The groundwater wells used for this study were selected based on the well use, the 

length of the dataset, the location in the TID, and whether or not by visual inspection the 

groundwater hydrographs were dominated by human pumping or record natural 

variability in water levels. Wells were excluded if their water-level hydrographs were 

dominated only by seasonal pumping and did not show natural variability in the water 

levels. Most wells excluded appear to be used for irrigated agriculture. Of the more than 

10 CASGEM wells in the TID, only three wells had hydrographs that met the selection 

criteria and were used in subsequent analyses (Figure 2). The wells used in this study are 

summarized in Table 1. 

2.1.2 Simulated Data 

 Simulated data includes the precipitation, temperature, wind speed, relative 

humidity, and solar radiation from the four GCMs (Cal-Adapt, 2020) that were used as 

input to the HYDRUS-1D (Šimůnek et al., 2008) model scenarios and the associated 

output data from the HYDRUS-1D simulations. The GCM data and HYDRUS-1D model 

scenarios are described in detail in section 2.4.1 of this thesis. 
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2.2 Time Series Analysis 

 Time series analysis was performed using the U.S. Geological Survey (USGS) 

Hydrologic and Climatic Analysis Toolkit (HydroClimATe) (Dickinson et al., 2014). 

HydroClimATe is a computer program that was developed by the USGS to analyze 

relationships between noisy hydrologic time-series data and variable climatic data. This 

program can be used to pre-process data and to perform spectral analysis such as Fourier 

transformations, Single Spectrum Analysis (SSA), correlation analysis, and to make 

future projections (Dickinson et al., 2014). In this study, HydroClimATe was used in the 

pre-processing of the data, performing SSA, and calculating lag correlations between 

time-series data sets. 

2.2.1 Data Pre-Processing 

 Prior to statistical analysis, several pre-processing steps were used to remove 

anthropogenic signals from the time series datasets, following methods outlined by Kuss 

and Gurdak (2014) and Hanson et al. (2004). Preprocessing steps include interpolation, 

cumulative departure, detrending, and normalization (Dickinson et al., 2014). 

Interpolation was used to estimate missing data gaps in the time series. Specifically, 

Interpolation is used to give each data set a uniform monthly time step through estimating 

values for months that may be missing data. After interpolation, a cumulative departure 

curve is calculated, which is the sum of the difference between consecutive values in the 

time series and the mean of the series.  

Cumulative departure is calculated by: 

 𝐶𝐷 = ∑(𝑥𝑖 − �̅�)   Eq.  1 

where: 
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CD is the cumulative departure curve 

𝑥𝑖 is the value at time i 

𝑥 is the mean of the series 

 

ative departure of the time series allows for seasonal processes su

̅

 The cumul ch as 

precipitation to be compared against more persistent time series datasets such as 

groundwater elevations or climate oscillations. Next, the curve fitting method is used to 

detrend the cumulative departure series to remove non-climate signals that might be 

associated with human activity, such as long-term changes in groundwater pumping. A 

3rd order polynomial was used for the curve fitting to represent the overall trend of the 

data. Residuals are then calculated as the difference between the cumulative departure 

series and the fitted 3rd-order polynomial trend line at each time t. The residuals represent 

the time series with the overall trend removed (Dickinson et al., 2014). Residuals are then 

standardized to create normalized departure series from the mean, which allows for 

statistical comparisons among different types of datasets. The normalized departure series 

is normally distributed and has a sample mean equal to zero and a sample standard 

deviation equal to one: 

𝑥
𝑧𝑖 = 

𝑖−𝑥 Eq.  2    
𝑠

̅

where: 

zi is the normalized variable 

𝑥𝑖 is the mean of the original series 

𝑥 is the sample mean of the series ̅
s is the sample standard deviation 
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2.2.2 Singular Spectrum Analysis (SSA) 

 SSA is a nonparametric method of estimating spectral correlations in noisy time 

series that has been used widely in geophysical and hydroclimatology studies (Vautard et 

al., 1992). Here, SSA is used to detect quasi-periodic oscillations in interannual to 

multidecadal climate indices of ENSO and PDO and the hydrologic time series (Hanson 

et al., 2004; Kuss and Gurdak, 2014; Vautard et al., 1992). SSA is performed on the 

normalized departure series of each climate index, precipitation, streamflow discharge, 

and groundwater levels. SSA decomposes the original time series into independent 

reconstructed components (RCs) that are then analyzed in an oscillatory pattern. The sum 

of the RCs is equal to the original time series signal, and thus no information is lost 

during reconstruction (Ghil, 2002; Hanson et al., 2004).  

To explain the SSA method, I present the following equations and descriptions 

that are outlined in Dickinson et al. (2014). SSA starts with utilizing a trajectory matrix 

X, which is composed of a series of windows of the time series that have a length of M. 

The dimensions of the trajectory matrix are MT by NT 

where: 

NT is equal to N-M+1 

N is the number of timesteps in the series, and 

MT is the embedding dimension of X. 

 

Then, the covariance matrix (C) is constructed using: 

𝐷𝑇𝐷 Eq.  3  𝐶 =    
𝑁𝑇
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where: 

C is an MT by NT covariance matrix 

DT is the transpose of X, and 

D is an MT by NT  trajectory matrix.  

 

As described in Dickinson et al. (2014), the eigenvectors and eigenvalues of C are then 

calculated. This is done through the analysis of the eigenvectors and values of C in the 

following form: 

𝐶𝐸 =  𝜆𝐸 Eq.  4 

where: 

E is an MT by NT  matrix of the eigenvectors, 

and 

λ is the vector of eigenvalues of length, MT. 

 

A matrix of the principle components (A), is obtained through projecting the eigenvector 

E onto the trajectory matrix D: 

𝐴 =  𝐸𝑇𝐷 Eq.  5 

 

where: 

E is an MT by NT  matrix of the eigenvectors, and 

A is an MT by NT  matrix of the principle 

components. 

 

The RCs are then calculated from: 

1 𝑈𝑡 Eq.  6 
𝑅𝐶 = ∑ ∑ 𝐴𝑘(𝑡 − 𝑗 + 1)𝐸𝑘(𝑗) 𝑀𝑇 𝑘∈𝐾 𝑗=𝐿𝑡

 

where: 

K is the set of eigenvectors that are used in the 



15 

 

reconstruction, 

Mt is a normalization factor, 

Lt is a bound of summation, and 

Ut is a bound of summation. 

 

The values of Mt, Lt, and Ut vary depending on the interval of the time series: 

 

1 Eq.  7 
 ( , 1, 𝑡) , 1 ≤ 𝑡 ≤ 𝑀𝑇 − 1  
 𝑡  

1
(𝑀𝑡, 𝐿𝑡 , 𝑈𝑡) = ( , 1,𝑀𝑡) , 𝑀𝑇 ≤ 𝑡 ≤ 𝑁𝑇  

 𝑀  𝑡

 1  
( , 𝑡 − 𝑁 +𝑀𝑇 , 𝑀𝑇) 𝑁𝑇 + 1 ≤ 𝑡 ≤ 𝑁{ 𝑁 − 𝑡 + 1 }

 

 

 Most of the variance within each time series is typically found within the first 10 

RCs (Hanson et al., 2004). These first 10 RCs also typically contain the statistically 

significant oscillatory patterns that may be associated with global-scale climate 

variability (Hanson et al., 2004). The Ghil and Mo significance test was used to 

determine which of the 10 RCs were statistically significant using a red-noise null 

hypothesis (Ghil and Mo, 1991). Using only the statistically significant RCs, a composite 

RC was then created and compared to periodicities that fall within the ranges of ENSO 

and PDO. The composite RCs are calculated by grouping and summing the statistically 

significant RCs across the following periods: 2-7 years (ENSO) and 15-35 years (PDO). 

The composite RCs with periodicities greater than 35 years are denoted here as >PDO, 

which is consistent with previous studies that identify >PDO as variability that may be 

associated with the Atlantic Multidecadal Oscillation (AMO) (Gurdak et al., 2007; Kuss 

and Gurdak, 2014).  This method allows for the composite RCs to represent significant 
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oscillatory modes within the time series that are consistent with ENSO, PDO, and >PDO 

(Gurdak et al., 2007; Kuss and Gurdak, 2014; Hanson et al., 2004). The composite RCs 

with periods 2-7 years that are consistent with ENSO and with periods 15-35 years that 

are consistent with PDO are then carried forward for lag correlation analyses. 

2.2.3 Lag Correlation 

 Lag correlations are used to quantify and understand responses between climate 

and hydrologic variables in the TID system. In general, lag correlations measure 

associations between two variables at different points in shifted time, which results in a 

calculated value as a lag correlation coefficient (Helsel and Hirsch, 2002). Methods from 

Kuss and Gurdak (2014) and Velasco et al. (2017) are used to calculate lag correlations 

for the hydrologic datasets using the RCs from the SSA. Prior to calculating lag 

correlation coefficients, explanatory and response composite RCs are truncated to have 

the same start and end date. For example, if a precipitation data set has a specific start 

and end date, the climate index would be partitioned to the same start and end date for 

analysis. HydroClimATe reports both forward and backward lags between two time-

series; only the first 60 months (5 years) of forward lags were considered based on the 

previous work of Hanson et al. (2006, 2004). Correlation coefficients are calculated for 

each monthly time lag using a 95-percent confidence level. Coefficients above this level 

are considered statistically significant.  

2.3 Spatial Variation Analysis 

 Based on prior correspondence, a goal of this research is to examine if there are 

statistically significant differences in observed groundwater levels in the TID. 
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Groundwater wells selected for this analysis (Table 1) are divided based on the cardinal 

quadrant in the TID. Groundwater wells are not available in the southwestern quadrant of 

the TID due to the presence of the Tulelake Sump (Figure 2). To evaluate variation in the 

groundwater levels in three groundwater wells that are spatially distributed across the 

TID, I used a variety of statistical testing in the JMP software (JMP, 2009). I used the 

Shapiro-Wilks normality test with an alpha (α) level of 0.05 to determine that the water 

levels from the three wells all have a non-normal distribution. Therefore, I used 

subsequent non-parametric tests with an α-level of 0.05 to determine differences in the 

datasets (Helsel and Hirsch, 2002).  

2.4 Groundwater Recharge Analysis 

2.4.1 HYDRUS-1D 

 I developed HYDRUS-1D models to simulate recharge rates in the TID under a 

range of soil and climate scenarios. HYDRUS-1D (Šimůnek et al., 2008) is a computer 

code that uses a finite element method to numerically solve the Richards’ equation 

(Richards, 1931) for variably saturated flow in porous media: 

𝜕𝜃 𝜕 𝜕ℎ
= [𝐾(𝜃)( + 1)] 

𝜕𝑡 𝜕𝑧 𝜕𝑧

Eq.  8 

 

where: 

θ is the volumetric water content, 

h is the soil water pressure head, 

t is time at t, 

z is the vertical space coordinate, and 

K is the hydraulic conductivity. 
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 Several scenarios were applied to the HYDRUS-1D models to evaluate the 

influence of soil hydraulic properties, land use, and climate variability and change effects 

on historic and projected recharge rates in the TID. The model scenarios are described 

next.  

 Two model scenarios were used to test the influence of soil hydraulic properties 

on recharge rates in the TID. Each scenario is a single-layer profile of the vadose zone 

that represents average soil textures in the TID. The two soil textures are based on the 

STATSGO2/SSURGO soil survey data from the TID (USDA NRCS, 2009). From the 

soil surveys, I determined that the dominant soil types in the TID are the Tulebasin 

mucky silty clay loam (i.e., Tulebasin soil) and the Laki fine sandy loam (i.e., Laki soil), 

which account for approximately 42% and 9% of the study area, respectively (USDA 

NRCS, 2009) (Figure 3). Based on these two soil types, I selected hydraulic parameters 

for the HYDRUS-1D models using the Rosetta database. The Rosetta database is a 

software package that predicts soil hydraulic parameters using a neural network model of 

thousands of USDA samples of soil texture data (Schaap et al., 2001). The resulting 

Tulebasin soil consists of 50% clay, 20% silt, 30% sand, and the Laki soil consists of 

20% clay, 50% silt, and 30% sand. These parameters are based on Table 19 in the USDA 

Soil Survey of the Butte Valley-Tulelake Area. Table 2 summarizes the input values for 

the soil textures used in the HYDRUS-1D model. 

The model scenario represents the average irrigated agricultural lands of the TID. 

Cereal grains account for 35% of the total irrigated lands in the TID (TID WMP, 2011). 
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The land use corresponds to a net irrigation requirement of 20 inches of water, or 38,665 

Acre-feet per irrigation season, which spans from May through September. 

The model scenarios that I used to test the influence of climate change on 

recharge rates in the TID are based on historic and future projections from four GCMs 

using the representative concentration pathways (RCP) of 4.5 and 8.5 (Cal-Adapt, 2020). 

The climate projections for historical data and RCP 4.5 and RCP 8.5 are: CNRM-CM5, 

CanESM2, HadGEM2-ES, and MIROC5. I used these four GCMs because the California 

Department of Water Resources (DWR) has recommended them for water related 

planning and management in California (Lynn et al., 2015). The GCM datasets were 

spatially downscaled using the Localized Construction Analog (LOCA) framework for 

California (Pierce et al., 2014). The historic data from the GCMs spans from 1950 to 

2006 and the projected output from the GCMs span from 2006 to 2099. The historic and 

project GCM output is used as input to drive the HYDRUS-1D (Šimůnek et al., 2008) 

simulations. Output data that is generated from the HYDRUS-1D simulations spans from 

1950 to 2099. 

For all previously described model scenarios, the model domain was a 200-cm 

column that represents land surface to the average depth to groundwater of the TID. The 

200-cm depth to water was determined from TID well logs from CASGEM. The 

HYDRUS-1D model accounts for root water uptake, which would represent agricultural 

coverage across the TID. The root zone is distributed in the upper 60 cm of the soil 

column, and root water uptake is calculated based on the Feddes model (Feddes et al., 

1978). The model was discretized using a finite element size of 2.0 cm. Each model had 
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on average 100 nodes. Models were run at a daily time interval to capture smaller 

variations in groundwater recharge from 1950-2099.  

 For initial model conditions, a pressure head of 100 cm was applied throughout 

the soil column, which is based on methods from Rassam et al. (2018). An atmospheric 

boundary condition with surface runoff is applied at the upper boundary of the soil 

profile, and the lower boundary condition is simulated as free drainage to calculate the 

bottom flux of the soil profile. In addition to the atmospheric upper boundary condition, 

irrigation is also applied to only the irrigated agricultural model scenarios. Based on the 

irrigation requirements and crop coverage for cereal grains in the TID Water 

Management Plan (TID WMP, 2011), an irrigation rate of 0.341 cm per day is applied 

annually only during the irrigation season between May to September. 

2.4.2 Model Calibration 

 Previous estimates of groundwater recharge in the TID have ranged from about 75 

to 300 mm/year (Pishel and Gannett, 2015). Recharge in the alluvial aquifer is primarily 

sourced from applied irrigation water and canal leakage accounting for larger percentages 

of groundwater recharge around the TID, and precipitation is only accounting for a small 

percentage as compared to other sources of recharge (Pishel and Gannett, 2015). In order 

to appropriately analyze how precipitation may influence groundwater recharge in the 

TID, recharge values are compared to modeled literature values for the TID (Pishel and 

Gannett, 2015). 
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3.0 Results and Discussion 

3.1 Variance of Climate Variability in Hydrologic Time Series  

 The SSA results indicate that there are statistically significant composite RCs in 

the precipitation, streamflow, and groundwater level time series that can be attributed to 

ENSO, PDO, and >PDO (Table 3). The majority of the variance in the precipitation time 

series was attributed to >PDO and PDO, capturing 42% and 37% of the percent variance, 

respectively (Table 3). The >PDO RC in the precipitation had a period of 43.5 years 

(Table 3). Only 8.3% of the percent variance in the precipitation time series is attributed 

to ENSO, which indicates the importance of the lower-frequency climate forcings, with 

lesser control by ENSO on precipitation variability in the TID. The majority of the 

variance in the streamflow was also dominated by the lower-frequency climate forcings, 

with 93% of the percent variance attributed to >PDO with a period of 99.1 years (Table 

3). However, the PDO only accounts for 6% of the percent variance in the streamflow, 

which is a considerably lower relative percent variance as compared to the precipitation 

time series. The RCs consistent with ENSO account for only 0.3% of the percent variance 

in the streamflow time series (Table 3).  

Although the SSA results indicate that the inflows (precipitation and streamflow) 

to the groundwater system are most influenced by the >PDO and PDO variability, the 

three groundwater levels in the TID did not contain RCs with periods consistent with 

>PDO (Table 3). The lack of RCs consistent with >PDO in the groundwater levels may 

be attributed to the relatively short length of records (<20 years) for the three wells as 

compared to the precipitation and streamflow time series (Table 1). However, the 
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majority of the variance in the three groundwater levels was attributed to PDO, capturing 

between 61 and 94% of the percent variance in the three wells (Table 3). While one well 

(Groundwater (NW)) did not contain RCs consistent with ENSO, the two other wells had 

water levels with 15 to 26% of the percent variance attributed to ENSO (Table 3).  

The SSA results of relatively larger contribution of PDO-like than ENSO-like 

variability in the groundwater levels is generally consistent with previous studies (Gurdak 

et al., 2007, Kuss and Gurdak, 2014; and Velasco et al., 2015).  These studies found that 

the lower frequency climate oscillations generally contain most of the variance in the 

groundwater level time series when compared to higher frequency oscillations. The 

detection of ENSO-like and PDO-like variability in the groundwater levels is also 

consistent with the damping depth framework presented by Corona et al. (2018) that can 

be used to explain why some periodic infiltration fluxes associated with climate 

variability dampen with depth in the vadose zone and are not detected in groundwater 

levels. By applying the semi-arid climate and relatively shallow (<4 m) depths to water of 

the TID within the damping depth framework (Figure 4 from Corona et al., 2018), both 

ENSO- and PDO-like fluctuations in land surface fluxes are theoretically expected to 

propagate through the vadose zone and be detected in the water- level fluctuations at all 

three wells sites in the TID.  While all three groundwater levels have PDO-like 

variability, it is unclear why only two of the three wells have ENSO-like variability in the 

water level. I hypothesize that the lack of ENSO-like variability at groundwater (NW) 

well (Groundwater NW, Table 1) might be attributed to local-scale variations or layering 

in the hydrogeologic properties that affect the recharge fluxes in the vadose zone.   
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3.2 Lag Correlation 

 Lag correlation results are presented based on each variable (climate index, 

precipitation, streamflow, and groundwater) (Table 4). The climate indices for ENSO and 

PDO are considered as the independent variable and are related to the dependent 

variables of inflows (precipitation and streamflow) and groundwater levels (Table 4). 

3.2.1 Climate  

 Results for the lag correlations between PDO and hydrologic inflows and 

groundwater levels are shown in Table 4 and Figure 4a.  Results for lag correlations 

between ENSO and associated data are shown in Table 4 and Figure 4b. Climate-

precipitation lag correlations resulted in higher minimum and maximum correlation 

coefficients on average for the PDO correlations as compared to the ENSO correlations 

(Table 4, Figure 4a). Although higher correlation coefficients are obtained for PDO, 

average correlation coefficients for ENSO with hydrologic time series have a non-

significant correlation values (-0.003 to -0.066) and an average lag time ranging from 1.3 

to 3.6 years (Table 4). 

 The results of the lag correlations between climate indices and precipitation have 

a positive relation between the ENSO and PDO and precipitation during the first lag year, 

which is the typical timeframe that precipitation in California responds to changes in the 

ENSO and PDO (Table 4, Figure 4ab). PDO had the higher maximum correlation to 

precipitation with a maximum value of 0.59 and a lag of 1.3 years, which was the highest 

of any hydrologic inflow and climate. Precipitation has a maximum correlation with 

ENSO of 0.29 and a lag of approximately 0.25 years (Table 4, Figure 5).  
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 Streamflow lag correlations between climate indices and streamflow have an 

inverse relation between PDO during the first 5-lag years, whereas the streamflow lag 

correlation between ENSO have a positive relation during the first lag year (Figure 4b, 

Table 4). PDO and streamflow had a maximum lag correlation of -0.28 with no 

corresponding lag time (Figure 4a, Table 4). ENSO and streamflow discharge 

correlations had a maximum value 0.24 with a lag of 5 years (Table 4). The average 

correlation value between ENSO and streamflow discharge is -0.039 which has a 

corresponding lag time of 3.6 years (Table 4). The marginally statistically significant 

correlations to ENSO may indicate that the location of the gauging station may be located 

outside the known areas affected by the ENSO “dipole” (Beebee and Manga et al., 2004). 

Moreover, the location of the gauging station further north than the irrigation district 

(Figure 2), which is further outside the known areas affected by the ENSO “dipole. 

Additionally, the lack of positive correlations to PDO suggests that the watershed 

response to climate variability is complex and may be influenced by other controls on 

discharge such as snowmelt, or human-controlled factors (e.g., timing and magnitude of 

scheduled dam releases).  

 Groundwater level lag correlations with climate indices were not conclusive and 

did not show an obvious relation (Table 4, Figure 4ab). Groundwater levels in the 

northwestern area of the TID have a negative relation with PDO for the approximately 

first two lag years, whereas groundwater levels in the southeastern area of the TID have a 

positive relation with PDO for approximately the first 4 lag years (Figure 4a). 

Groundwater level lag correlations have a similar pattern in the northeastern and 
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southeastern groundwater wells when compared with ENSO (Figure 4b). Groundwater 

levels in the northeastern area of the TID have strong correlations (0.50) with ENSO with 

lag times corresponding to 3.5 years (Figure 4b, Table 4). Lag correlations for the 

southeastern groundwater well and ENSO have a strong correlation of 0.59 at a lag time 

of 2.8 years (Figure 4b, Table 4). When comparing to ENSO, groundwater level 

correlations peak 1 to 3 years after precipitation correlations peak. Such trends could be 

associated with hydrologic processes and infiltration through the vadose zone. 

3.3 Spatial Variation in Groundwater Levels in the Tulelake Irrigation District 

 Understanding how temporal climate variability may influence the spatial patterns 

of groundwater level variability is important. Based on personal communication with TID 

Manager Brad Kirby, there appear to be spatial patterns in how some TID groundwater 

levels respond during the same time periods. These spatial patterns in groundwater level 

responses could be related to differences in local scale hydrogeologic properties and/or 

water budget stresses (pumping or recharge) across the TID.  While there is some 

moderate variation in the soils across the TID (Figure 3), the well completion reports 

from the CASGEM wells indicated little variability in the vertical stratification of 

hydrogeologic properties, particularly within the vadose zone and near the regional water 

table. 

 The results of the Shapiro-Wilks normality tests (α-level = 0.05) indicate that the 

depth to water from the three wells are not normally distributed (Figure 5). The 

northeastern well are not normally distributed (p-value = <0.0001) and are right skewed, 

whereas the southeastern well is not normally distributed (p-value = <0.0001) and left 
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skewed. The northwestern well are not normally distributed (p-value = <0.0001) but do 

not illustrate clear left or right skewness. The results of the Kruskal-Wallis test (p-value = 

<0.0001, α = 0.05) indicate that there are statistically significant differences between the 

depth to water in the three wells spatially distributed across the TID (Figure 5). This 

difference can be due to a variety of factors including local geology, soil textures, 

hydraulic connectivity to the local aquifer, or well depth. 

 When comparing the local soil texture observed near the wells to see if 

differences in soil texture may be influencing the different depth to water measurements, 

there are three soil types located around the wells: the Tulebasin clay in the northwest, 

the Laki sandy loam in the northeast, and the Strukel sandy loam in the southeast (Figure 

3). The two northern wells have less variability in the depth to water measurements than 

the southern well (Figure 5). The northwestern well has average depth to water 

measurements are 11.9 feet, with a range of 8 to 16 feet, whereas the northeastern well 

has more variability and has average depth to water measurements that are 12.3 feet, and 

have a range of 9 to 22 feet. (Figure 5, Table 1). The results of the Kruskal-Wallis test (p-

value = 0.0608, α = 0.05) indicate that there are not statistically significant differences 

between the depth to water measurements of the two northern wells (Figure 5). When 

performing a similar comparison between the northeast and southeast well, which has a 

similar soil texture as the northeast well, statistically significant differences are detected 

between the depth to water measurements (p-value = <0.0001, α = 0.05). This difference 

in the northeast and southeast well may be attributed to difference in well depth as the 

southern well is finished deeper (83 ft. below ground surface) rather than the northeastern 
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well (38 feet below ground surface). Additionally, differences may also be due to factors 

such as connectivity to the local aquifer or hydrogeologic properties, or water 

use/pumping may be a more dominate factor on groundwater levels rather than soil 

textures. 

3.4 Groundwater Recharge in Tulelake Irrigation District 

 This study simulated groundwater recharge using historic and future climate data 

from GCMs under RCPs 4.5 and 8.5. The results were then combined to show yearly 

simulated cumulative recharge in both the Tulebasin and Laki soil profiles. In order to 

evaluate how well the models were simulating groundwater recharge, comparisons were 

made between simulated recharge rates from the Hydrus-1D models and literature values 

ranging from about 75 to 300 mm per year (Pishel and Gannett, 2015). 

3.4.1 Groundwater Recharge by Soil Texture 

 I simulated recharge beneath the Tulebasin and Laki soils using a combination of 

measured and modeled datasets. Recharge rates ranged from 0 to 450 mm per year 

beneath both soils (Figure 6). The median recharge beneath the Tulebasin and Laki soils 

was 143 and 141 mm per year, respectively (Figure 6). These recharge rates are within a 

reasonable range as reported for the TID in Pishel and Gannett (2015). 

 Results of the Wilcoxon test (α-level = 0.05) indicate that there are no statistical 

differences (p-value = 0.7078) in the annual recharge rates beneath each of the two soils 

over the period of 1950-2099 (Figure 6). The lack of statistical differences in annual 

recharge rates is further supported by the lack of statistical differences in depth to water 



28 

 

measurements (i.e., groundwater levels) in similar soil textures (Figure 6), which may be 

attributed to local processes such as groundwater pumping and/or use or differences in 

hydrogeologic properties, rather than local differences in soil texture. 

3.4.2 Groundwater Recharge in the Tulelake Irrigation District by Time Period 

 Annual recharge was also evaluated for the same soil profiles under RCPs 4.5 and 

8.5 (Figure 7). The time periods evaluated were: historic (1950-2005), present (2006-

2039), near-future (2040-2069) and future (2070-2099). The greatest recharge rates are 

observed during the historical time period with median recharge rates of 181 mm/yr in 

the Tulelake sediments (Figure 7a) and 179 mm/yr in the Laki sediments (Figure 7b). For 

both soils, the lowest simulated annual recharge is during the future time period (Figure 

7). Based on the results from the Steel-Dwass test (α-level = 0.05), there are statistically 

significant differences for each time period when compared to the historic time period (p-

values = <0.0001). Under both RCPs and soil types, the median annual recharge declines 

by 51% between the historical (median = 179 to 181 mm/yr) and future (median = 77 to 

99 mm/yr) periods (Figure 7). However, there are no statistically significant differences 

(p-values = 0.983 to 1) in the annual recharge rates beneath RCP 4.5 and 8.5 for either the 

Tulelake or Laki soils (Figure 7). While the results of the simulated annual recharge 

indicate a statistically significant reduction between the historical period to the end of the 

21st century, these simulated annual recharge rates are apparently insensitive to 

differences in the RCP 4.5 and 8.5 scenarios. The large reduction in annual recharge 

could have important implications for the groundwater budget and sustainable 

management practices in the TID during the coming decades of the 21st century. Next, I 
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explore the causes for the simulated decline in future recharge as a response to projected 

precipitation, temperature, and evapotranspiration.  

 The projected annual precipitation under RCP 4.5 has a non-significant (p-values 

= 0.9875 to 1) increase in median values during the three time periods of the 21st century 

(Figure 8). Under RCP 8.5, the projected annual precipitation median values also increase 

during the 21st century, but only the future period has statistically significant (p-value = 

0.0026) and greater precipitation compared to the historic period (Figure 8). During the 

future time period, the RCP 8.5 scenario (median = 322 mm) forecasts nearly 10% 

greater annual precipitation than the RCP 4.5 scenario (median = 293 mm) (Figure 8). 

 The projected temperature under RCP 4.5 has a statistically significant increase 

during each of the three time periods of the 21st century, with temperatures peaking in 

the future time period (Figure 9). Unlike the projected precipitation, there are statistically 

significant differences in the projected temperature under both RCP 4.5 and 8.5 between 

the historic to the present (p-value = <0.0001), historic to near future (p-value = 

<0.0001), and historic to future time periods (p-value = <0.0001) (Figure 9). The RCP  

8.5 scenarios result in statistically significant (p-value = <0.0001) and greater 

temperatures than the corresponding RCP 4.5 scenarios during the near future (13% 

greater average temperatures) and future (33% greater average temperatures) periods 

(Figure 9).  The RCP 4.5 scenario has a global temperature that peaks and stabilizes 

within the near future period, while the RCP 8.5 scenario has a global temperature that 

peaks in the future period. Both RCP 4.5 and 8.5 scenarios are reflected in the 

downscaled temperature trends of the TID study area (Figure 9). 
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 Simulated evapotranspiration increases continuously under both RCP 4.5 and 8.5 

(Figure 10). The highest evapotranspiration rates are simulated during the future time 

period with median evapotranspiration rates ranging from 1.50 to 1.68 mm per day for 

both RCPs 4.5 and 8.5, respectively (Figure 10). Based on the results from the Steel-

Dwass test (α-level = 0.05), there are statistically significant differences for each time 

periods when compared to the historic time period (p-values = <0.0001). Under both 

RCPs, evapotranspiration rates increase by approximately 25% between the historic 

(median = 1.27 mm/day) and future time periods (1.501 to 1.683 mm/day), RCP 4.5 and 

RCP 8.5 respectively. There are no statistically significant differences (p-value = 0.9975) 

in simulated evapotranspiration rates under RCP 4.5 when compared to RCP 8.5 (Figure 

10). The continuous increases in evapotranspiration rates across the future time periods 

have a positive relation with temperature with increases in temperature corresponding to 

increases in evapotranspiration rates (Figure 9 and 10). 

 When comparing trends in precipitation and temperature to groundwater recharge, 

similar trends are noted under RCP 4.5 as RCP 8.5. In the RCP 4.5 scenario, significant 

decreases in annual recharge rates are the result of significant increases in temperature 

values and evapotranspiration rates (Figure 7, 9, 10). Similar trends that are noted under 

RCP 4.5 are also reflected in the RCP 8.5 simulations (Figure 7, 9, 10). In both scenarios, 

the trends between temperature, evapotranspiration rate, and annual recharge rates 

indicate that future recharge rates are relatively more sensitive to changes in temperature 

and evapotranspiration, rather than precipitation. Moreover, this relationship between 

groundwater recharge, temperature, and evapotranspiration is supported through the 
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presence of a shallow water table (<4 m), which can result in groundwater levels having a 

dynamic response to climate stressors (i.e., changes in air temperature). 

4.0 Conclusion 

 The climate variability modes of >PDO, PDO and ENSO were shown to have 

moderate to strong influence on hydrologic variables in the TID, based on results of the 

SSA and lag correlations. While PDO accounted for the greatest amount of variance in 

the hydrologic time series, groundwater levels in the northeast and southeast areas of the 

TID were moderately correlated with ENSO and PDO. 

 Results of the non-parametric statistical testing indicate that there are not 

statistical differences between depth to water measurements (i.e., groundwater levels) in 

three spatially distributed wells across the TID. This is further verified when comparing 

the northern wells, which have local sediments consistent with the two most common 

sediments in the TID (Tulebasin clay and Laki sandy loam). The non-parametric 

statistical testing also indicates that there are no differences between depth to water 

measurements in the northern wells. When examining the northeastern depth to water 

values (Laki sandy loam) and the southeastern depth to water values (Strukel sandy 

loam), which are of similar soil textures, statistical testing indicates that there are 

statistical differences between the wells. This variation in statistical results indicate that 

differences may be due to factors such as connectivity to the local aquifer and water 

use/pumping rather than local geology or soil textures. 
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 I used HYDRUS-1D models to simulate groundwater recharge from 1950 to 2099 

under historic and future conditions using downscaled output from GCMs and RCP 4.5 

and 8.5. Homogeneous models are representative of the two most common soil textures 

in the TID (Tulebasin and Laki soils) and recharge rates are quantified to determine if 

there are differences between recharge rates under each soil. Additionally, the Tulebasin 

and Laki soil profiles are analyzed during historic, present, near future, and future to 

assess how recharge will vary over time in relation to climate change. 

 Overall, there are no statistically significant differences in simulated recharge 

when comparing the Tulebasin and Laki sediments. When comparing simulated recharge 

across the modeled time periods, the future time period had the lowest recharge rates 

ranging from 81 to 97 mm per year for the Tulebasin sediment, and from 77 to 93 mm 

per year for the Laki sediment under both the RCP 4.5 and 8.5. The historic time period 

had the highest recharge rates, which ranged from 179 to 182 mm per year for the both 

soils and RCPs. The recharge rates during all time periods are consistent with previous 

estimates of groundwater recharge in the TID (Pishel and Gannett, 2015). 

 Both RCP 4.5 and 8.5 simulations had statistically significant decreases in 

recharge from the historic to future time periods. Moreover, these statistically significant 

decreases in recharge are the result of statistically significant increases in air temperature 

and simulated evapotranspiration for both RCP 4.5 and 8.5. Observed trends between 

simulated recharge, air temperature, and evapotranspiration may indicate that the shallow 

vadose zone (<4 m) provides a dynamic response to climate with temperature as the 

dominant climatic control on groundwater recharge. 
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 The findings from this study can be used to understand how interannual to 

multidecadal climate variability may influence local-scale groundwater resources in this 

region in California. Understanding how water resources may change during periods of 

climate variability may provide a pathway to understand how water resources may 

respond to the impacts of climate change. By understanding how recharge may vary 

spatially in the TID under climate change, water managers may be able to adapt more 

appropriately to focus groundwater replenishment efforts in areas that have favorable 

recharge rates. Additionally, the methods implemented in this research can provide a 

framework for examining how climate change may influence and impact management 

scale groundwater resources.   
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6.0 Figures 

(a) 

 

(b) 

 

Figure 1: (a) The Multivariate ENSO Index (MEI) on a monthly timescale from 1950 to 

2019 (NOAA, 2019). (b) The Pacific Decadal Oscillation Index on a monthly timescale 

from 1900 through 2017 (NOAA, 2018). 
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Figure 2: Map of the Tulelake Irrigation District, Tulelake, California. Groundwater wells 

used for analysis are denoted as purple circles. Weather stations used for climatic data 

sets are precipitation (blue circle) and temperature (green circles).  The stream gage 

station (red circle) is on the Sprague River in Oregon (see map inset). 
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Figure 3: Soil map of the Tulelake Irrigation District [modified from the 

STATSGO2/SSURGO USDA NCRS database]. 
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Figure 4: (a) Lag correlation of the PDO to hydrologic time series datasets (precipitation, 

streamflow discharge, and groundwater levels). (b) Lag correlation results of MEI to 

hydrologic time series datasets. The dashed grey lines on the plots correspond to a 95% 

confidence interval, and correlations above the confidence interval are statistically 

significant. 
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Figure 5: Box plots of depth to water measurement for three wells distributed in the 

northeast (NE), northwest (NW), and southeast (SE) quadrants in the Tulelake Irrigation 

District.  
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Figure 6: Cumulative annual recharge from 1950-2099 for the two common soil textures 

in the TID, Laki (blue) and Tulebasin soils (red). 
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Figure 7:  Cumulative annual recharge for the (a) Tulebasin sediment and (b) Laki 

sediment by time period for the representative concentration pathway (RCPs) 4.5 (solid) 

and 8.5 (hashed). Results from the Steel-Dwass test are shown above with letters 

denoting statistical differences from the historic time period.  
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Figure 8: Cumulative annual precipitation by time period with historic and future 

projections from representative concentration pathways (RCPs) 4.5 and 8.5 of the global 

climate model (GCMs) datasets. Time periods correspond to: historical (1950-2005), 

present (2006-2039), near future (2049-2069), and future (2070-2099). Results from the 

Steel-Dwass test are shown above with letters denoting statistical differences from the 

historic time period, and asterisks denoting differences between 4.5 and corresponding 

8.5 RCP datasets. 
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Figure 9: Temperature by time period with historic and future projections from 

representative concentration pathways (RCPs) 4.5 and 8.5 of the global climate model 

(GCMs) datasets. Time periods correspond to: historical (1950-2005), present (2006-

2039), near future (2049-2069), and future (2070-2099). Lower values correspond to 

minimum temperature, and higher values correspond to maximum temperature. Results 

from the Steel-Dwass test are shown with letters denoting statistical differences from the 

historic time period, and asterisks denoting differences between 4.5 and corresponding 

8.5 RCP datasets.  
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Figure 10: Evapotranspiration rate by time period for the cereal grains crop type with 

historic and future projections from representative concentration pathways (RCPs) 4.5 

and 8.5 of the global climate model (GCMs) datasets. Results from the Steel-Dwass test 

are shown with letters denoting statistical differences from the historic time period. 
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7.0 Tables  

Table 1: Summary of time series data used in the SSA and lag correlation analysis. 

Groundwater time series data summarized here was obtained from the CASGEM public 

repository. Precipitation time series data was obtained from the Climate Data Online 

(CDO) public repository, and streamflow discharge was obtained from the USGS NWIS 

public repository. 

ID Agency 
Average Depth 

to Water (ft) 

Starting 

Year 

Ending 

Year 

Record 

Length 

(Years) 

Groundwater (NW) CASGEM 11.9 2001 2019 18 

Groundwater (NE) CASGEM 10.2 2001 2019 18 

Groundwater (SE) USGS 46.9 2000 2019 19 

Precipitation 
NOAA 

CDO 
-- 1932 2018 86 

Air Temperature 

(Tulelake) 

NOAA 

CDO 
1932 2018 86 

Air Temperature 

(Lava Beds NM) 

NOAA 

CDO 
1959 2018 59 

Streamflow 

Discharge 

USGS 

NWIS 
-- 1921 2018 97 

Table 2: Soil properties of native soils used as input for HYDRUS-1D models. θr,, 

residual volumetric water content; θs, saturated volumetric water content; α and n, soil 

water retention function parameters; Ks, saturated hydraulic conductivity; and l, tortuosity 

parameter in the conductivity function. 

Material 
θr 

3)(m3 m 

θs 
3)(m3 m 

α 
(m m 1) 

n 
Ks 

(cm day 1) 
l 

Tulebasin 0.095 0.48 0.017 1.28 14.97 1 

Laki 0.065 0.42 0.006 1.59 16.06 1 
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Table 3: The percent variance of the composite reconstructed components (RCs) 

attributed to the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation 

(PDO), and >PDO for the precipitation, streamflow, and groundwater-level timeseries. In 

the >PDO column, the period length (years) of the RC is denoted in the parentheses. The 

“--" denotes that no statistically significant RCs were detected. 

Percent Variance (%) of the Composite RCs 

Dataset ENSO PDO >PDO 

Precipitation 8.3% 37% 42% (43.5 years) 

Streamflow 0.3% 6.0% 93% (99.1 years) 

Groundwater (NW) -- 94% --

Groundwater (NE) 26% 61% --

Groundwater (SE) 15% 84% --
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Table 4: Results of the climate index to hydrologic time series lag correlations. 

Correlations are denoted between the Pacific Decadal Oscillation (PDO) and the El Niño-

Southern Oscillation (ENSO) composite reconstructed components (RCs) of climate 

indices and precipitation, streamflow discharge, and groundwater levels. Minimum, 

maximum, and average correlation coefficients are denoted below with the corresponding 

lag time in years. The values in the grey boxes are not statistically significant based on 

the 95% confidence intervals shown in figure 4. 

Index to Time 

Series 

Minimum 

Correlation 

Lag 

Time 

(years) 

Maximum 

Correlation 

Lag 

Time 

(years) 

Average 

Correlation 

Lag 

Time 

(years) 

PDO – 
Precipitation 

-0.22 5 0.59 1.3 0.35 3.1 

PDO – 
Streamflow 

Discharge 

-0.55 2.7 -0.28 0 -0.47 1.3 

PDO – 
Groundwater 

(NW) 

-0.81 0 0.89 5 0.07 2.5 

PDO – 
Groundwater 

(NE) 

- - - - - -

PDO – 
Groundwater 

(SE) 

-0.26 5 0.83 2.1 0.51 3.5 

MEI – 
Precipitation 

-0.24 2.3 0.29 0.25 -0.007 1.3 

MEI – 
Streamflow 

Discharge 

-0.20 2.3 0.24 5 -0.039 3.6 

MEI – 
Groundwater 

(NW) 

- - - - - -

MEI – 
Groundwater 

(NE) 

-0.41 1.33 0.50 3.5 -0.066 2.2 

MEI – 
Groundwater 

(SE) 

-0.60 0.08 0.59 2.8 -0.003 1.4 
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