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Geothermal energy provides clean renewable electrical power in the United States and 

around the world.  It is most efficiently harnessed from active hydrothermal systems, 

which only occur in very specific tectonic environments with naturally occurring 

permeability. Most known systems have surface manifestations such as hot springs or 

fumaroles that led to their discovery, however a significant resource potential resides in 

blind systems that are not expressed at the surface. One of the largest barriers to 

successful exploration for blind systems stems from uncertainty in characterizing 

resource potential. This study develops new methodology and applies it to arrive at a new 

geothermal favorability assessment to predict where best to explore for active 

hydrothermal systems. While drilling is ultimately necessary to verify a resource, 

regional assessment tools can help reduce uncertainties, refine the identification of 

prospective areas, and significantly reduce costs associated with drilling and other 

exploration efforts. 

 

The approximately 286, 000 km² study area covered the entire state of Nevada, which has 

high potential for containing undiscovered geothermal resources. Nevada has relatively 

comprehensive regional coverage of publicly available geological and geophysical data 

directly related to processes that control hydrothermal systems including: Quaternary 

faults, crustal heat flow, crustal strain rates, and seismicity. These data, known as 

evidence data were compiled and assessed to determine which were the  



most useful for predicting resource occurrence and to determine which processing 

techniques best transform raw geologic data into forms useful for statistical analysis. 

Locations of fifty-five moderate and high temperature geothermal systems served as 

training data, the benchmarks used to calculate weights for evidence data. 

 

The general framework of this study was adopted directly from prior geothermal 

assessments that used Weights of Evidence (WofE), a Bayesian data-driven technique to 

quantify spatial relationships between training and evidence data. This study sought to 

apply the best practices seen in prior assessments and to further refine those approaches 

when possible by developing and applying new techniques. New exploratory techniques 

were assisted by the development and application of customized Python-based tools that 

automated different data processing approaches and subsequent visualization of the 

resulting WofE statistics. Additionally, a technique was developed and applied in this 

study to calculate “smoothed” weights by fitting mathematical functions to weights 

generated using the traditional WofE approach. Generating smoothed weights eliminates 

a geologically artificial relic of the modeling process, the abrupt changes in favorability 

at category boundaries seen in prior WofE-based assessment maps. Smoothing may also 

provide greater accuracy in some parts of the map. Weight functions calculated in this 

study could potentially be applied to future studies using identical evidence in analogous 

tectonic environments.  

 

Ultimately, data-driven geothermal favorability maps were produced that could be used 

to guide future exploration for undiscovered geothermal resources, and several 

prospective target areas were identified. Three evidence layers were used to create final 

predictive surfaces, resulting in a conservative view of favorability driven by layers with 

relatively strong correlations and consistent distribution across the study area. 

Approaches and results from this study were compared with the most relevant prior 

assessments to contextualize decisions made and results discovered. Techniques 

developed in this project could be applied in other geographic regions or applied to 

investigations of other types of natural resources. 

 



I certify that the Abstract is a correct representation of the content of this thesis.

< / z j /
Date



 

 

ACKNOWLEDGEMENTS 

 

I am deeply grateful to my advisor Dr. John Caskey for guiding, teaching, and trusting 

me throughout my graduate school experience. He welcomed me into his program despite 

my untraditional background and helped me gain invaluable knowledge about the field I 

work in. I would like to thank him for his contributions, his patience with me, his 

kindness, and his genuine desire for me to arrive a good result without cutting corners. 

 

I would also like to thank Dr. Mark Coolbaugh for his extensive and selfless help with 

my thesis. I relied heavily on his advice to keep me on track while planning this study. 

He provided extremely detailed and helpful reviews throughout my writing process. We 

exchanged many emails and met for hours online. I appreciate his help tremendously, I 

hope I can help him back someday soon. My door is open to anyone seeking help I can 

provide on topics pioneered by Coolbaugh, Raines, Bonham-Carter and others. 

 

Dr. Jonathan Glen helped inspire me to pursue graduate school and he’s been helping me 

every step of the way, he’s an honored colleague and a valued friend. Dr. Jason Gurdak 

also showed me great patience, support, and kindness in my experience at SFSU. 

 

I would like to thank Dr. Colin Williams, my supervisor at USGS, no person has been 

more influential on my professional development. I would also like to thank Dr. Erick 

Burns, Dr. Drew Siler, and Dr. Tom Parsons from the USGS for their guidance, kindness, 

and contributions to this project. Thanks also to Dr. Patrick Dobson from LBL for 

contributions and guidance. I would also like to thank the entire faculty of the SFSU 

Geosciences Department, particularly Russell McArthur and Dr. Yadira Ibarra. 

 

All my love and thanks to my wife Yiman and daughter Mila for doing everything it took 

to make it through such busy times. I’m happily looking forward to having more time to 

enjoy life together. I’d also like to thank my mom and dad, Joe and Linda for everything. 

    vii 



 

 

TABLE OF CONTENTS 

 

List of Table ..................................................................................................................... xiii 

List of Figures .................................................................................................................. xiv 

List of Appendices ........................................................................................................... xix 

1.0 Introduction ..............................................................................................................1 

1.1 Geologic Setting...........................................................................................6 

1.2 Undiscovered Geothermal Systems .............................................................8 

1.3 Training and Evidence Data.........................................................................9 

1.3.1 Training Data: Known Geothermal Systems ...................................9 

1.3.2 Evidence Data: Quaternary Faults .................................................10 

1.3.3 Evidence Data: Crustal Strain Rate................................................13 

1.3.4 Evidence Data: Crustal Heat Flow .................................................16 

1.3.5 Evidence Data: Earthquakes ..........................................................19 

1.4 Weights of Evidence ..................................................................................19 

1.4.1 Weights of Evidence Technique ....................................................19 

1.4.2 Cumulative Weight Test ................................................................23 

1.4.3 Categorical Weight Test ................................................................26 

1.4.4 Posterior Probability Calculation ...................................................30 

1.5 Prior Works ................................................................................................31 

1.5.1 Coolbaugh et al., 2005 ...................................................................31 

1.5.2 Williams and DeAngelo, 2008 .......................................................33 

viii 



1.5.3 Faulds et al., 2015 ..........................................................................35 

1.5.4 Coolbaugh and Bedell, 2006 ..........................................................39 

1.6 Summary ....................................................................................................42 

2.0 Methodology ..........................................................................................................43 

 2.1 Geoprocessing Tools ..................................................................................44 

2.1.1 Distance Function ..........................................................................44 

2.1.2 Density Functions ..........................................................................45 

2.1.3 Interpolators ...................................................................................45 

2.2 Python Tools ..............................................................................................46 

2.2.1 Processing Toolset .........................................................................46 

2.2.1.1 Subset-Distance Cumulative Weight Test Tool .................47 

2.2.1.2 Density Function and Cumulative Weight Tool ................47 

2.2.1.3 Continuous Layer Reclassify and Cumulative Weight Test 

Tool ....................................................................................47 

2.2.1.4 Categorical Weight Test Tool ............................................48 

2.2.2 Plotting Toolset ..............................................................................48 

2.2.2.1 Cumulative Weight Plotter ................................................48 

2.2.2.2 Categorical Weight Plotter .................................................49 

2.3 Evidence Layer Creation and Selection .....................................................49 

2.3.1 Strain Rate ......................................................................................49 

2.3.2 Quaternary Faults ...........................................................................50 

 2.3.2.1 Distance Function on Fault Subsets ...................................51 

 2.3.2.2 Other Approaches Not Used on Faults ..............................56 

2.3.3 Heat Flow .......................................................................................59 

 

ix 



2.3.4 Earthquakes ....................................................................................62 

2.4 Generating Categorical Weights ................................................................70 

2.4.1 Quaternary Faults ...........................................................................70 

2.4.2 Strain Rate ......................................................................................73 

2.4.3 Heat Flow .......................................................................................79 

2.5 Generating Smoothed Weights from Categorical Weights ........................87 

2.5.1 Heat Flow .......................................................................................88 

2.5.2 Strain Rate ......................................................................................93 

2.5.3 Quaternary Faults ...........................................................................96 

2.5.3.1 Fault Subset 2.4 (‘Latest Quaternary’ and younger of all 

slip rates) ........................................................................................96 

2.5.3.2 Fault Subset 5.3 (‘Undifferentiated Quaternary’ and 

younger with slip rates equal to or greater than 0.2 mm/yr) ........102 

2.6 Posterior Probability Calculations ...........................................................104 

3.0 Results ..................................................................................................................105 

3.1 Review of Evidence Data .........................................................................105 

3.2 Categorical Weight Results ......................................................................107 

3.3 Functions Fit by Area...............................................................................111 

3.3.1 Heat Flow .....................................................................................111 

3.3.2 Strain Rate ....................................................................................112 

3.3.3 Fault Subset 2.4 (‘Latest Quaternary’ and Younger of All Slip 

Rates) ...........................................................................................113 

3.3.4 Fault Subset 5.3 (‘Undifferentiated Quaternary’ and Younger with 

Slip Rates Equal to or Greater Than 0.2 mm/yr) .........................114 

3.4 Review of Fitting Individual Layers by Area ..........................................115 

3.5 Multilayer Analysis Conditional Independence Testing ..........................116 

x 



3.5.1 Conditional Independence Using Different Fault Layers ............122 

3.5.2 Conditional Independence Between Layer Pairs .........................122 

3.5.3 Conditional Independence Between Categorical & Smooth Models

..............................................................................................................................122 

3.6 Maps .........................................................................................................123 

4.0 Discussion ............................................................................................................138 

 4.1 Comparing Approach with Prior Works ..................................................138 

4.1.1 Coolbaugh et al., 2005 .................................................................141 

4.1.2 Williams and DeAngelo, 2008 .....................................................142 

4.1.3 Faulds et al., 2015 ........................................................................145 

4.1.4 Coolbaugh and Bedell, 2006 ........................................................146 

 4.2 Geothermal Favorability Maps ................................................................147 

4.2.1 Best Favorability Maps ................................................................147 

4.2.2 Areas of High Favorability ..........................................................151 

4.3 Comparing Results with Prior Works ......................................................154 

4.3.1 Williams and DeAngelo, 2008 .....................................................154 

4.3.2 Faulds et al., 2015 ........................................................................160 

4.4 Additional Findings .................................................................................165 

4.4.1 Fit by Area Approach...................................................................165 

4.4.2 Geographic Processing Techniques .............................................166 

4.4.3 Evidence Data ..............................................................................167 

4.4.4 Cell Size .......................................................................................169 

4.4.5 Two Layer Models .......................................................................169 

4.4.6 Strain Rate Weighting ..................................................................169 

xi 



4.5 Future Work .............................................................................................171 

4.5.1 Additional Evidence Layers .........................................................171 

4.5.2 Other Possible Uses of Dilation and Slip Tendency ....................171 

4.5.3 Other Possible Uses of Earthquake Data .....................................172 

4.5.4 Using Density Functions on Fault Subsets ..................................172 

5.0 Conclusions ..........................................................................................................174 

References Cited ..............................................................................................................177 

Appendices .......................................................................................................................185 

Appendix 1: Temperature at Depth Map .............................................................183 

Appendix 2: EBK Statistics .................................................................................185 

Appendix 3: Python Code ....................................................................................188 

Processing Tools ......................................................................................189 

Cumulative Plotting Tool .........................................................................202 

Categorical Plotting Tool .........................................................................210 

Appendix 4: Other Possible Future Work Topics ................................................221 

 

 

 

 

 

 

 

 

xii 



 

 

LIST OF TABLES 

 

     Table                                                                                                                 Page 

1. Table 2.1: Bin ranges tested for 2.4 fault subset  ....................................................71 

2. Table 2.2: Bin ranges tested for 5.3 fault subset  ....................................................72 

3. Table 3.1: Evidence layer approach table  ............................................................106 

4. Table 3.2: Heat flow categorical weights  .............................................................108 

5. Table 3.3: Strain rate categorical weights  ........................................................... 108 

6. Table 3.4: Faults 2.4 (‘latest Quaternary’ and younger, all slip rates)  

categorical weights ................................................................................................109 

7. Table 3.5: Faults 5.3 (‘undifferentiated Quaternary’ and younger, slip 

 rates ≥ 0.2 mm/yr) categorical weights  ...............................................................110 

8. Table 3.6: Conditional independence overprediction results table  ......................117 

9. Table 3.7: Conditional independence ratio table ...................................................119 

10. Table 3.8: Agterberg-Cheng Conditional Independence Test results table  ..........121 

11. Table 4.1: Prior works evidence layer table ..........................................................140 

 

 

 

 

 

 

 

 

 

xiii 



 

 

LIST OF FIGURES 

 

     Figures                                                                                                                 Page 

1. Figure 1.1: Overview map of study area (the state of Nevada) and 

data layers  .................................................................................................................2 

2. Figure 1.2: Tectonic overview figure from Pérouse and 

Wernicke (2017)  .......................................................................................................7 

3. Figure 1.3: Normal faults in Nevada by recency  ....................................................11 

4. Figure 1.4: Normal faults in Nevada by slip rate  ...................................................12 

5. Figure 1.5: Estimated strain rate within the Nevada study area  .............................15 

6. Figure 1.6: Estimated crustal heat flow in Nevada  ................................................18 

7. Figure 1.7: Ascending weight plot for normal fault subset 2.4  ..............................24 

8. Figure 1.8: Categorical weight plot of strain rate categories by 

 category  .................................................................................................................27 

9. Figure 1.9: Categorical weight plot of strain rate categories by 

native unit  ...............................................................................................................29 

10. Figure 1.10: Geothermal potential map from Coolbaugh 

et al., 2005b  ............................................................................................................32 

11. Figure 1.11: Amagmatic geothermal potential map from Williams 

and DeAngelo, 2008 ................................................................................................34 

12. Figure 1.12: Overview map from Faulds et al., 2015  .............................................36 

13. Figure 1.13: ‘The Fairway’ map from Faulds et al., 2015  .....................................37 

14. Figure 1.14: Evidence data diagram from Faulds et al., 2015 .................................38 

15. Figure 1.15: Weight table and geothermal potential maps from 

 Coolbaugh and Bedell, 2006 ..................................................................................40 

 

xiv 



 

16. Figure 1.16: Example of weight functions from Coolbaugh and Bedell, 

 2006  .......................................................................................................................41 

17. Figure 2.1:  Cumulative weight tables from fault subsets of all slip senses  ...........52 

18. Figure 2.2. Cumulative weight tables from fault subsets of normal faults  ............54 

19. Figure 2.3: Cumulative weight test results of faults weighted by dilation or 

slip tendency using simple and kernel density functions with multiple search 

radii  .........................................................................................................................57 

20. Figure 2.4: Cumulative weight test results of heat flow and temperature at 

3 km depth surfaces generated using two interpolators  .........................................61 

21. Figure 2.5: Cumulative weight test results examining earthquakes using 

density functions weighed by seismic moment  ......................................................63 

22. Figure 2.6: Categorical weight test results examining earthquakes  .......................65 

23. Figure 2.7: Earthquake density function map weighted by moment 

magnitude  ...............................................................................................................66 

24. Figure 2.8: Cumulative weight test results examining earthquakes using 

density functions with no weighting  ......................................................................68 

25. Figure 2.9: Earthquake density function map using no weighting  .........................69 

26. Figure 2.10: Cumulative weight plot of strain rate  ................................................74 

27. Figure 2.11: Map of strain rate categories  ..............................................................76 

28. Figure 2.12: Categorical strain rate exploratory plots  ............................................78 

29. Figure 2.13: Ascending weight plot of heat flow data  ...........................................80 

30. Figure 2.14: Categorical heat flow exploratory plots  .............................................83 

31. Figure 2.15: Categorical weight plot of heat flow rate categories  .........................85 

32. Figure 2.16: Map of heat flow categories  ...............................................................86 

33. Figure 2.17: Plot showing weight functions calculated for heat flow, 

displayed using native units as a linear independent variable  ................................90 

34. Figure 2.18: Plot showing weight functions calculated for heat flow, 

displayed using cumulative area as the x-axis independent variable  .....................92 

xv 



 

35. Figure 2.19: Plot showing weight functions calculated for strain rate, 

displayed using native units as independent variable  .............................................94 

36. Figure 2.20: Plot showing weight functions calculated for strain rate, 

displayed using cumulative area as independent variable  ......................................95 

37. Figure 2.21: Plot showing weight functions calculated for Quaternary 

faults 2.4 subset (Age equal to or younger than ‘Latest Quaternary’, all slip 

rates), displayed using native units as independent variable with x-axis 

values increasing linearly  .......................................................................................98 

38. Figure 2.22: Plot showing weight functions calculated for Quaternary 

faults 2.4 subset (Age equal to or younger than ‘Latest Quaternary’, all slip 

rates), displayed using native units as independent variable with x-axis 

values increasing logarithmically  ...........................................................................99 

39. Figure 2.23: Plot showing weight functions calculated for Quaternary 

faults 2.4 subset (Age equal to or younger than ‘Latest Quaternary’, all slip 

rates), displayed using cumulative area as independent variable with x-axis 

values increasing logarithmically  .........................................................................101 

40. Figure 2.24: Plot showing weight functions calculated for Quaternary 

faults 5.3 subset (Age equal to or younger than ‘undifferentiated Quaternary’ 

and slip rate equal to or younger than 1.0 mm/yr), displayed using cumulative 

area as independent variable with x-axis values increasing logarithmically  ........103 

41. Figure 3.1: Geothermal favorability map using categorical weights for heat 

flow, strain rate, and a binary 250-meter buffer on the 2.4 fault subset (Age 

equal to or younger than ‘Latest Quaternary’, all slip rates  .................................124 

42. Figure 3.2: Geothermal favorability map using categorical weights for heat 

flow, strain rate, and a binary 1-km buffer on the 2.4 fault subset (Age equal 

to or younger than ‘Latest Quaternary’, all slip rates)  .........................................125 

43. Figure 3.3: Geothermal favorability map using categorical weights for heat 

flow, strain rate, and ternary buffers on the 2.4 fault subset (Age equal 

to or younger than ‘Latest Quaternary’, all slip rates  ...........................................126 

xvi 



 

44. Figure 3.4: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, and a binary 250-meter buffer on the 2.4 fault subset (Age 

equal to or younger than ‘Latest Quaternary’, all slip rates)  ................................127 

45. Figure 3.5: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, and a binary 1-km buffer on the 2.4 fault subset (Age equal 

to or younger than ‘Latest Quaternary’, all slip rates)  .........................................128 

46. Figure 3.6: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, and ternary buffers on the 2.4 fault subset (Age equal to or 

younger than ‘Latest Quaternary’, all slip rates)  ..................................................129 

47. Figure 3.7: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, the 2.4 fault subset (Age equal to or younger than ‘Latest 

Quaternary’, all slip rates)  ....................................................................................130 

48. Figure 3.8: Geothermal favorability map using categorical weights for heat 

flow, strain rate, and a binary 250-meter buffer on the 5.3 fault subset (Age 

equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to 

or younger than 1.0 mm/yr)  ..................................................................................131 

49. Figure 3.9: Geothermal favorability map using categorical weights for heat 

flow, strain rate, and a binary 1-km buffer on the 5.3 fault subset (Age equal 

to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or 

younger than 1.0 mm/yr)  ..................................................................................... 132 

50. Figure 3.10: Geothermal favorability map using categorical weights for heat 

flow, strain rate, and ternary buffers on the 5.3 fault subset (Age equal 

to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or 

younger than 1.0 mm/yr)  ......................................................................................133 

51. Figure 3.11: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, and a binary 250-meter buffer on the 5.3 fault subset (Age 

equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to 

or younger than 1.0 mm/yr)  ..................................................................................134 

xvii 



 

52. Figure 3.12: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, and a binary 1-km buffer on the 5.3 fault subset (Age equal 

to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or 

younger than 1.0 mm/yr)  ......................................................................................135 

53. Figure 3.13: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, and ternary buffers on the 5.3 fault subset (Age equal to or 

younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger 

than 1.0 mm/yr)  ....................................................................................................136 

54. Figure 3.14: Geothermal favorability map using weights fit ‘by area’ for heat 

flow, strain rate, the 5.3 fault subset (Age equal to or younger than 

‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 

mm/yr)  ..................................................................................................................137 

55. Figure 4.1: Comparison of best performing models  .............................................150 

56. Figure 4.2: Identification of high favorability regions  .........................................152 

57. Figure 4.3: Comparison maps with Williams and DeAngelo, 2008  ....................156 

58. Figure 4.4: Comparison maps with Williams and DeAngelo, 2008 showing 

faults and heat flow wells  .....................................................................................158 

59. Figure 4.5: Favorability maps compared with those of Faulds et al., 2015  .........161 

60. Figure 4.6: Favorability maps compared with those of Faulds et al. (2015) 

Fairway map  .........................................................................................................163 

 

 

 

 

 

 

 

 

xviii 



 

 

 

 

LIST OF APPENDICES 

 

     Appendix                                                                                                                  Page 

1. Appendix 1: Temperature at Depth Map  ............................................................. 184 

2. Appendix 2: EBK Statistics  ..................................................................................185 

3. Appendix 3: Python Code  ....................................................................................188 

4. Appendix 4: Other Possible Future Work Topics  ................................................221 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxix

 



1 

 

 

 

1.0 Introduction 

 

Geothermal power plants produce electricity by mining heat from permeable rock in the 

subsurface, using water as the transport medium. Geothermal energy produces very low 

levels of pollution compared to conventional hydrocarbons and can generate continuous 

(baseload) electricity unlike solar and wind that fluctuate daily and seasonally. The 

greatest barrier to additional development of this industry is the uncertainty and cost 

associated with exploration. Assessing where conditions favor geothermal development 

helps to reduce uncertainty for the geothermal industry and may help to promote the 

development of a domestic renewable energy resource. The present study uses data-

driven techniques to conduct a geothermal favorability assessment, an analysis of where 

favorable conditions exist for future exploration. 

 

Geothermal power plants depend on the presence of a hydrothermal system in the 

subsurface at a depth that can be reached economically by drilling. Hydrothermal systems 

are underground circulation systems where hot, low-density, buoyant and pressurized 

fluids rise from depth through fractures in rocks before reaching a maximum proximity to 

the surface and often circulating back down due to gravity.  

 

The entire state of Nevada was examined in the present study because it sits largely 

within the Great Basin physiographic province, a large region characterized mostly by 

extensional tectonics and high heat flow (Figure 1.1). Limiting the analysis to Nevada 

served as a convenient way of enabling compilation of relatively uniform high-resolution 

data sets and Nevada contained many known hydrothermal systems that could be used as 

training sites or benchmarks to make predictions about resource potential. 
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Figure 1.1: Overview map of study area (the state of Nevada) and data layers. An outline of the Great Basin is depicted in 

yellow. An outline of the Walker Lane and Eastern California Shear Zone is depicted in purple (Faulds et al., 2012). Identified 

moderate and high temperature geothermal systems used as training sites are depicted as white pentagons. Normal faults are 

depicted in red, strike-slip faults in green, thrust or reverse faults in blue. Geothermal wells with calculated heat flow values 

are depicted as dots with colors denoting their heat flow in mW/m². The colored map overlying the topography depicts the 

estimated strain rate, or the rate of deformation as measured by the second invariant strain rate tensor in units of (𝟏𝟎−𝟗/yr) 

(Kreemer, 2012).  
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Weights-of-Evidence (WofE), a Bayesian data-driven statistical technique, was employed 

to calculate associations between ‘training data,’ locations of known geothermal systems, 

and ‘evidence data,’ data related to the geologic conditions believed to control or 

influence the formation of hydrothermal systems in Nevada. Statistically derived 

weightings can then be applied to evidence data, which can be combined to produce 

geothermal favorability maps. Prior studies have used WofE to assess geothermal 

favorability in the western United States (Williams & DeAngelo, 2008; Williams et al., 

2007), the Great Basin (Coolbaugh et al., 2005; Coolbaugh et al., 2005b), Nevada 

(Coolbaugh et al., 2006), and portions of Nevada (Faulds et al., 2015). The present study 

was informed by previous geothermal assessments and sought to refine certain techniques 

while examining new evidence data where available. 

 

The WofE technique is based on comparing two factors: the size of an area containing a 

specific type of evidence data, and how many training sites fall within that area. Each 

weight applies to the entire area used to generate it. This results in a map with distinct 

weighted categories that have abrupt changes in weight at category boundaries, as seen in 

prior WofE studies. The abrupt changes at boundaries have no real geologic basis and are 

simply artifacts of the modeling process. The present study puts forward an approach to 

generate maps comprised of layers that change gradually across space by ‘smoothing’ the 

weights calculated in categories in a way that minimizes bias and inaccuracies. 

Smoothing functions relating evidence layer values to weights are reported so they can be 

applied to similar conditions elsewhere in future studies. 

 

The present study also puts forward recommendations on how to best transform raw 

geologic information into a setting that can be analyzed mathematically. Different data 

processing approaches and evidence data were explored, including the use of different 

interpolators and density function parameters. Simple techniques were developed to 

isolate the highest correlating subsets of evidence data, apply different processing tools 
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and parameter variations, and to automate common processing and analysis techniques. 

The evidence data used in the present study reflect the two major geologic conditions 

believed to be driving geothermal occurrence in Nevada, permeability and elevated heat 

flow. 

 

Permeability is the measure of the ability of a medium, such as rock, to permit fluid flow 

through it. Some rocks have intrinsic primary permeability, but secondary fracture 

permeability, provided by a system of connected fractures that allows fluid to pass 

through rock layers, is required to permit the high flow rates necessary to generate and 

sustain commercial electricity production at most hydrothermal systems (Williams, 2004; 

Williams et al., 2007).  

 

Hydrothermal systems will eventually seal closed if there are no active or recent tectonic 

forces such as hydraulic fracturing or earthquakes to generate new permeability at a rate 

greater than the loss from mineral sealing and other forces (Gleeson and Ingebritsen, 

2016). Hydrothermal fluids contain high concentrations of dissolved minerals in the form 

of ions in suspension. Many of these dissolved ions are only soluble at high temperatures 

and pressures. As fluids rise and lose temperature and pressure, minerals precipitate out, 

sealing the fracture pathways that have been providing permeability. Permeability in 

hydrothermal systems is therefore a dynamic property and requires active tectonics in 

long lived hydrothermal systems to generate new permeability faster than the system 

seals (Gleeson and Ingebritsen, 2016).  

 

Sustained hydrothermal systems are typically associated with areas where natural fracture 

permeability is actively being generated. Locations of normal Quaternary faults were 

therefore used as evidence data in the present study to represent known discrete locations 

that may have elevated permeability. Only Quaternary faults were examined because 

older structures are more likely to be impermeable from chemical sealing.  A map 



5 

 

depicting on-going crustal strain rates, or the rate of crustal deformation, was also used to 

represent permeability by depicting broad areas where elevated strain rates are likely to 

be expressed as higher slip rates along faults, which in turn promotes secondary 

permeability. 

 

The resource potential, or energy extraction capacity of a hydrothermal system is 

dependent in part on the enthalpy (heat content) of the geothermal reservoir, which for 

liquid-dominated systems is largely a function of temperature.  Most Great Basin 

geothermal systems are thought to be amagmatic, meaning that the thermal anomalies 

associated with the hydrothermal system are not believed to be derived from upper 

crustal magma chambers, but instead are believed to originate from elevated heat flow 

associated with a thin and extending crust. Heat flow is the measure of the rate of heat 

transfer from the Earth’s interior to the surface. Understanding geographic variations in 

heat flow is the other main condition, along with permeability, used in the present study 

to model geothermal favorability. A map estimating rates of crustal heat flow across the 

study area was therefore used as an evidence layer to help estimate the potential 

magnitude of a possible system. 

 

Four data sets were examined, three of which were ultimately chosen for generating 

geothermal potential maps for the present study. Locations of normal Quaternary faults 

were examined to represent known discrete locations that could have elevated 

permeability. A map depicting estimated crustal strain rates was used to represent areas 

where structures may have more active permeability generation and where potentially 

unknown permeable structures may exist. A map estimating variations in the rate of 

crustal heat flow was also used. Seismicity was examined but no significant correlations 

with training sites were discovered. Alternate approaches to characterize contributions 

from heat and Quaternary faults were explored before finding a best practice for each. 
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1.1 Geologic Setting 

 

The Great Basin subprovince of the Basin and Range province consists an alternating 

series of elongate, roughly north-trending valleys and mountain ranges that extend east-

west across the width of Nevada and the western part of Utah (Figure 1.1, Figure 1.2).  

This physiography results from active WNW-ESE-directed crustal extension 

accomplished by movement on NNE-striking normal faults oriented perpendicular to the 

direction of extension. Normal faults and associated systems of brittle fractures provide 

permeable pathways and reservoirs for naturally circulating upper-crustal geothermal 

fluids.  
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Figure 1.2: Tectonic overview figure from Pérouse and Wernicke (2017): Author’s original caption included: ‘Tectonic map of 

the western U.S., showing location of major plate boundaries and geographic features discussed in text. CNSB—central Nevada 

seismic belt; ECSZ—Eastern California shear zone; GF—Garlock fault; HSFS—Hurricane Sevier fault system; JDF—Juan de 

Fuca plate; SAF—San Andreas fault; SN—Sierra Nevada; WLB—Walker Lane belt; WFS— Wasatch fault system. Yellow 

arrows indicate geodetic velocities in a fixed Colorado Plateau reference frame, values in mm/yr (Bennett et al., 2003).’  
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Recent investigations have suggested that the complicated tectonics that characterize the 

western US, resulting from the collision of the North American and Pacific plates (Figure 

1.2) has led to elevated permeability in parts of Nevada by transferring strain from strike-

slip faults in western Nevada to the normal faults in north-central Nevada (Faulds et al., 

2012). It is estimated that the Walker Lane (also known as the Walker Lane Belt) and 

Eastern California Shear Zone (Figure 1.1, Figure 1.2), overlapping systems of 

northwest-striking right-lateral strike-slip faults along the western edge of the Great 

Basin, accommodate up to 20% of the dextral motion between the Pacific and North 

American Plates (Bennett et al., 2003, Hammond et al., 2004, Kreemer et al., 2009) 

(Figure 1.1, Figure 1.2). A northward decrease in the geodetic velocity in the northern 

Walker Lane together with observations of high strain rates northeast of the Walker Lane 

appears to indicate that the termination of the Walker Lane is causing a transfer of dextral 

shear in the Walker Lane to transtensional and extensional strain in the normal faults 

northeast of the Walker Lane that developed coevally with Walker Lane faults (Faulds et 

al., 2012). The elevated rates of transtensional and extensional strain in the normal faults 

northeast of the Walker Lane are believed to be contributing to the high geothermal 

capacity of this region (Faulds et al., 2012). 

 

1.2 Undiscovered Geothermal Systems 

 

Surface manifestations of hydrothermal activity, such as hot springs, fumaroles, and 

hydrothermal alteration and mineral deposition, have been used to identify hydrothermal 

systems.  Many of the known geothermal systems in the region however, do not display 

any expressions at the surface and are therefore deemed ‘blind.’ Blind systems account 

for approximately 39% of the known geothermal systems in the Great Basin (Faulds and 

Hinz, 2015). They were discovered either during regional geothermal drilling programs, 

or accidentally while drilling mineral exploration boreholes or agricultural wells (Faulds 

et al., 2015). This suggests that more systems exist which have yet to be discovered 
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throughout the Great Basin. Prior studies estimate that approximately 75% of all 

geothermal systems in the Great Basin are blind (Coolbaugh et al., 2007) and that the 

total electric power generation potential of undiscovered geothermal systems in Nevada 

is more than three times the current generation capacity from geothermal power plants 

(Williams et al., 2008). 

 

Blind geothermal systems can be challenging to detect, thus justifying a systematic 

statistical approach to identifying the most favorable locations to explore. Blind 

geothermal systems are known to be similar to conventional identified hydrothermal 

systems in the sense that both types possess a permeable reservoir allowing hydrothermal 

fluids to circulate at depth (Dobson, 2016). Several conditions can prevent hydrothermal 

systems from being expressed at the earth's surface (Koenig and McNitt, 1983; 

Coolbaugh et al., 2007; Dobson, 2016) including: the presence of a thick geologic seal, 

involvement of fault or fracture systems that do not penetrate to the earth's surface due to 

being sealed or being buried, having a depressed water table or overlying cold-water 

aquifer, being smaller than other geothermal systems in the same geologic setting, or 

simply being too deep to have fluid pathways that reach the surface (Dobson, 2016). 

 

1.3 Training and Evidence Data  

 

1.3.1 Training Data: Known Geothermal Systems 

 

Locations of 55 known geothermal systems were obtained from a United States 

Geological Survey (USGS) report detailing identified geothermal systems with 

temperatures estimated at or above 90° C in Nevada (Williams et al., 2008). These 

locations were used as training sites, the data which serve as benchmarks to measure how 

strongly the evidence data correlated with locations of known hydrothermal activity.  
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1.3.2 Evidence Data: Quaternary Faults 

 

Locations and attributes of Quaternary faults were obtained from the USGS Quaternary 

Fault and Fold Database (QFFDB) of the United States (USGS et al., 2006). In the 

current version of this database, every fault has attribute information relating to its slip 

sense (Figure 1.1), age of most recent movement (recency) (Figure 1.3), and slip rate 

(Figure 1.4). These attributes were examined to assess which subsets of the database 

associated most strongly with training sites. The identification of higher correlating 

subsets has two advantages; 1) improved understanding of the controls on geothermal 

activity and 2) more focused targeting.  
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Figure 1.3: Normal faults in Nevada by recency. Normal faults are depicted as lines colored by their recency with warmer 

colors representing younger faults and cooler colors representing older faults. Identified moderate and high temperature 

geothermal systems used as training sites are depicted white pentagons. 
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Figure 1.4: Normal faults in Nevada by slip rate. Normal faults are depicted as lines colored by their slip rate with warmer 

colors representing faults with higher slip rates and cooler colors representing faults with lower slip rates. Identified moderate 

and high temperature geothermal systems used as training sites are depicted as white pentagons. 
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Initial examination revealed that 86% of Nevada lies within 10km of a Quaternary fault, 

and 54% lies within 4km. This can be visualized in Figure 1.1, which shows the 

distribution of faults in Nevada colored by their slip sense. Applying positive weights to 

such a large portion of the state would risk diluting predictions by weighting favorable 

areas too low and unfavorable areas too high. It was therefore considered important to 

evaluate subsets of the QFFDB based on their slip sense, recency, and slip rate to see if 

proximity to certain types of faults associated more strongly with geothermal activity 

than others and to identify optimal buffer distances. 

 

A completely different approach was also explored that examined a fault’s estimated 

likelihood to dilate or slip. Dilation tendency (TD) and slip tendency (TS) are parameters 

calculated for faults based on their attitude relative to the local direction of the stress 

field. Values for this parameter were calculated by Dr. Drew Siler, USGS using 

techniques he and others developed for geothermal assessments (Siler et al., 2016, Siler et 

al., 2017, Faulds et al., 2015). Dr. Siler was provided with the QFFDB faults used in the 

present study. For every segment of every fault, Dr. Siler calculated a value for TD and 

TS. In a personal communication with Dr. Siler, he defined the parameters as follows: 

 

‘Dilation tendency (TD) is the ratio of all the components of the stress tensor that are 

normal to the plane [Ferrill et al., 1999]. Slip tendency (TS) is the ratio between the 

shear components of the stress tensor and the normal components of the tensor [Morris 

et al., 1996].’ – Dr. Drew Siler, USGS 

 

1.3.3 Evidence Data: Crustal Strain Rates  

 

A digital map depicting crustal strain rates was obtained from a Nevada Bureau of Mines 

and Geology study that interpreted geodetic horizontal velocities of Global Positioning 

System station locations (Kreemer et al., 2012). This map estimated the rate of 
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deformation expressed as the second invariant strain rate tensor by interpolating 

measurements from geodetic stations. Values ranged throughout the study area from a 

minimum of 0.021 x 10−9 /yr in eastern Nevada to a maximum of 231.634 x 10−9 /yr in 

the west (Figure 1.5, Figure 1.1). These data were used directly in the analysis. 

 

The second invariant was calculated by taking the ‘square root of the sum of squares of 

the four tensor components’, thereby depicting overall deformation with ‘no indication of 

orientation, or style of strain.’ (Blewitt et al., 2002). The second invariant was chosen 

instead of other components, such as dilatational or shear strain, or strain style. This 

decision was based on findings from Faulds et al. (2015) and earlier studies by 

Coolbaugh and others (Coolbaugh, verbal communication, 2018) at the Nevada Bureau 

of Mines and Geology and Nevada Geodetic Laboratory, in which maps depicting each 

component of strain were compared to known benchmarks to assess correlations. Faulds 

et al. (2015) state, ‘Based on the statistical correlations and map patterns, the 2nd 

invariant of strain was chosen as the most stable and representative measure of strain rate 

with which to predict geothermal potential... although many of the other parameters 

performed nearly as well.’ One might expect a map depicting dilatational strain to be a 

more useful indicator than overall deformation, but this was not the case. This may be 

explained by the fact that separating the individual components increases uncertainties, 

especially in areas with a limited number of measuring locations, making local variation 

more difficult to accurately characterize. 
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Figure 1.5: Estimated strain rate within the Nevada study area. Warmer colors depict higher rates, cooler colors depict lower 

rates. Rate values represent the second invariant strain rate tensor in units of  𝟏𝟎−𝟗 /yr. Identified moderate and high 

temperature geothermal systems used as training sites are depicted as white pentagons.  
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1.3.4 Evidence Data: Crustal Heat Flow 

 

Estimated crustal heat flow values and locations were obtained from USGS and Southern 

Methodist University Geothermal Lab databases (Williams and DeAngelo, 2008, 

Williams and DeAngelo 2011, Blackwell et al., 1989, Blackwell and Richards, 2004). 

The rate of heat flow is calculated for a well by multiplying its vertical temperature 

gradient by the thermal conductivity of the rock. A well’s temperature gradient was 

calculated by measuring the rate of increase in temperature with increasing depth over a 

portion of the depth profile identified by authors as representing affects from background 

crustal heat flow only. Thermal conductivity is measured in lab tests on rock samples 

obtained during drilling. Williams and DeAngelo (2011) provides the following 

description of uncertainties associated with these data: 

 

‘The thermal conductivity of rocks can be measured in the laboratory to an accuracy of 

better than 5% (e.g., Sass et al., 1971), and the uncertainty in the measured temperature 

gradient can be significantly less than 1 %, which suggests that individual heat flow 

measurements uncertainties can be reduced to less than ± 5%. However, these 

uncertainties reflect the performance of the laboratory and borehole logging equipment, 

not the epistemic uncertainty associated with the question of whether these measurements 

accurately represent background crustal heat flow and can be used to estimate 

temperature at depth. Even in the best of circumstances, with high precision equilibrium 

temperature logs and numerous samples for thermal conductivity measurements, heat 

flow determinations have to account for a large number of potential disturbances, such 

as thermal refraction, topography, sedimentation or erosion, conductive transients, and 

shallow groundwater flow. Although accurate corrections can be applied when these 

effects are recognized and quantifiable, in many cases the relevant information is 

unavailable or only sufficient to place approximate bounds on the magnitude of the 
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disturbances… For most of the western US, uncertainties in heat flow are probably on 

the order of 10 to 15 %.’ 

 

Heat flow data were used to interpolate estimated background heat flow rates across the 

study area (Figure 1.6). Two different interpolation techniques were used to see which 

correlated more strongly with training sites. 

 

Sediments in basins, which have relatively low thermal conductivities, can act as thermal 

blankets, thereby decreasing heat flow rates and increasing temperature gradients in parts 

of basins with thicker sediments. Maps were produced to estimate the temperature at 3 

km depth considering affects from sediment thickness to test whether estimated 

temperature at depth correlated more strongly with training sites than heat flow. Heat 

flow maps generated by the two interpolators were transformed to estimate the 

temperature at 3 km using a ‘depth to basement’ map (Saltus and Jachens, 1995) to 

quantify the thickness of sediments in basins. This was done using techniques and 

equations applied in Williams and DeAngelo (2011). This approach accounted for 

changes in thermal conductivity with temperature and incorporated influences from 

radiogenic heat production. For each cell in the study area, the estimated value of heat 

flow was transformed to an estimate of temperature at 3 km depth using the equation and 

parameters reported in Williams and DeAngelo (2011). The analysis and subsequent 

weighting tests were performed using the native study area and tessellation of the depth 

to basement map. One of the maps estimating temperature at 3 km depth was included as 

an appendix (Appendix 1); it shows the study area and cell sized used in the analysis. 

This map was generated as a potential evidence layer for this analysis, but it may also be 

of interest as a stand-alone product. In total, four maps derived from heat flow data were 

examined: for each of two interpolators, maps were created depicting heat flow and 

estimated temperature at 3 km depth. 
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Figure 1.6: Estimated crustal heat flow in Nevada. The surface was interpolated from heat flow wells, depicted as small circles 

colored by their heat flow value in units of mW/m². Warmer colors depict higher rates, cooler colors depict lower rates for 

both the points and the surface. Identified moderate and high temperature geothermal systems used as training sites are 

depicted as the larger white pentagons. Estimated crustal heat flow rate values and locations were obtained from USGS and 

Southern Methodist University Geothermal Lab Databases (Williams and DeAngelo, 2008, Williams and DeAngelo 2011, 

Blackwell et al., 1989, Blackwell and Richards, 2004). 
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1.3.5 Evidence Data: Earthquakes 

 

An earthquake catalog was obtained with the full record of every known earthquake in 

Nevada (NCEDC, 2016). Earthquakes were filtered out to remove events that are too 

weak to have been correctly measured given the accuracy of the seismic network during 

different historical periods of time using the same parameters detailed in ‘Table P-2’ in 

Faulds et al., 2015 to reduce errors associated with unreliable data. The filtered catalog 

was investigated using different spatial techniques, tool parameters, and weightings. 

 

1.4 Weights of Evidence 

 

1.4.1 Weights of Evidence Technique 

 

The WofE technique uses Bayesian statistics to measure how strongly an evidence layer 

correlates with known locations of the phenomenon being modeled. The present study 

used the WofE tools in the ArcSDM tool package (Raines et al., 2000; Geological Survey 

of Finland, 2018) in a Geographic Information Systems (GIS) setting using ArcGIS 

software (ESRI 2017). The toolset requires that users convert evidence data into raster 

layers with integer codes that represent ranges of the native evidence data. 

 

A central concept in Bayesian statistics involves the use of ‘prior’ and ‘posterior’ 

probabilities. The prior probability is simply the likelihood of encountering a 

phenomenon, in our case a geothermal system, at any given location due solely to chance. 

If one had no prior knowledge of where a geothermal system would be likely to exist, the 

chances of correctly predicting the location of a geothermal system would be the prior 

probability, the number of training sites divided by the number of area ‘unit cells’ being 

examined.  
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The WofE technique bases calculations on the assumption that each training site occupies 

one ‘unit cell.’ The unit cell therefore represents the size of each training site and is the 

counting unit for WofE calculations. The present study used a 1 km² unit cell as a 

conservative estimate of the spatial area covered by a typical geothermal system in 

Nevada. Unit cells containing training sites therefore account for 55 km² of the total 

study area because each of the 55 training sites fell within different 1 km² unit cell. 

 

The posterior probability of a location is the estimated probability of encountering the 

phenomenon at any given location after considering the evidence data. Values of 

posterior probability greater than the prior probability indicate a relatively favorable area, 

while values less than the prior probability indicate a less favorable area. Evidence data 

in this case includes the geological and geophysical indicators for geothermal 

favorability. 

 

Weights are calculated by comparing the portion of cells with training points contained 

within a spatial pattern to the portion of the total unit cells represented by the spatial 

pattern not containing training sites. The following equations (Bonham-Carter, 1994) 

show how weights are calculated for a spatial pattern where P is the probability of object 

occurrence. B refers to the favorable area of the evidence layer (pattern 1).  B̅ refers to 

the non-favorable area of the evidence layer (pattern 2). D refers to the presence of 

deposits, �̅� refers to the absence of deposits. W+ is the positive weight of evidence and is 

an expression of the level of positive correlation between the presence of the evidential 

(controlling) theme and the training points. 

 

𝑊+ = ln (
𝑃(𝐵|𝐷)

𝑃(𝐵|�̅�)
)     (1 − 1) 
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𝑊− = ln (
𝑃(B̅|𝐷)

𝑃(B̅|�̅�)
)     (1 − 2) 

 

Equations 1-1 and 1-2 can be expressed alternatively as: 

 

𝑊+ = ln (

# 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝐼𝑛𝑠𝑖𝑑𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
# 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙

# 𝐶𝑒𝑙𝑙𝑠𝐼𝑛𝑠𝑖𝑑𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛  −  # 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝐼𝑛𝑠𝑖𝑑𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
# 𝐶𝑒𝑙𝑙𝑠𝑇𝑜𝑡𝑎𝑙  −  # 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙

)     (1 − 3) 

 

𝑊− = ln (

# 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
# 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙

# 𝐶𝑒𝑙𝑙𝑠𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛  −  # 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛
# 𝐶𝑒𝑙𝑙𝑠𝑇𝑜𝑡𝑎𝑙  −  # 𝐶𝑒𝑙𝑙𝑠 𝑊𝑖𝑡ℎ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠𝑇𝑜𝑡𝑎𝑙

)     (1 − 4) 

 

 

Each spatial pattern for which a weight can be calculated reflects a range of the evidence 

data. A classic example involves a binary weighting of a distance raster. In this scenario, 

one would create a raster that shows the distance (for each cell in the raster) from a 

feature of interest such as a Quaternary fault. Every cell in the study area would then be 

categorized with an integer code denoting how far it is from a Quaternary fault. Weight 

statistics would then be calculated for each increasingly large category. A binary distance 

threshold would then be determined by identifying the distance with either the highest 

correlation or the lowest error. This threshold acts as the boundary between places with 

positive correlation within the threshold distance and negative correlation beyond the 

threshold distance. 

 

This example would result in two weight values. The W+ is applied to the area within the 

threshold distance and the W- is applied to the area outside the threshold. W- is 

calculated using the same equation reported for W+ but examines spatial patterns outside 

the threshold. The following excerpt from Bonham-Carter (1996) conveys the meaning of 
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the weight values in an example where there is a positive correlation measured between 

the binary evidence pattern and the training sites: 

 

“… W+ is positive, and W- is negative, due to the positive correlation between the points 

and the binary pattern. Conversely W+ would be negative and W- positive for the case 

where fewer points occur on the pattern than would be expected due to chance. If the 

deposits are independent of whether the pattern is present or not, then W+ = W- = 0, and 

the posterior = the prior.” (Bonham-Carter, 1994)  

 

Positive weights indicate a positive correlation where more training sites fall within an 

evidence pattern than would be expected due to chance. Conversely, negative weights 

indicate a negative correlation where fewer training sites than would have been expected 

by chance fall within the pattern. For binary evidence patterns, values for W+ and W- 

will always have an opposite sign unless they both equal zero. 

 

When multiple evidence layers are used to predict occurrences, and if those evidence 

layers are not conditionally independent in terms of predicting training sites, the WofE 

technique will typically over-predict the number of systems in the posterior probability 

map generally (Bonham-Carter, 1994), particularly where conditionally dependent map 

patterns coincide. It can be standard practice to discard models that do not meet 

conditional independence standards, though Coolbaugh et al. (2005) notes that these 

models can still be used to show relative favorability. Agterberg-Cheng Conditional 

Independence (ACCI) tests (Agterberg and Cheng, 2002) were used from the ArcSDM 

tool package to assess conditional independence for all posterior probability maps created 

for the present study. 

 

Two basic types of tests were used to calculate weights for evidence layers. An iterative 

binary weight test using cumulative statistics was typically run first to explore the data 
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and identify optimal thresholds before reclassifying the evidence layer for use in a multi-

class ‘categorical’ weight test. 

 

1.4.2 Cumulative Weight Test 

 

An iterative binary weight test was the first step in the WofE analysis used for 

understanding the correlation between non-categorical evidence and training data and 

functions as an exploratory tool. The test works by comparing the number of training 

sites to the measured area of progressively increasing bin ranges of the evidence data. 

Using the example of a binary reclassification of Quaternary faults, the test calculates W+ 

and W- for the first class (for example, areas inside and outside a fault distance buffer of 

250 m) by comparing the training site counts and area measurements for the zones on 

either side of the distance threshold. For the next class, the test calculates W+ and W- of 

the areas represented by the combined first two classes (for example, areas inside and 

outside a fault distance buffer of 500 m). W+ and W- for the third group are calculated 

based on the cumulative area of the first three groups, and so on. For each calculated 

weight, a corresponding standard deviation is also reported. 

 

This process results in a table of values that can be plotted graphically to more easily 

grasp the patterns (Figure 1.7). In Figure 1.7, the x-axis relates to class number. In this 

case the class value labels have been replaced with the distance to a fault values they 

represent. The y-axis on the left relates to W+, the red points and red line represent the 

W+ value at each cumulative class bin, the blue shading around the red line indicates the 

standard deviation of the weight. The y-axis on the right shows training point count; the 

number of training points in each cumulative bin is represented by blue points. When a 

positive correlation exists, W+ will typically rise to a maximum value quickly before 

declining and plateauing farther along the x-axis, as seen in Figure 1.7. In such a  
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Figure 1.7: Ascending weight plot for normal fault subset 2.4. Contains faults equal to or younger than ‘latest Quaternary’ 

(the plot numbering sequence is explained in Figure 2.2). The x-axis depicts distance from faults in km. The red points and line 

represent W+ and use the left axis. The green points represent contrast (W+ - W-) and use the left axis. The blue points 

represent training point count and use the right axis. The purple points represent half the value of the studentized contrast 

and use the left axis.   
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situation, it is also typical to see the count of training points quickly increase before 

plateauing. The green points represent the ‘contrast’, simply the absolute value of the W+ 

minus the W-; a higher contrast indicates a higher overall association of the training data 

with the evidence layer. Purple points represent ‘studentized contrast,’ which is the 

contrast divided by its standard deviation and is thus a measure of the confidence in the 

contrast; in this plot these points use the left y-axis but only half of their value was 

plotted so they could be viewed in the same scale range, because their values tended to be 

higher than W+ values. A value of 2 or greater implies high confidence that the reported 

contrast is greater than zero (Bonham-Carter, 1994) and could therefore provide reliable 

predictive information. The decision of where to place the binary threshold can either be 

determined by choosing the class with the highest statistically significant positive weight, 

the highest contrast, or the highest studentized contrast (Bonham-Carter, 1994). Once the 

threshold is determined, the evidence layer can be reclassified into two patterns to 

produce a simple binary predictive layer.  However, more predictive value can commonly 

be obtained from an evidence layer by dividing it into multiple (> 2) patterns.  In such a 

case, as applied in the present study, the information obtained from the initial binary 

weight plot was used to design a multi-class evidence layer using categorical statistics as 

described below.  
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1.4.3 Categorical Weight Test 

 

The categorical weight test is not cumulative. Each category is weighted based only on 

the number of training sites in the spatial area it encompasses.  

 

Evidence layers that depict phenomena that vary gradationally across space like strain 

rate or heat flow can be split into a series of independently weighted categories that each 

depict a subset of the full range. A cumulative test can be used to guide where to define 

these bin ranges, but ultimately the process of finding ideal categorical bin ranges 

involves trial and error. There are no hard rules for how to do this, but the process can be 

guided by some basic principles. 

 

If the evidence is positively correlated with the training sites for a continuous 

phenomenon like strain rate, one would expect higher strain rates to correlate more 

strongly with training sites than lower strain rates. This can be modeled by breaking the 

strain rate map into categories or bins that represent ranges of strain rate values. A weight 

can be calculated for each category independently of the other categories (not 

cumulative). It is important that these categories do not cover vastly different amounts of 

area to avoid creating biased categories. Each of these categories should contain a similar 

number of training sites for the same reason. It is also important to choose bin ranges that 

result in a weight pattern from category to category that decreases or increases in a 

statistically significant manner. 

 

Figure 1.8 shows the seven categories that were ultimately settled upon for the strain 

data. Category 1 contains the highest range of strain values; each subsequent category 

contains lower ranges. The weight (red line/points) decreases from each category to the 

next as one would expect to see when a positive correlation is present between training 
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Figure 1.8: Categorical weight plot of strain rate categories by category. The x-axis depicts category numbers, not native units 

(strain rate). All x-axis values of all points on this figure are plotted at their native unit midpoint. The red points and line 

represent W+ and use the left axis. Error bars around weight values indicate standard deviation of the weight. The blue points 

represent training point count and use the right axis. The green points represent percent area associated with each bin, on an 

axis of 0 (bottom of graph) to 100% (top of graph). The green line represents cumulative percent area, also plotted with 0 at 

the bottom of y-axis and 100% at top of y-axis.  
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and evidence data. The standard deviation of each weight is depicted with red error bars. 

The relative area covered by each category is depicted by a green dot, for which there is 

no y-axis scale shown. The green line represents cumulative area from 0 – 100%. Many 

bin ranges were attempted before this scenario was settled upon. Of the binning scenarios 

attempted, this scenario best allowed for the steady decline of W+ while maintaining 

similar area sizes per bin (green dot height). Confidence in categorical weights can be 

assessed by confirming that each weight value is significantly different from adjacent 

weight values. This can be visualized on plots using error bars to represent the standard 

deviation of each weight. Ideally, weight values should fall outside the error-bar range of 

adjacent weight values, but in practice, overlap is seen in some cases where all other 

considerations were well-met (steadily decreasing weights, similar sized area and training 

point count). 

 

Figure 1.9 shows the same data as Figure 1.8, but the x-axis was transformed to show the 

actual strain rate values represented by the categories. Viewing the data in this manner 

provides a more representative way of viewing the data and will become important for 

later attempts to model the weights at any point along the curve. 
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Figure 1.9: Categorical weight plot of strain rate categories by native unit. The X-axis depicts the native units (strain rate). X-

axis values of all points on this figure are plotted at their native unit midpoint. The red points and line represent W+ and use 

the left axis. Error bars around weight values indicate standard deviation of the weight. The blue points represent training 

point count and use the right axis. The green points represent percent area associated with each bin, on an axis of 0 (bottom of 

graph) to 100% (top of graph). The green line represents cumulative percent area, also plotted with 0% at the bottom of y-axis 

and 100% at top of y-axis. 
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1.4.4 Posterior Probability Calculation 

 

In a traditional WofE analysis, posterior probability maps can be calculated once weights 

for each pattern (category) of each evidence layer have been generated. Posterior 

probability is calculated by using weight values to modify the prior probability. The 

following equation (Bonham-Carter, 1994) shows how the posterior logit is calculated, 

the exponent of which equals posterior odds. 

 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑙𝑜𝑔𝑖𝑡 (𝐷|𝐵1 ∩ 𝐵2 … ∩ 𝐵𝑛) = 𝑝𝑟𝑖𝑜𝑟 𝑙𝑜𝑔𝑖𝑡(𝐷) + ∑ 𝑊+
𝑖

𝑛

𝑖=1

 (1 − 5) 

 

Equation 1-5 uses the same nomenclature as equations 1-1 and 1-2. W+ is W- when the 

favorable i’th map pattern is absent. The prior logit is the natural log of the prior odds. 

The prior odds are equal to the prior probability divided by 1 minus the prior probability. 

Similarly, the posterior logit can be converted to posterior probability by first taking the 

exponent of the posterior logit (which equals the posterior odds), then dividing by 1 plus 

the posterior odds. 

 

Distance based features, such as the distance to the nearest fault, are traditionally 

depicted as a binary raster, with a positive weight within a threshold distance and a 

negative weight beyond the threshold. Continuous data types, such as heat flow and strain 

rate, are traditionally binned into several categories, each with an independently 

measured weight. The ‘Calculate Response’ tool in ArcSDM was used to calculate 

posterior probability maps by inputting recategorized rasters and categorical weight 

tables. The tool also generates an error surface that depicts standard deviation of the 

posterior probability map. 
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1.5 Prior Works 

 

Prior geothermal assessments provide the basis for decisions made in the present study 

regarding which geologic and geophysical data to investigate as potential evidence data 

and which processing techniques to apply when interpreting raw geologic data into 

products that can be used in a WofE analysis. This section introduces the prior works that 

informed decision making in the present study but a comparison of modeling results and 

technique effectiveness with prior studies will be detailed in the Discussion section.  

 

1.5.1 Coolbaugh et al., 2005 

 

Coolbaugh et al. (2005) assessed geothermal favorability across the Great Basin and 

surrounding areas using logistic regression with a 1 km² grid cell size (Figure 1.10 and 

Coolbaugh et al., 2005b). For evidence data, Coolbaugh et al. (2005) used data 

representing combined gravity and topographic gradients, combined crustal dilation 

derived from geodetic motion measurements and Quaternary fault slip rates, estimated 

temperature gradient in the first kilometer of the crust, and a weighted sum of earthquake 

magnitudes. The evidence layers used in Coolbaugh et al. (2005) represented proxies for 

the same processes being modeled in the present study. The present study was able to 

take advantage of newer and in some cases more robust data sets than were available for 

prior assessments. Many of the geographic and data-manipulation techniques used in 

Coolbaugh et al. (2005) were used in subsequent geothermal assessments and were 

adopted for use in this study. Examples include the methodology for interpreting 

seismicity, and for handling of non-binary evidence data in WofE testing.  
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Figure 1.10: Geothermal potential map from Coolbaugh et al., 2005b: This study combined data representing combined 

gravity and topographic gradient, combined GPS-derived crustal dilation and fault dilation, seismicity, thermal gradient, and 

aquifers to predict geothermal favorability in the Great Basin using logistic regression.  
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1.5.2 Williams and DeAngelo, 2008 

 

Williams and DeAngelo (2008) assessed geothermal favorability across the western 

United States using WofE with a 2 km x 2 km grid cell size (Figure 1.11). Williams and 

DeAngelo (2008) used data representing heat flow, Quaternary magmatism, Quaternary 

faulting, seismicity, and tectonic stress as evidence data. Many decisions about which 

evidence data to investigate and what techniques to use in Williams and DeAngelo 

(2008) were informed by Coolbaugh et al. (2005), Coolbaugh et al., (2005b), as well as 

other works (Williams and DeAngelo, 2008). The present study used similar techniques 

to Williams and DeAngelo (2008) with regards to interpretation of data representing heat 

flow, Quaternary faults, and seismicity. 
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Figure 1.11: Amagmatic geothermal potential map from Williams and DeAngelo, 2008: This study combined data 

representing tectonic stress, Quaternary faults, seismicity, and heat flow to predict geothermal favorability in the western 

United States using WofE.  
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1.5.3 Faulds et al., 2015 

 

Faulds et al. (2015) assessed geothermal favorability across a portion of Nevada (Figure 

1.12) using weights determined by experts guided by WofE and logistic regression 

correlations with a 250 x 250 m minimum grid cell size (Figure 1.13). Faulds et al. 

(2015) used data representing estimated temperature at 3 km depth, favorable structural 

settings, horizontal gravity gradient, geodetic strain rate, seismicity, as well Quaternary 

faults and information regarding their recency, slip & dilation tendency, and slip rate as 

evidence data (Figure 1.14). The present study did not adopt any new techniques from 

Faulds et al. (2015) but it was informed by their use of fault recency information, slip and 

dilation tendency, and strain rate.  



36 

 

 

Figure 1.12: Overview map from Faulds et al., 2015: This figure shows the study area rectangle (grey) those authors used to 

predict geothermal favorability in their Play Fairway Analysis. The shading on the topography denotes the rate of 

deformation. Locations of geothermal powerplants and systems are depicted as stars and circles, respectively. The Walker 

Lane and Eastern California Shear Zone are depicted in a hatch pattern. Geothermal system densities are depicted using 

colored iso lines.  
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Figure 1.13: ‘The Fairway’ map from Faulds et al., 2015: This figure shows geothermal favorability within their study area 

based on multiple evidence layers grouped together to represent permeability and heat. 
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Figure 1.14: Evidence data diagram from Faulds et al., 2015: This figure illustrates how evidence data were combined using a 

play fairway analysis approach to produce geothermal favorability maps.  
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1.5.4 Coolbaugh and Bedell, 2006 

 

Coolbaugh and Bedell (2006) assessed geothermal favorability in Nevada and used 

mathematical functions to generate gradational changes in evidence layer weights. This 

technique resulted in maps that did not have the abrupt changes in favorability seen in 

other assessments when artificial thresholds were passed (Figure 1.15, Figure 1.16). 

Coolbaugh and Bedell (2006) used data representing estimated regional heat flux, young 

faults, depth to water table, groundwater chemistry (represented by boron 

concentrations), young volcanics, earthquakes, and Paleozoic carbonates. Coolbaugh and 

Bedell (2006) served as a model for many of the ideas used to fit smooth functions in the 

present study. 
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Figure 1.15: Weight table and geothermal potential maps from Coolbaugh and Bedell, 2006: This study fit smooth functions to 

a proxy for WofE weights to produce smoothly varying favorability maps. Table 1 shows WofE statistics calculated for layers. 

Figure a shows favorability using the traditional binary WofE approach. Figure b shows favorability calculated using a 

multiclass density function to show more gradations in favorability. 

Table 1 

Figure a Figure b 
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Figure 1.16: Example of weight functions from Coolbaugh and Bedell, 2006: Figure a shows density function values (a 

simplified proxy for WofE weight values) fit with a smooth function modeling heat flux. Figure b shows the similarity between 

density function and calculated WofE weights.  

Figure a 

Figure b 
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1.6 Summary 

 

This study sought to evaluate evidence data and modeling techniques used in prior 

geothermal assessments, and to adopt techniques and evidence layers best suited for a 

regional analysis while incorporating new approaches. New approaches included creating 

automated techniques to quickly apply geographic, statistical, and visualization tools to 

allow for testing of different evidence data and their derivative layers to see which 

display strong significant correlations with training sites and what other lessons could be 

learned. A new approach was used to accurately generate ‘smoothed’ weights that vary 

gradationally across space derived from categorical weights. Predictive maps were 

produced depicting favorability of geothermal system occurrence in Nevada and 

compared with prior assessment results. Weight statistics calculated for evidence layers 

were reported so they might be applied to similar conditions elsewhere in future studies. 

Topics for potential future research discovered during the present study were also 

reported. 
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2.0 Methodology 

 

Evidence data were examined to see whether meaningful statistical relationships could be 

measured against locations of identified geothermal systems. The following sections 

describe the processes that each evidence source underwent to go from raw data to final 

interpretations. Each evidence data set needed to first be transformed in a way that 

optimized its relevance to geothermal exploration. For some evidence sources this 

involved significant preparation and interpretation to go from raw data to a usable data 

input for a WofE analysis. Next, a systematic series of weighting tests were run to 

understand the nature of the statistical relationship. Finally, a best practice was settled 

upon for each data set based on the unique characteristics discovered during examination 

before being used as inputs for creating posterior probability maps or discarded. 

 

Some aspects of data handling were common to all evidence types. All evidence layers 

were produced to cover the study area, the entire state of Nevada. All evidence layers 

were produced on the same raster grid using 250-meter grid cells. All evidence layers 

used North American Datum 1983 (NAD 1983) Universal Transverse Mercator (UTM) 

zone 11N projection. 

 

The geological and geophysical data that were examined for potential inclusion as 

evidence data include the following: Heat flow, Quaternary faults, strain rate, and 

earthquakes. Some of these layers or derivative variations of them did not show 

significant correlations with locations of known geothermal systems and were not used in 

this analysis to produce predictive maps. 

 

Generating an evidence layer from raw data involved different approaches for different 

data sets to optimize relevance for geothermal exploration. For some layers, raw data in 

the form of points (heat flow measurements, earthquakes) or lines (faults) used 
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processing tools to generate a two-dimensional grid. These tools included ArcGIS 

distance functions, density functions, and interpolators. 

 

The only requirement for an evidence layer was that the two-dimensional grid generated 

must use the common study area and grid spacing, and be labeled with integer codes 

representing classes, or intervals, that rank the magnitude of the phenomena being 

modeled. After application of integer codes, WofE weighting tests could begin.  

 

This section describes the entire process of data handling by first describing 

geoprocessing tools and the customized Python tools developed to automate production. 

Then, the processes used to generate evidence layers are described for each layer along 

with a description of how an optimal transformation approach was selected. Next are 

sections describing how categorical weights were calculated and fit to generate smoothed 

weights. The final section describes how the evidence layers were used to create the 

posterior probability map depicting geothermal favorability. 

 

2.1 Geoprocessing Tools 

 

2.1.1 Distance Function  

 

A distance function generates a two-dimensional surface where each cell reports the 

distance to the closest feature (such as a fault). The present study used the ArcMap 

‘Euclidian Distance’ tool in the Spatial Analyst Tools toolset. In the present study, all 

distance surfaces were transformed to integer codes where the smallest integer codes 

corresponded to the cells with the shortest distance to a feature in increments equal to the 

cell size (250 m) using the ‘Reclassify’ tool in the ArcMap Spatial Analyst Tools toolset.  

 



45 

 

2.1.2 Density Functions  

 

Geographic density functions were used to calculate the spatial density of lines (faults). 

In a simple density function, the tool draws a buffer of a user-specified distance from the 

grid cell being calculated to every feature (fault segment). The length of each fault 

segment falling within the radius is summed and divided by the area of the search radius 

to calculate a fault density. These densities can be weighted by the attributes of the input 

faults. A kernel density function adds the ability to inversely weight the density function 

by the distance between the fault and the grid cell being calculated. The distance 

weighting function in ArcMap is based on a Gaussian distribution. This can be useful for 

weighting faults more when they are closer to the grid cell being calculated. The search 

distance a user chooses can be a very important consideration because it requires one to 

place it within a geologic context (up to what distance does the user think the feature is 

relevant?) as well as a mathematical context (which distances produce the highest and 

strongest correlations?). A range of search distances can be tested on layers. The present 

study used the ‘Density’ tools in the ArcMap Spatial Analyst Tools toolset. All density 

layers were converted into integer codes representing an equal portion of the range of the 

density values for use in WofE testing. 

 

2.1.3 Interpolators 

 

Interpolators use points to generate two-dimensional surfaces that estimate the magnitude 

of a phenomena that gradationally across space. The present study used the Empirical 

Bayesian Kriging (EBK) tool (Krivoruchko and Gribov, 2014) as well as the Radial Basis 

Function (RBF) tool in ArcGIS. Heat flow rates calculated for individual well locations 

were used to create interpolated map surfaces that estimated the rate of heat flow across 

all of Nevada. RBF is a simple deterministic spline function used in a previous 

geothermal assessment of the western United States (Williams & DeAngelo, 2008). EBK 
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is a recently developed geostatistical tool that models by fitting semivariogram 

distributions (Krivoruchko and Gribov, 2014). EBK differs from ordinary kriging 

because it uses many semivariogram models (ordinary kriging uses one) to account for 

errors in the modeling process, generating many local-scale interpolated surfaces that are 

not influenced by distant factors and combining them into a single surface. This leads to 

an interpolated map with more local-scale definition than ordinary kriging. 

 

The EBK tool was developed by geostatistical engineers at ESRI, the company that 

makes ArcMap software. An unpublished tool was obtained from one of these engineers 

in 2016 that calculates cross-validation error statistics from EBK models generated with 

many different combinations of key EBK modeling parameters. This tool was used to 

find optimal EBK parameters, this will be illustrated in the next section describing the 

optimization of the heat flow evidence layer. 

 

2.2 Python Tools 

 

Two Python toolsets were developed while undertaking the present study to facilitate 

comprehensive evaluation of evidence data. One toolset performed analysis and 

generated weight tables (Processing Toolset), the other plotted the results (Plotting 

Toolset). Example code is included in Appendix 3. Nearly all functional steps were 

performed using these toolsets, greatly enhancing the ability to test different techniques 

and to quickly visualize in a way that greatly aided simple interpretation. The 

programming was written in Python code, the language used in ArcGIS for customized 

and batch-mode operations. 

 

2.2.1 Processing Toolset 
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2.2.1.1 Subset-Distance Cumulative Weight Test Tool 

 

This tool uses two attributes of a layer to generate a subset for each unique combination 

of the two attributes for cumulatively larger groups. To use this tool, a user must tag input 

data with codes representing important ordinal characteristics, such as rankings of fault 

recency or slip rate categories in the case of the Quaternary fault data. For example, in a 

case with six recency categories and three slip categories, (3 x 6 =) 18 subsets would be 

generated. Each subset is cumulative in the sense that lower ranked categories contain all 

higher-ranked categories. For example, the youngest faults comprise the first recency 

ranking but the second recency ranking contains the two youngest groups, and so on. 

 

For each subset, a distance function is applied, a new surface is generated with integer 

codes representing recategorized distances, and a cumulative weight test is run generating 

tables that can be used directly in the Plotting Toolset. This toolset can take either line or 

point features as inputs. These processes can be run for each set in a list of different 

training sites. 

 

2.2.1.2 Density Function and Cumulative Weight Tool 

 

This tool generates either a simple or kernel density function from line or point features 

and can optionally generate a layer calculating the log of the density surface. The tool 

recategorizes the surface into integer codes representing equal intervals and calculates 

cumulative weights. This process can be run for each value in a list of different search 

radii. These processes can be run for each set in a list of different training sites. Results of 

the cumulative weights test can be used directly in the Plotting Toolset. 

 

2.2.1.3 Continuous Layer Reclassify and Cumulative Weight Test Tool 
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This tool reclassifies a continuous data layer (such as heat flow or strain rate) into integer 

codes representing equal intervals and calculates cumulative weights. These processes 

can be run for each set in a list of different training sites. Results of the cumulative 

weights test can be used directly in the Plotting Toolset. 

 

2.2.1.4 Categorical Weight Test Tool 

 

This tool calculates categorical weights for a series of input files. These processes can be 

run for each set in a list of different training sites. Results of the cumulative weights test 

can be used directly in the Plotting Toolset. 

 

2.2.2 Plotting Toolset 

 

The Plotting Toolset consists of two individual tools, one that plots cumulative weights 

and one that plots categorical weights. This toolset reads the weight tables generated by 

ArcSDM weight tests. This toolset creates an individual plot for each weight table and 

also creates summary tables by arranging plots in a single table for side-by-side-

examination. Both plotting tools use the same symbology to represent weight values and 

training point count but use different symbology to show information specific to each 

type. Both tools have options to show native units, and to invert the x-axis.  

 

2.2.2.1 Cumulative Weight Plotter 

 

This tool generates plots that display weight values and their standard deviations, training 

point counts, contrast, and studentized contrast. Summary statistics are reported in the 

title of each plot to allow for easy comparison of important statistics across different 

subsets. This tool offers an option to show plot distance on the x-axis, and an option to 

display high studentized contrast values at half their actual value. 
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2.2.2.2 Categorical Weight Plotter 

 

This tool generates plots that display weight values and their standard deviations, training 

point counts, relative area, and cumulative area. This tool offers an option to show plot by 

native units but requires a user provide bin thresholds. 

 

2.3 Evidence Layer Creation and Selection 

 

This section describes how for each evidence data source, raw data were ultimately 

transformed into integer codes representing the magnitude of the phenomena being 

modeled for use in WofE testing. Three of the four evidence sources were examined to 

see whether there were ways to optimize relevance for geothermal exploration. Strain rate 

data were directly sampled. Fault, heat flow, and earthquake data, however, were 

examined using different techniques relating to data processing, subset selection data, and 

transformation, to identify an approach that generated the strongest weights when 

compared with training sites to calculate WofE statistics. 

 

2.3.1 Strain Rate 

 

The simplest example in the present study is the use of the strain rate data because the 

only processing step was to resample the strain rate data from Kreemer et al. (2012) to fit 

the study area raster grid. The original data came at a spatial resolution of 0.01 degrees by 

0.01 degrees (approximately 850 meters (x) by 1100 meters (y)); this grid was resampled 

to the current 250-meter grid spacing. Original data were sampled to a point file 

representing the centroid of each study area grid cell using the ArcGIS ‘Extract Values to 

Points’ tool in the ‘Spatial Analyst Tools’ toolset. This point file was converted into a 

raster grid using the ‘Point to Raster’ tool in the ArcMap ‘Conversion Tools’ toolset.  
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Next, the data were categorized into 232 bins, with each increasing bin value 

representing, from highest to lowest strain rates, a decreasing 1 strain unit portion of the 

total domain. For example, raster cells with a value of 1 represented locations with a 

strain rate greater than 231 10−9 /yr, a value of 2 represented locations ranging from 230 

– 231 10−9 /yr, etc. Increasing values in the evidence layer integer codes corresponded to 

decreasing values in strain rate. This recategorization was done using the ‘Reclassify’ 

tool in the ‘Spatial Analyst Tools’ toolset. 

 

2.3.2 Quaternary Faults  

 

The final predictive maps in the present study used surfaces generated by using 

Quaternary fault subsets in a distance function to generate surfaces showing the distance 

from the nearest fault. These surfaces were reclassified into integer codes where the 

smallest integer codes corresponded to the cells with the shortest distance to a feature in 

increments equal to the cell size (250 m). For example, Class 1 encompassed places 0 – 

250 m from a fault, class 2 encompassed areas 250 – 500 m from a fault, etc.  

 

Three other techniques for generating two-dimensional surfaces representing fault 

characteristics were explored, but ultimately not used because the approach examining 

subsets with distance functions generated stronger associations with the benchmark 

geothermal systems. Two of the three techniques used density functions; one simple 

density function and one kernel density function. Density functions were explored 

because unlike distance functions, they highlight areas with more faults and they can be 

weighted by a quantitative measure, such as TD and TS. The third approach examined 

TD using the same distance-based subset approach to see whether subsets with higher TD 

values showed stronger associations with the benchmark geothermal systems. In the 
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following subsections, the distance function-based approach will first be presented, 

followed by presentation of approaches that were not ultimately used. 

 

2.3.2.1 Distance Function on Fault Subsets  

 

Quaternary faults were examined based on their slip sense (Figure 1.1), recency (Figure 

1.3), and slip rate (Figure 1.4). Cumulative weight tests were run on recategorized 

distance rasters generated from a series of fault subsets with different attributes to see 

which fault subsets produced the highest weights. Finding higher correlating subsets has 

two advantages, a stronger correlation and less of the map area will be positively 

weighted. Processing was done using the ‘Distance Subset Toolset’ and results were 

plotted using the ‘Plotting Toolset.’ 

 

In Figure 2.1, each plot represents the result of a cumulative weight test run on a subset 

of faults with no consideration for their slip sense. Each plot uses the same symbology 

seen in Figure 1.7. Plots vary from left (younger) to right (older) by their recency; up 

(faster) to down (slower) by their slip rate. The plots furthest to the left only contain the 

youngest faults (Historic), the plots furthest to the right contain faults of all Quaternary 

ages. The groups are cumulative in the sense that each older group also contains the 

younger groups. The vertical groups are also cumulative with the top row representing 

faults with the highest strain rate and the bottom row representing faults with all strain 

rates. The bottom-right plot therefore contains all faults in the QFFDB for Nevada, 

containing Quaternary faults of all ages and all slip rates. 
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Figure 2.1:  Cumulative weight tables from fault subsets of all slip senses. Each plot represents the result of a cumulative 

weight test run on a subset of faults with no consideration for their slip sense. The x-axis depicts distance from faults in km. 

The red points and line represent W+ and use the left axis. The green points represent contrast (W+ - W-) and use the left axis. 

The blue points represent training point count and use the right axis. The purple points represent half the value of the 

studentized contrast and use the left axis. Plots vary from left (younger) to right (older) by their recency; up (faster) to down 

(slower) by their slip rate. The plots furthest to the left only contain the youngest faults (Historic), the plots furthest to the 

right contain faults of all ages. The groups are cumulative, each older group also contains the younger groups. The vertical 

groups are also cumulative with the top row representing faults with the highest slip rate and the bottom row representing 

faults with all slip rates. Above each plot, titles provide descriptive statistics to more easily compare important parameters. In 

order, plot titles provide recency and slip rate designations, followed by percent of total area, and training point count within 

an arbitrary threshold distance of 4 km. Finally, W+ is reported at the arbitrary distance of 1km. 
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Some plots in Figure 2.1 show unreliable results. For example, the entire top row was 

generated from fault subsets that had no training sites within 10 km. Several plots, 

including the plots on the second row from the top have weights that exhibit a jagged 

pattern within the first few kilometers from faults, indicating unreliable weights 

generated from too few training sites, as confirmed by large standard deviation values 

(blue shading). This pattern is often indicative of the use of too small a bin size, but in 

this case the pattern is observed occurring over significant distances from faults. Reliable 

results generally produce plots that can be seen rising to a maximum and gradually 

declining. 

 

Above each plot, descriptive statistics were noted to more easily compare important 

parameters. Plots each list their name, which indicates their recency and slip rate 

designations. Then the area, percent of total area, and training point count within an 

arbitrary threshold distance are reported. In the case of Figure 2.1, these parameters are 

listed using a distance threshold of 4 km. Finally, W+ is reported at the arbitrary distance 

of 1 km. Though these thresholds are arbitrary, they provide a consistent way to see how 

important parameters change as older and slower faults are shed from consideration. 

They are also useful when looking at whether normal faults correlate more strongly with 

training sites than the full QFFDB for Nevada.  

 

Figure 2.2 shows results when only examining normal faults and uses the same 

symbology used in Figure 2.1. W+ at 1 km is higher in Figure 2.2 (normal faults) in 

every reliable looking fault subset plot than in Figure 2.1 (all faults). It was therefore 

decided to only use normal faults in the investigation.
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Figure 2.2. Cumulative weight tables from fault subsets of normal faults. Each plot represents the result of a cumulative weight test run on a subset of normal faults. The X-

axis depicts distance from faults in km. The red points and line represent W+ and use the left axis. The green points represent contrast (W+ - W-) and use the left axis. The 

blue points represent training point count and use the right axis. The purple points represent half the value of the studentized contrast and use the left axis. Plots vary from 

left (younger) to right (older) by their recency; up (faster) to down (slower) by their slip rate. The plots furthest to the left only contain the youngest faults (Historic), the 

plots furthest to the right contain faults of all ages. The groups are cumulative, each older group also contains the younger groups. The vertical groups are also cumulative 

with the top row representing faults with the highest slip rate and the bottom row representing faults with all slip rates. Above each plot, titles provide descriptive statistics 

to more easily compare important parameters. In order, plot titles provide recency and slip rate designations, followed by percent of total area, and training point count 

within an arbitrary threshold distance of 4 km. Finally, W+ is reported at the arbitrary distance of 1km. Poorly performing tests were shaded red. Redundant weight tests 

(see text) were shaded yellow. Promising looking graphs with higher positive weights were shaded green. The best performing tests were outlined with a blue box.
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To choose the best performing fault subset from Figure 2.2, poorly performing (shaded 

red) and redundant weight tests (shaded yellow) were first eliminated from consideration. 

Then promising looking weight tests with relatively high positive weights (shaded green) 

were compared to each other before settling on the best performer(s) (blue box).  

 

Poorly performing fault subset weight plots (shaded red) include the top row of Figure 

2.2 (strain rate between 1-5 mm/yr) and the first column (Column 1, Historic faults only). 

These plots had too few training sites to calculate reliable weights. 

 

Some of the categories in the QFFDB did not contain many faults. For that reason, some 

of the categories are effectively redundant. To find redundant categories within the ‘age’ 

designations, one can look at the plots on the bottom row (to not consider slip rate) of 

Figure 2.2 and note the amount of area each subset covers at 4 km. Starting from the 

bottom right and moving left, each new plot sheds the oldest group. If adjacent plots 

cover approximately the same area at 4 km, they effectively show the same thing and one 

column can therefore be eliminated. Plots on the bottom row of the two oldest columns, 

columns 5 and 6, (bottom right, bottom second from right) both cover approximately 

54% of the state. The oldest column, column 6 (right most column), can therefore be 

eliminated from consideration (yellow shading) because the adjacent column covers 

slightly less area while containing the same number of training sites. Similarly, Column 4 

was eliminated from consideration (shaded yellow) because its plot covers a similar 

percentage of the total area to the plot in Column 3 while picking up the same number of 

training sites at 4 km. No such redundancies were seen when comparing slip rate graphs. 

 

After eliminating many of the plots from consideration (red and yellow shading), the 

remaining six plots in Figure 2.2 were shaded green to denote their not being poorly 

performing or redundant and therefore worthwhile of consideration. Of the six plots 

shaded green, three are in ‘row 3’, faults with slip rate equal or greater than 0.2 and less 
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than 1.0 mm/yr. Three plots are in ‘row 4’ that include all categories of strain rate. On the 

bottom row, row 4, as older faults are shed, W+ at 1 km rises as the associated area falls. 

This is exactly what one would hope to see, smaller areas being given higher weight. The 

green plot on the bottom left, plot ‘2.4’, shows the highest W+ at 1 km (W+ = 2.15) with 

the lowest amount of area covered. This makes it the best performing subset of the plots 

in row 4. Of the plots in row 3, the green plot on the top right, plot ‘5.3’, shows the 

highest W+ at 1 km (W+ = 2.56). It does not, however, cover the least area because it 

contains older faults. It was still chosen as the best performer in row 3 because it has 

higher W+ while still covering a relatively small portion of the entire study area (4% at 4 

km). Weights seen in both the 2.4 and the 5.3 subset both possess strong measures of 

studentized contrast, indicating weights are significantly larger than zero. 

 

Ultimately multiple versions of the geothermal favorability maps were generated, some 

using the 2.4 subset, the others using the 5.3 subset, because they highlight different 

features and each version could be useful. In a traditional binary WofE analysis, either of 

these subsets would be converted into a binary categorical layer with a threshold 

determined by where the highest contrast (green dots) or studentized contrast (purple 

dots) exists. 

 

2.3.2.2 Other Approaches Not Used on Faults 

 

Figure 2.3 shows cumulative weight test results run on the entire fault dataset using 

simple and kernel density functions weighted by fault segment TD and TS using different 

search radii. Plot titles indicate which density function was used (‘ld’ = simple density, 

‘kd’ = kernel density), which field was used for weighting (TD or TS), and the distance in 

meters. 
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Figure 2.3: Cumulative weight test results of faults weighted by dilation or slip tendency using simple and kernel density 

functions with multiple search radii. Plot titles indicate which density function was used (‘ld’ = simple density, ‘kd’ = kernel 

density), which field was used for weighting (TD or TS), and the distance in meters. The x-axis shows class; each class is an 

equal interval bin of the full range of the density surface being examined with the highest density values being assigned the 

lowest class codes. The red points and line represent W+ and use the left axis. Blue shading around the red line indicates 

standard deviation of the weight. The blue points represent training point count and use the right axis. The purple points 

represent the studentized contrast and use the left axis. The green points represent contrast and use the left axis. Numbers in 

each plot’s title (1000, 2000, and 5000, 10000) denote the search radius used in meters. 
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Most of these plots have weight values (red points and line, left y-axis) that spike as the 

first training sites (blue dots, right y-axis) fall within the cumulative class group being 

examined (x-axis). All of these plots show a distinct range on the x-axis where many 

training sites get picked up, seen where the blue dots suddenly go up. Weights calculated 

before this rise began were not considered reliable because they were generated from too 

few training sites. Weight values calculated after the rise in training point count were 

considered based on their maximum weight and whether weight values dropped off 

suddenly or not. 

 

First, the ‘TD’ plots look nearly identical to their ‘TS’ counterparts. Second, it appears 

that kernel density functions performed better than their simple density counterparts by 

having higher maximum weight values that dropped off less suddenly. Third, the large 

search distances produce lower maximum weight values than the 1 km and 2 km plots, 

which exhibit similar features. This makes sense because a Quaternary fault’s impact on 

permeability may not be expected to extend to distances as large as 5 or 10 km. 

 

These trends highlight the kernel density plots as the best performers, weighted by either 

TD or TS using either a 1 km or 2 km search radius. Using the earlier stated criteria, the 

surface using kernel density, weighted by TS, using a 1 km radius (figure to the right of 

the top left-most figure) appears to offer the most justifiable choice; weight values exceed 

1.5 and persist at high levels.  

 

The range of density values represented by the approximate class range of 250-300 using 

a search distance near 1-2 km represents an opportunity for further exploration, especially 

because these results were tested on the entire QFFDB, but not the more highly 

correlating subsets. Applying this technique to fault subsets may reveal additional 

opportunities, as will be discussed in the ‘Future Work’ section.  
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TD and TS were also evaluated using the same approach applied to the distance raster 

subsets but instead of slip rate categories, categories representing equal intervals of the 

full range of TD values were used to see if the distance surfaces produced from subsets 

with high TD produced higher weights than from those produced using subsets with 

increasingly lower minimum TD. Very little change was seen between groups with a 

higher and lower minimum TD, so the technique was not pursued further. 

 

2.3.3 Heat Flow 

 

Crustal heat flow, like crustal strain rate, is a characteristic that changes gradationally 

across space. Heat flow was calculated for individual locations; values from these point 

locations were interpolated into raster surfaces that estimate heat flow in units of mW/m² 

across Nevada using the EBK and RBF interpolators in ArcGIS (Figure 1.6). Values of 

heat flow greater than 120 mW/m² were reduced to equal 120 mW/m² to minimize the 

impact of extremely high values measured at hydrothermal systems concealing the 

background rates of crustal heat flow regionally as in Williams and DeAngelo (2011). 

Default RBF model parameters were used (Completely regularized spline, one sector). 

 

An optimal kriging model was settled upon for the EBK by varying the transformation 

and semivariogram models to run 82 unique variations and identify the model with 

lowest errors using a tool provided by geostatistical engineers developing ArcGIS 

geostatistical tools. Appendix 2 shows the error statistics from 82 EBK models in the 

second and third columns, the Root Mean Square Error (RMSE) and the Root Mean 

Square Error (rmsStd), respectively. RMSE indicates how closely a model predicts 

measured values. Generally, the lower the RMSE, the better the fit. rmsStd is the average 

of the standardized errors. The closer rmsStd is to 1.0, the better the fit. Model number 2 

was chosen because there was no model with lower RMSE besides model 1, which 

contained an error calculating rmsStd. 
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Heat flow maps generated using both interpolators were transformed to estimate 

temperature at 3 km, resulting in four maps that could be used to represent heat. A simple 

comparison of these approaches was performed by calculating cumulative weights on 

each layer. The upper plots in Figure 2.4 show results from the EBK, the lower plots 

show the results from the RBF. The heat flow map using EBK (upper-left plot) correlated 

more strongly with training data than the other approaches.  

 

Plots on the left in Figure 2.4 show results from using heat flow, plots on the right show 

the results from using temperature at 3 km. In the temperature at 3 km plots, the highest 

temperatures do not intersect with locations of geothermal systems. Systems begin 

intersecting in the moderate temperature ranges and have low weight values compared 

with the heat flow plots. Both interpolation methods led to higher estimated temperatures 

closer to the center of basins, which may be a more realistic depiction of heat 

distribution. However, identified locations for geothermal systems tend to be located at 

the edges of basins near basin-bounding faults, making this technique ineffective for 

generating strong weights. These techniques of estimating temperature at depth was 

therefore not pursued further for modeling purposes. Results could, however, be useful as 

a standalone product (Appendix 1) or for use in future studies that could take dipping 

structures into account. All weight results seen in Figure 2.4 were generated using a 

modified study area (seen in Appendix 1), limited by the extent of the depth to basement 

map used to estimate temperature at depth. 
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Figure 2.4: Cumulative weight test results of heat flow and temperature at 3 km depth surfaces generated using two 

interpolators. Plot titles indicate which density function was used (‘hf’ = heat flow, ‘t3’ = temperature at 3 km (degrees C)), 

which interpolator was used (EBK or RBF). The x-axis shows native units. The red points and line represent W+ and use the 

left axis. Blue shading around the red line indicates standard deviation of the weight. The blue points represent training point 

count and use the right axis. The green points represent contrast and use the left axis. 
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2.3.4 Earthquakes 

 

The ‘log of the sum of the moment (LSM)’ technique used in Williams & DeAngelo, 

2008 was used in the present study to characterize how earthquakes could quantitatively 

contribute to permeability. The LSM technique used a ‘neighborhood sum’ tool, which 

upon further inspection was identical to the simple density function. First, the seismic 

moment of each earthquake was calculated as follows: 

 

𝑀𝑜𝑚𝑒𝑛𝑡 =  10(𝑀𝑎𝑔∗1.5)+9.1     (2 − 1) 

 

Moment values were very large, so they were divided by a constant (1014) to allow for 

ArcGIS geoprocessing tools to work with them. These values were used to weight simple 

and kernel density functions, then the log of those surfaces was generated. The full ranges 

of these values were divided into many equally spaced categories and cumulative weight 

tests were run using multiple search distance values. Figure 2.5 shows the results of using 

search distances of 1, 2, 5, and 10 km for both simple and kernel density plots.  
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Figure 2.5: Cumulative weight test results examining earthquakes using density functions weighed by seismic moment. Plot 

titles indicate which density function was used (‘kernelDens’ = kernel density, ‘ptDens’ = simple or point density), numbers in 

each plot’s title (1000, 2000, and 5000, 10000) denote the search radius used in meters. The x-axis shows class; each class is an 

equal interval bin of the full range of the density surface being examined with the highest density values being assigned the 

lowest class codes. The red points and line represent W+ and use the left axis. Blue shading around the red line indicates 

standard deviation of the weight. The blue points represent training point count and use the right axis. The green points 

represent contrast and use the left axis. 
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In general, the simple density plots appeared to sustain slightly higher weights than the 

kernel density plots. The simple density plots using 5 and 10 km both perform well, but 

the simple density plot using a 10 km radius (bottom right figure) appears to perform 

best, reaching weight values around 1.0 with lower standard error while using more 

training sites.  

 

Some experimenting revealed that multiple categorical weights could be generated using 

this layer that decline across categories, but the highest weights (weight ≥ 0.65,) only 

persist for a small portion (around 11%) of the total study area, represented by the first 

two categories in Figure 2.6. The map (Figure 2.7) shows the distribution of LSM values, 

high values appear to be driven by a small number of high magnitude events. 
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Figure 2.6: Categorical weight test results examining earthquakes. The recategorized surface was generated using a simple 

density function weighed by seismic moment using a 10 km search radius. All x-axis values of all points on this figure are 

plotted at their native unit midpoint. The x-axis shows categories. The red points and line represent W+ and use the left axis. 

Error bars around weight values indicate standard deviation of the weight. The blue points represent training point count and 

use the right axis. The green points represent percent area associated with each bin, on an axis of 0 (bottom of graph) to 100% 

(top of graph). The green line represents cumulative percent area, also plotted with 0 at the bottom of y-axis and 100% at top 

of y-axis. 
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Figure 2.7: Earthquake density function map weighted by moment magnitude. Events were weighted by seismic moment using 

a 10 km search radius. Background colors show the log of a density function using earthquakes weighted in the LSM 

technique and a 10 km search radius. For each earthquake, magnitude was converted to estimate seismic moment. Seismic 

moment values were divided by a large constant and used in a simple density function with a 10 km search radius. The log of 

the that density surface is depicted in this map. Earthquakes are plotted as small black circles; training sites are depicted as 

white pentagons. 
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Earthquake density maps were also prepared without weighting earthquakes by moment 

or magnitude (Figure 2.8). These maps yielded even lower weights than those weighted 

by moment (Figure 2.9). Because of the relatively low maximum weights obtained for all 

derivative maps, the use of earthquakes as an evidence layer was not pursued further. 
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Figure 2.8: Earthquake density function map using no weighting. Background colors show the log of a density function using 

unweighted earthquakes and a 10 km search radius. Earthquakes are plotted as small black circles; training sites are depicted 

as white pentagons. 
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Figure 2.9: Cumulative weight test results examining earthquakes using density functions with no weighting. Numbers in each 

plot’s title (1000, 2000, and 5000, 10000) denote the search radius used in meters. The x-axis shows class; each class is an equal 

interval bin of the full range of the density surface being examined with the highest density values being assigned the lowest 

class codes. The red points and line represent W+ and use the left axis. Blue shading around the red line indicates standard 

deviation of the weight. The blue points represent training point count and use the right axis. The green points represent 

contrast and use the left axis. 
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2.4 Generating Categorical Weights  

 

2.4.1 Quaternary Faults  

 

The process of selecting the 2.4 and 5.3 subsets of normal faults for use as possible 

evidence layers was described in a prior chapter. Two binary versions of each fault 

subset’s weightings were chosen for further investigation, one using the threshold based 

on contrast, the other using the threshold based on studentized contrast. In addition, one 

set of ternary weights was chosen for each of the two fault subsets after examination of 

multiple possible bin thresholds. A fault’s influence is local and would not contribute 

positively to geothermal potential beyond some unknown distance, almost certainly past 

10 km and possibly beyond 5 km. Therefore, using a distance range that is too far from 

faults to calculate positive categorical weights does not appear to be a good idea. This 

limited the number of possible categorical weights to three (ternary binning), two of 

which had positive weights and the other a negative weight. Table 2.1 and Table 2.2 

show the binary thresholds selected and ternary bin thresholds explored for fitting each 

subset; rows in bold were used in favorability maps. 
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Nam

e 

Class 1 Class 2 Class 3 W1 W2 W3 

b5 0 km ≤ x ≤ 1 km 1 km < x  
 

2.09

8 

-0.240 
 

b6 0 km ≤ x ≤ 250 m 250m < x  
 

2.49

7 

-0.126 
 

t1 0 km ≤ x ≤ 750 m 750 m ˂ x ≤ 3.5 km 3.5 km < 

x  

2.15

9 

0.872 -0.356 

t2 0 km ≤ x ≤ 1 km 1 km ˂ x ≤ 3.5 km 3.5 km < 

x  

2.09

8 

0.711 -0.356 

t3 0 km ≤ x ≤ 750 m 750 m ˂ x ≤ 2.5 km 2.5 km < 

x  

2.15

9 

0.719 -0.274 

t4 0 km ≤ x ≤ 1 km 1km ˂ x ≤ 2.5 km 2.5 km < 

x  

2.09

8 

0.351 -0.274 

t5 0 km ≤ x ≤ 750 m 750 m ˂ x ≤ 4 km 4 km < x  2.15

9 

0.912 -0.402 

t6 0 km ≤ x ≤ 1 km 1 km ˂ x ≤ 4 km 4 km < x  2.09

8 

0.787 -0.402 

t7 0 km ≤ x ≤ 250 m 250 m ˂ x ≤ 750 m 750 m < x  2.49

7 

1.752 -0.200 

t8 0 km ≤ x ≤ 250 m 250 m ˂ x ≤ 1 km 1 km < x  2.49

7 

1.773 -0.240 

t9 0 km ≤ x ≤ 250 m 250 m ˂ x ≤ 2 km 2 km < x  2.49

7 

1.201 -0.263 

t10 0 km ≤ x ≤ 250 m 250 m ˂ x ≤ 2.5 km 2.5 km < 

x  

2.49

7 

1.056 -0.274 

 

Table 2.1: Bin ranges tested for 2.4 fault subset. Name column shows model name, models beginning with ‘b’ are binary, 

models beginning with ‘t’ are ternary. Class 1 column shows the distance range used as the first bin threshold. Class 2 column 

shows the distance range used as the second bin threshold. Class 3 column shows the distance range used as the third bin 

threshold for ternary models. W1, W2, and W3 represent W+ for binned categories. Rows in bold were used to produce 

favorability maps. 
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Name Class 1 Class 2 Class 3 W1 W2 W3 

b1 0 km ≤ x 

≤ 1 km 

1 km < x  
 

2.58233 -0.2079   

b2 0 km ≤ x 

≤ 250 m 

250m < x  
 

3.02777 -0.13   

t1 0 km ≤ x 

≤ 1 km 

1 km ˂ x 

≤ 4 km 

4 km < x  2.58233 0.57518 -0.24687 

t2 0 km ≤ x 

≤ 750 m 

750 m ˂ 

x ≤ 4 km 

4 km < x  2.57584 1.00262 -0.24687 

t3 0 km ≤ x 

≤ 750 m 

750 m ˂ 

x ≤ 2.5 

km 

2.5 km < x  2.57584 1.36502 -0.23815 

t4 0 km ≤ x 

≤ 500 m 

500 m ˂ 

x ≤ 2.5 

km 

2.5 km < x  2.75601 1.42882 -0.23815 

t5 0 km ≤ x 

≤ 500 m 

500 m ˂ 

x ≤ 4 km 

4 km < x  2.75601 1.09311 -0.24687 

t6 0 km ≤ x 

≤ 500 m 

500 m ˂ 

x ≤ 2 km 

2 km < x  2.75601 1.48778 -0.22013 

t7 0 km ≤ x 

≤ 250 m 

250 m ˂ 

x ≤ 1 km 

1 km < x  3.02777 2.09434 -0.20791 

t8 0 km ≤ x 

≤ 250 m 

250 m ˂ 

x ≤ 2 km 

2 km < x  3.02777 1.53909 -0.22013 

t9 0 km ≤ x 

≤ 250 m 

250 m ˂ 

x ≤ 2.5 

km 

2.5 km < x  3.02777 1.47888 -0.23815 

  

Table 2.2: Bin ranges tested for 5.3 fault subset. Name column shows model name, models beginning with ‘b’ are binary, 

models beginning with ‘t’ are ternary. Class 1 column shows the distance range used as the first bin threshold. Class 2 column 

shows the distance range used as the second bin threshold. Class 3 column shows the distance range used as the third bin 

threshold for ternary models. W1, W2, and W3 represent W+ for binned categories. Rows in bold were used to produce 

favorability maps. 
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In Table 2.1, the b5 model and b6 models represent binary thresholds with maximum 

values for studentized contrast and contrast respectively. Model b5 uses a 1 km buffer, 

model b6 uses a 0.25 km buffer. The ternary model t5 used distance bins of 0.75 and 4.0 

km. 

 

In Table 2.2, the b1 model and b2 models represent binary thresholds with maximum 

values for studentized contrast and contrast respectively. Model b1 uses a 1 km buffer, 

model b2 uses a 0.25 km buffer. The ternary model t6 used distance bins of 0.5 and 2.0 

km. 

 

2.4.2 Strain Rate 

 

First, a cumulative weight test was run to get an idea of how the data correlate generally. 

Figure 2.10 shows a steady but jagged decrease in W+ as represented by the red line with 

decreasing strain values. A jagged pattern is indicative of the very fine bin width, with 

the weight increasing significantly with each new training site. Weight values begin to 

behave less erratically once more training sites are covered by the pattern. 
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Figure 2.10: Cumulative weight plot of strain rate. The x-axis depicts native units (strain rate). Values for all parameters we 

calculated for 1-unit intervals of strain rate. The red points and line represent W+ and use the left axis. Blue shading around 

the red line indicates standard deviation of the weight. The blue points represent training point count and use the right axis. 

The purple points represent the studentized contrast and use the left axis. The green points represent contrast (W+ - W-) and 

use the left axis.   
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About halfway along the x-axis of Figure 2.10, the strain rate categories begin picking up 

many more training sites quickly. The W+ decreases gradually and smoothly. This 

second half of the figure is the approximate range of the strain rate data that were used to 

create most of the individually weighted categories because enough training sites fell into 

significantly large portions of the study area. While this may appear like a small range of 

the total strain rate data, it represented a large proportion of the study area because most 

of Nevada had strain rates that varied within the low to moderate ranges of the total rate 

examined. 

 

An iterative approach was then undertaken to characterize a trend between W+ and strain 

rate by binning the full range of the strain rate data into categories that each depict a 

subset of the full range. Each of these categories could then be weighted independently 

from one another by use of a categorical weight test. Then a process of guided trial and 

error was undertaken to find bin ranges that created categories that sequentially: had 

steady decreases in weight, steady increases in the spatial area encompassed, and 

contained enough training sites to calculate an accurate weight without containing more 

training sites than needed to allow for the creation of more robust subsequent categories.  

 

Figure 1.8 and Figure 1.9 show results of the categorical weight test that used the best 

performing bin ranges. Though error bars around weight values show some overlap 

between categories, these bin ranges yielded a gradual decline in weight (red points & 

line, left axis) and similar bin geographic area (green dots show relative area, green line 

shows cumulative area; both are relative) across categories with a similar number of 

training sites (blue dots, right axis) in each bin (Figure 1.8 and Figure 1.9). These bin 

ranges were used to recategorize raw strain rate data (Figure 1.5) into the strain rate 

categories (Figure 2.11) used in generation of predictive maps.  
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Figure 2.11: Map of strain rate categories. The map depicts the categories of estimated strain rate used for categorical and 

smoothed posterior probability calculations, clipped to the Nevada study area. Warmer colors depict higher rates, cooler 

colors depict lower rates. Each category represents a portion of the entire range of estimated strain rate, measured in units of  

𝟏𝟎−𝟗 /yr. Identified moderate and high temperature geothermal systems used as training sites are depicted as white pentagons. 
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The process of arriving at the best performing bin thresholds involved first exploring, 

then refining bin ranges, as detailed in Figure 2.12. These charts are presented to 

illustrate the iterative processes undertook to arrive at optimal bin ranges. 

 

Figure 2.12a shows the result of three binning attempts that helped guide initial 

approaches. Each plot in Figure 2.12a uses a different number of categories of equal size 

(in native units). The first plot uses 10 equal sized categories, the next two plots use 11 

and 12 respectively. The second two plots indicated there were too many small 

categories, causing some to pick up too few training sites to make useful measurements. 

The first plot shows that it might be possible to shift bin ranges to get weights to decline 

smoothly. 

 

After some manual testing, another round with fewer bin ranges was attempted. Figure 

2.12b shows some plots getting close to a steady decline in weights, some maintaining 

similar areas and training point counts between early groups. These guided the next 

round, seen in Figure 2.12c, which uses category code on the x-axis and in Figure 2.12d, 

which uses native units on the x-axis. Model 8c in Figure 2.12d appeared to meet all 

considerations well. A smooth-looking decline was achievable while maintaining 

considerations for area and training point count. 

 

Because this iterative work was completed prior to considering ‘by area’ fitting 

(discussed in a later section), all exploratory fine tuning was done using native units on 

the x-axis. When fitting strain rate using the ‘by area’ method (see section ‘Generating 

Smoothed Weights From Categorical Weights‘), several of the bin range scenarios seen 

in Figure 2.12d were tested and the model with the best r² (8c model) was used. 
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Figure 2.12: Categorical strain rate exploratory plots. Multiple charts are presented to illustrate the process of arriving at the 

best performing bin thresholds. This involved first exploring (subplot a), then refining bin ranges (subplots b, c, d). The x-axis 

on all plots is just an integer category code representing ranges of the data, except for subplot ‘d’ which uses a proxy for native 

units. W+ are the red points and lines (left axis), Blue points are number of training sites (right axis), green points are area, 

green line is cumulative area (no axis used, bottom represents 0%, top 100%). Purple is studentized contrast but is only 

relevant for the first category and should otherwise be ignored. 

a 

b 

c 

d 
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2.4.3 Heat Flow 

 

The selection of the heat flow EBK surface to represent heat contributions was done 

using a modified study area based on the extent of the depth to basement map used to 

produce estimates of temperature at 3 km depth. The first step was therefore to run a 

cumulative weight test using the standard study area to get an initial idea of how the data 

were correlated, as seen in Figure 2.13. 
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Figure 2.13: Ascending weight plot of heat flow data. The x-axis depicts heat flow in units of mW/m². The red points and line 

represent W+ and use the left axis. Blue shading around the red line indicates standard deviation of the weight. The blue 

points represent training point count and use the right axis. The purple points represent the studentized contrast and use the 

left axis. The green points represent contrast (W+ - W-) and use the left axis.   
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The next step was to reclassify the full range of the heat flow data into categories that 

each represent a portion of the total range of heat flow values so that a weight could be 

independently measured for each category with the goal of defining a trend in the weights 

with changing rates of heat flow. A guided process of trial and error resulted in bin 

ranges for categories with weight values that declined gradually while maintaining steady 

increases in the spatial area encompassed and containing enough training sites. 

 

Figure 2.14 shows the result of many binning attempts that used many different binning 

approaches. The x-axis on all these plots is the class value where smaller class numbers 

reflect ranges of higher heat flow values. 

 

The first two plots in Figure 2.14a divided the heat flow map using an equal interval 

classification method (as was done in Coolbaugh and Bedell, 2006). Interval sizes of 10, 

and 15 mw/m² are shown. The next two plots divided the heat flow map up into 

categories using the natural breaks technique. Numbers of categories tested included 10 

and 7. The next and final two plots divided the heat flow map up into categories by 

quantile. Numbers of categories tested included 6 and 8. 

 

Some of these plots in Figure 2.14a have weights that decline steadily. Many of these 

plots appear to cross W+ = 0 around class 30, which corresponds to a minimum heat flow 

of 92 mW/m². These facts appear to indicate that categorical weights can decline steadily 

for this layer and when it does, it tends to have W+ = 0 around class 30. Of plots that 

declined steadily, ‘hf_n7_gs’ did so while maintaining similar sized category areas. 

These bin values became the starting point for a new set of bin range attempts as seen in 

Figure 2.14b. Because this exploratory work was completed prior to considering ‘by area’ 

fitting (discussed in next chapter), the iterative work described here was done using a 

proxy for native units on the x-axis. When fitting heat flow by area in a later section titled 

“Generating Smoothed Weights from Categorical Weights”, several bin range 
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classifications seen in Figure 2.14b were tested and the model with the best r² (model c2 

in Figure 2.14b) was used.  
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Figure 2.14: Categorical heat flow exploratory plots. Two charts are presented to illustrate the process of arriving at the best 

performing bin thresholds. This involved first exploring (subplot a), then refining bin ranges (subplot b). The x-axis on all uses 

a proxy for native units. W+ are the red points and lines (left axis), Blue points are number of training sites (right axis), green 

points are area, green line is cumulative area (no axis used, bottom represents 0%, top 100%). 

 

 

  

a 

b 
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Figure 2.15 shows the results of a categorical weight test performed on the best 

performing bin ranges, and Figure 2.16 shows how the recategorization looks spatially. In 

Figure 2.15, though error bars around weight values show some overlap between 

categories, weights (red dots & line, left axis) decline in a linear fashion, categories 

contain similar geographic area measurements (green dots, no scale, relative area 

depicted), and a similar number of training points in each category (blue dots, right axis).  
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Figure 2.15: Categorical weight plot of heat flow rate categories. All x-axis values of all points on this figure are plotted at their 

native unit midpoint. The x-axis shows native units of heat flow (mW/m²). The red points and line represent W+ and use the 

left axis. Error bars around weight values indicate standard deviation of the weight. The blue points represent training point 

count and use the right axis. The green points represent percent area associated with each bin, on an axis of 0 (bottom of 

graph) to 100% (top of graph). The green line represents cumulative percent area, also plotted with 0 at the bottom of y-axis 

and 100% at top of y-axis. 
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Figure 2.16: Map of heat flow categories. The map depicts the categories of estimated heat flow rate used for categorical and 

smoothed posterior probability calculations in units of mW/m². The surface was interpolated from heat flow wells, depicted as 

small circles colored by their heat flow value. Warmer colors depict higher rates, cooler colors depict lower rates. Each 

category represents a portion of the entire range of estimated heat flow rate. Identified moderate and high temperature 

geothermal systems used as training sites are depicted as white pentagons.  
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2.5 Generating Smoothed Weights from Categorical Weights  

 

The ACCI tool is typically used at the end of a WofE analysis to assess conditional 

independence of layers within a multilayer model. It was used in this step of the analysis 

instead primarily for its ability to calculate the number of training sites an individual 

layer predicts. If an evidence layer is broken into categories and has categorical weights 

generated for those categories, the ACCI tool will always predict the exact number of 

training sites because the weights were calculated specifically to predict the number of 

training sites used. When smoothed weights are interpolated from categorical weights, 

there is a risk that the weights could over- or under-predict the number of training sites.  

The ACCI tool was used to monitor the training site prediction, thus working as a 

constraint on the type of curve fitting employed. A curve-fitting approach was ultimately 

selected for each evidence layer that came the closest to predicting the correct number of 

training sites while accurately characterizing trends in the data. 

 

To fit a function through categorical weights across the range of an evidence layer, the 

weights are the dependent variable and would be plotted on the y-axis of a figure. Initial 

attempts to fit a function using the native unit (heat flow, strain, or distance) as the 

independent variable as in Coolbaugh and Bedell (2006) consistently over-predicted the 

number of training sites.  It was found that by using cumulative area as the independent 

variable instead of native units, it was easier to develop smoothing curves that closely 

approximated the correct number of training sites. An exact estimate of the number of 

training sites is unlikely because it is nearly impossible to fit a perfect function (r² = 1.0) 

to data derived through the means described earlier of finding optimal categorical 

weights. If individual layers over or under-predict, those discrepancies will propagate 

through a multi-layer model. For that reason, small artificial modifications were made to 

the function that would result in exact predictions. 
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The process of ‘fitting by area’ initially involves plotting each categorical weight using 

its ‘area midpoint’ as the independent variable, plotted using ‘cumulative area’ as the 

quantity on the x-axis. When categorical weights are calculated using the ArcSDM tool, a 

table is generated that notes the spatial area associated with each category or bin. The 

area midpoint for each category was calculated by dividing its area by two and adding 

that value to the sum of the areas of all preceding categories. For example, the area 

midpoint of the first category was calculated by dividing the first category’s area by two. 

The second category was calculated by dividing its area by two, then adding that value to 

the area of the first category. Once an area midpoint was calculated for each category, the 

values were plotted, and a function was fit using cumulative area as the independent 

variable. Where convenient for visualization purposes, as will be seen shortly, the x-axis 

of area can be converted back to native units by using the relationship between 

cumulative area and native units present in the original predictive layer (e.g. the map of 

heat flow). 

 

These functions were used to modify the cumulative weight tables so they could be used 

to assign unique weights for every bin that was originally examined using the cumulative 

weight test. The heat flow data turned out to be the simplest example and will therefore 

be presented first, followed by strain rate and Quaternary faults. 

 

2.5.1 Heat Flow  

 

Of the four surfaces created to represent heat, the surface that estimated heat flow using 

the EBK interpolator performed best and was therefore used as the evidence layer 

representing heat. Figure 2.15 shows the categorical weights calculated for heat flow and 

shows native units on the x-axis, with categorical weights plotted at the midpoint for each 

bin. As heat flow declines, weights decline in a linear fashion. The red points in Figure 

2.15 (weight plotted by native unit) are depicted by the yellow points in Figure 2.17. 
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Figure 2.17 plots the weights on two different scales, one scale by heat flow and the other 

by equivalent cumulative area. The blue line in Figure 2.17 is a linear trendline fit 

through the yellow points (native unit midpoint) and has a high r² value of 0.9994. The 

green points (area midpoint) plot the same weight values at their area midpoint, a 

different location on the x-axis than the yellow points (native unit midpoint). The grey 

vertical lines on the plot represent the bin boundaries. The yellow points always fall 

exactly between the grey lines and plot edges. The green and yellow points appear very 

close to one another in the first three bins, in the fourth bin they do not. 
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Figure 2.17: Plot showing weight functions calculated for heat flow, displayed using native units as a linear independent 

variable. The y-axis depicts the weight (either positive or negative), the x-axis shows native units of heat flow in mW/m². The 

yellow points depict categorical weight values plotted at their native unit midpoint on the x-axis. The blue line is a linear 

trendline fit through the yellow points. The green points depict categorical weight values plotted at their area midpoint on the 

x-axis. The red line is a trendline through the green points which was fit ‘by area’ using the linear relationship shown on 

Figure 2.18. The grey vertical lines on the plot represent the bin boundaries. The purple line shows the modified fit that 

perfectly predicts the number of training sites. 
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The red line in Figure 2.17 depicts a trend in the green dots (area midpoint) fit by using 

area as the independent variable. This line does not appear linear when the x-axis is 

depicted in linear native units. However, plotting the green dots using linear cumulative 

area on the x-axis reveals a linear trend, as seen in Figure 2.18. Figure 2.18 shows how an 

equation was derived to ‘fit by area.’ The x-axis represents cumulative area. The figure 

shows the weights plotted by their area midpoint (green dots). A linear best-fit equation 

was applied to the green dots (r² = 0.9957), represented by the dotted red line. The dotted 

blue line depicts the smoothed weights derived from a linear fit with native units in 

Figure 2.17. When the linear trend derived ‘by native unit’ is plotted ‘by area,’ it appears 

curved.  
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Figure 2.18: Plot showing weight functions calculated for heat flow, displayed using cumulative area as the x-axis independent 

variable. The y-axis depicts the weight (either positive or negative), the x-axis shows cumulative area. The green points depict 

categorical weight values plotted at their area midpoint on the x-axis. The red line is a linear trendline fit through the green 

points. The grey vertical lines on the plot represent the bin boundaries. The purple line shows the modified fit that perfectly 

predicts the number of training sites.  
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When the area-smoothed heat flow layer using weights from the red line in Figure 2.17 

and Figure 2.18 was evaluated in the ACCI test, it performed well. 55 training sites were 

used in the analysis and the test predicted 55.7. By comparison, the linear fit derived 

using the native unit midpoints predicted 64.5 systems. The purple line in Figure 2.17 

was artificially modified to predict exactly 55 systems. It was lowered by the same 

amount for each bin to artificially produce an exact estimate. The purple and red lines are 

virtually indistinguishable on this figure. 

 

2.5.2 Strain Rate  

 

Figure 1.9 shows the categorical weights calculated for strain rate using native units on 

the x-axis, with weights plotted at the native unit midpoint. As strain rate declines, the 

weights decline in a non-linear fashion. The red points in Figure 1.9 (W+ plotted by 

native unit) are depicted by the yellow points in Figure 2.19. The blue line in Figure 2.19 

is a logarithmic trendline fit through the yellow points and has a high r² value of 0.9678. 

The logarithmic fit performed better than linear or polynomial approaches. The green 

points (area midpoint) depict the same weights plotted at their area midpoint, using the 

same procedure used above for heat flow. The grey vertical lines on the plot represent the 

bin boundaries. The yellow points always fall exactly halfway between the grey lines. 

The green and yellow points appear far apart in most bins, showing a significant disparity 

in approaches. The red line depicts a third-order polynomial trend in the green dots fit by 

using area as the independent variable. Figure 2.20 shows how an equation was derived 

to ‘fit by area.’ The x-axis represents linear cumulative area. The figure shows the 

weights plotted by their area midpoint (green dots). A third-order polynomial fit was 

applied to the green dots (r² = 0.9824), represented by the dotted red line. The dotted blue 

line depicts the same curve shown as Figure 2.19’s blue line, the logarithmic fit by native 

unit. 
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Figure 2.19: Plot showing weight functions calculated for strain rate, displayed using native units as independent variable. The 

y-axis depicts the weight (either positive or negative), the x-axis shows native units of the second invariant strain rate tensor in 

units of  𝟏𝟎−𝟗 /yr. The yellow points depict categorical weight values plotted at their native unit midpoint on the x-axis. The 

blue line is a logarithmic trendline fit through the yellow points. The green points depict categorical weight values plotted at 

their area midpoint on the x-axis. The red line is a 3rd order polynomial fit through the green points (see Figure 2.20). The grey 

vertical lines on the plot represent the bin boundaries. The purple line shows the modified fit that perfectly predicts the 

number of training sites.  
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Figure 2.20: Plot showing weight functions calculated for strain rate, displayed using cumulative area as independent variable. 

The y-axis depicts the weight (either positive or negative), the x-axis shows linear cumulative area. The green points depict 

categorical weight values plotted at their area midpoint on the x-axis. The red line is a 3rd order polynomial trendline fit 

through the green points. The grey vertical lines on the plot represent the bin boundaries. The purple line shows the modified 

fit that perfectly predicts the number of training sites. 
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When the ‘fit by area’ curve (red line/points in Figure 2.19, Figure 2.20) was tested in the 

ACCI test, it performed very well. 55 training sites were used in the analysis and the test 

predicted 55.1. By comparison, the logarithmic fit derived using the native unit midpoint 

predicted 51.7 systems. The purple line in Figure 2.19 was artificially modified to predict 

exactly 55 systems. It was lowered by the same amount for each bin to artificially 

produce an exact estimate. The purple and red lines are virtually indistinguishable on this 

figure. 

 

2.5.3 Quaternary Faults  

 

Smoothing of fault data was more challenging than it was for the prior examples of heat 

flow and strain rate. As described in earlier sections, using a binary threshold to 

recategorize fault distances yielded two points with which to fit a weight function. 

Ternary binning yielded three categories, thereby improving the characterization of a 

gradational relationship. Ternary binning was used for smoothing the two subsets of 

normal faults identified in descriptions of Figure 2.2 as having the strongest measured 

weights, subset 2.4 (Faults ‘Latest Quaternary’ and younger of all slip rates), and subset 

5.3 (Faults ‘Undifferentiated Quaternary’ and younger with slip rates equal to or greater 

than 0.2 mm/yr).  

 

2.5.3.1 Fault Subset 2.4 (‘Latest Quaternary’ and younger of all slip rates)  

 

Figure 2.21 shows weight values plotted by distance from faults (yellow dots) and 

weighted by area (green dots) using linear distance on the x-axis. The first bin used in the 

ternary classification was 0.75 km from a fault, the second bin was from 0.75 to 4.0 km 

from a fault.  Figure 2.22 shows the same data but applies a log transformation to the x-

axis. Here, the weights plotted by their native unit midpoint (yellow dots) can be used to 
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generate a fit (blue line) with a high r² value of 0.9785. This approach predicted 78 

systems, a very large overprediction of the actual 55 systems.  
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Figure 2.21: Plot showing weight functions calculated for Quaternary faults 2.4 subset (Age equal to or younger than ‘Latest 

Quaternary’, all slip rates), displayed using native units as independent variable with x-axis values increasing linearly. The y-

axis depicts W+, the x-axis shows native units, distance in km. The yellow points depict categorical weight values plotted at 

their native unit midpoint on the x-axis. The blue line is a linear trendline fit through the yellow points. The green points 

depict categorical weight values plotted at their area midpoint on the x-axis. The red line is a linear trendline fit through the 

green points derived from an analysis presented in Figure 2.23. The grey vertical lines on the plot represent the bin 

boundaries. The purple line shows the modified fit that perfectly predicts the number of training sites. 
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Figure 2.22: Plot showing weight functions calculated for Quaternary faults 2.4 subset (Age equal to or younger than ‘Latest 

Quaternary’, all slip rates), displayed using native units as independent variable with x-axis values increasing logarithmically. 

The y-axis depicts W+, the x-axis shows native units, distance in km which increases logarithmically. The yellow points depict 

categorical weight values plotted at their native unit midpoint on the x-axis. The blue line is a linear trendline fit through the 

yellow points. The green points depict categorical weight values plotted at their area midpoint on the x-axis. The red line is a 

linear trendline fit through the green points derived from an analysis presented in Figure 2.23. The grey vertical lines on the 

plot represent the bin boundaries. The purple line shows the modified fit that perfectly predicts the number of training sites.  
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Figure 2.23 shows how a function was fit by area. The red points and line represent the 

log function fit through the green points (weight plotted using area midpoint). It had a 

very high r² value of 0.997. It predicted 59.4 systems. This is a large overprediction, but it 

is much lower than the fit attempted using the native units (78 systems). The purple line 

shows results of lowering the function by a constant value to achieve a perfect prediction 

of 55 systems. 
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Figure 2.23: Plot showing weight functions calculated for Quaternary faults 2.4 subset (Age equal to or younger than ‘Latest 

Quaternary’, all slip rates), displayed using cumulative area as independent variable with x-axis values increasing 

logarithmically. The y-axis depicts W+, the x-axis shows cumulative area which increases logarithmically. The green points 

depict categorical weight values plotted at their area midpoint on the x-axis. The red line is a linear trendline fit through the 

green points. The grey vertical lines on the plot represent the bin boundaries. The purple line shows modified fit that perfectly 

predicts the number of training sites.  
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2.5.3.2 Fault Subset 5.3  (‘Undifferentiated Quaternary’ and younger with slip 

rates equal to or greater than 0.2 mm/yr)  

 

Figure 2.24 shows how a function was fit by area for fault subset 5.3 (Quaternary faults 

with known age with slip rates ≥ 0.2 mm/yr). The first bin used in the ternary 

classification was 0.75 km from a fault, the second bin was from 0.75 to 2.5 km from a 

fault. The red points and line represent the log function fit through the green points (W+ 

by area midpoint). It had a high r² value of 0.9742. It predicted 63.3 systems. The purple 

line shows results of lowering the function by a constant value to achieve a perfect 

prediction of 55 systems. No estimates were calculated using native units, it would 

certainly have estimated more systems than the ‘by area’ approach. This can be seen in 

Figure 2.24; lowering the red line to the purple line resulted in (63.3 – 55 =) 8.3 fewer 

systems. The blue line is higher than the red line nearly everywhere, and therefore would 

predict many more systems than the ‘by area’ approach. 
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Figure 2.24: Plot showing weight functions calculated for Quaternary faults 5.3 subset (Age equal to or younger than 

‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 mm/yr), displayed using cumulative area as 

independent variable with x-axis values increasing logarithmically. The y-axis depicts W+, the x-axis shows cumulative area 

which increases logarithmically. The green points depict categorical weight values plotted at their area midpoint on the x-axis. 

The red line is a linear trendline fit through the green points. The grey vertical lines on the plot represent the bin boundaries. 

The purple line shows modified fit that perfectly predicts the number of training sites. 
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2.6 Posterior Probability Calculations  

 

Posterior probability maps were generated using the “Calculate Response’ tool in 

ArcSDM. Posterior probability maps depict the probability of occurrence of a geothermal 

system, based on the prior probability and on the weights calculated for each of the input 

evidence maps as per Equation 1-5. 

 

A total of fourteen different posterior probability maps were generated that each used a 

unique combination of the three evidence layers with either measured categorical weights 

or the smoothed weights fit by area. Conditional independence tests were run on each 

scenario to see the degree to which they correctly predicted the number of training sites 

and to test whether each scenario’s layers were conditionally independent with respect to 

each other. By comparing similar scenarios, judgements could be made as to which layers 

are conditionally dependent with which others, and to compare the performance of 

smoothed weights relative to multiple categorical weights. 
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3.0 Results 

 

This section first reports a summary of all the evidence layers that were explored in the 

process of selecting the three evidence layers chosen for use in the final favorability 

maps. Next, categorical weights and associated statistics are reported for the three 

evidence layers. The next section details the findings while calculating smoothed weights 

from categorical weights. Then results of tests that assessed the smoothing process were 

presented. Next, results of tests that assessed how accurately multilayer models predict 

were presented. Finally, a series of maps are presented to show the full variety of model 

combinations produced. 

 

3.1 Review of Evidence Data  

 

Data depicting distance from Quaternary faults, crustal heat flow, and geodetic strain rate 

were chosen as sources of evidence data for modeling posterior probability in the present 

study. These layers are summarized in Table 3.1, which shows all approaches attempted 

on all layers examined in the study. 
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Evidence Layer Approach Used 

Strain Rate Categorical, Smoothed Yes 

Heat Flow 

Empirical Bayesian Kriging; Categorical, 

Smoothed Yes 

Heat Flow Radial Basis Function; Categorical No 

Temperature at 3 

km 

Empirical Bayesian Kriging (heat flow); 

Categorical No 

Temperature at 3 

km Radial Basis Function (heat flow); Categorical No 

Faults 

Normal Subsets By Distance; Categorical, 

Smoothed Yes 

Faults All Sense Subsets of TD By Distance No 

Faults Simple Density Dilation Tendency No 

Faults Simple Density Slip Tendency No 

Faults Kernel Density Dilation Tendency No 

Faults Kernel Density Slip Tendency No 

Faults Distance Dilation Tendency No 

Earthquakes 'Log of Sum of Moment' Simple Density No 

Earthquakes 'Log of Sum of Moment' Kernel Density No 
 

Table 3.1: Evidence layer approach table:  The ‘Evidence Layer’ column refers to the data used to create each evidence 

layer/approach pair tested in WofE analysis. The ‘Approach’ column describes the geographic techniques applied to each 

evidence layer/approach pair. ‘Used’ shows if each evidence layer/approach pair was used in this analysis (Blue) or not used 

(Orange) to calculate posterior probability. 
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3.2 Categorical Weight Results  

 

Categorical weight test results are reported in tables that list each weight’s range of native 

units, area, training point count, weight, and standard deviation of the weight for heat 

flow (Table 3.2) and strain rate (Table 3.3). Similar tables for fault subset 2.4 (Table 3.4), 

and fault subset 5.3 (Table 3.5) also included columns indicating contrast and studentized 

contrast. These weights were used to calculate posterior probability using the traditional 

WofE approach. 
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Category Heat Flow 

Range 

(mW/m²) 

Area 

(km²) 

# Training 

Points 

Weight SD 

Weight 

1 109 ≤ x ˂ 122 39,285 22 1.07 0.21 

2 98 ≤ x ˂ 109 44,662 15 0.56 0.26 

3 91 ≤ x ˂ 98 47,062 10 0.10 0.32 

4 34 ≤ x ˂ 91 155,200 8 -1.32 0.35 
 

Table 3.2: Heat flow categorical weights: From left to right, columns represent for each category: a weight ID number, the 

range of native units represented, the area occupied in km², the number of training points, W+, standard deviation of W+, and 

studentized contrast. 

 

Category Strain Rate 

Range (10−9) /yr 

Area 

(km²) 

# Training 

Points 

Weight SD 

Weight 

1 84 ≤ x ˂ 233 3,621 3 1.46 0.58 

2 45 ≤ x ˂ 84 16,073 8 0.95 0.35 

3 27 ≤ x ˂ 45 23,822 10 0.78 0.32 

4 20 ≤ x ˂ 27 24,112 8 0.55 0.35 

5 10 ≤ x ˂ 20 30,425 6 0.03 0.41 

6 3 ≤ x ˂ 10 114,890 14 -0.46 0.27 

7 0 ≤ x ˂ 3 73,265 6 -0.85 0.41 
 

Table 3.3: Strain rate categorical weights: From left to right, columns represent for each category: a weight ID number, the 

range of native units represented, the area occupied in km², the number of training points, W+, standard deviation of W+, and 

studentized contrast. 
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Binary 

(Max 

Contrast) 

Distance 

Range 

(km) 

Area 

(km²) 

# 

Training 

Points 

Weight SD 

Weight 

Stud. 

Contrast 

Contras

t 

1 0 ˂ x ≤ 

0.25 

3,005 7 2.50 0.38 6.48 2.62 

2 0.25 ˂ x 

≤ 125 

283,204 48 -0.13 0.14 -6.48 -2.62 

Binary 

(Max 

Studentized

)  

Distance 

Range 

(km) 

Area 

(km²) 

# 

Training 

Points 

Weight SD 

Weight 

Stud. 

Contrast 

Contras

t 

1 0 ˂ x ≤ 

1.0 

8,310 13 2.10 0.28 7.36 2.34 

2 1.0 ˂ x 

≤ 125 

277,898 42 -0.24 0.15 -7.36 -2.34 

Ternary Distance 

Range 

(km) 

Area 

(km²) 

# 

Training 

Points 

Weight SD 

Weight 

Stud. 

Contrast 

Contras

t 

1 0 ˂ x ≤ 

0.75 

6,617 11 2.16 0.30 6.99 2.36 

2 0.75 ˂ x 

≤ 4.0 

23,013 11 0.91 0.30 3.12 1.05 

3 4.0 ˂ x 

≤ 125 

256,579 33 -0.40 0.17 -6.37 -1.75 

 

Table 3.4: Faults 2.4 (‘latest Quaternary’ and younger, all slip rates) categorical weights: From left to right, columns represent 

for each category: a weight ID number, the range of native units represented, the area occupied in km², the number of training 

points, W+, standard deviation of W+, and studentized contrast. Statistics are presented for the binary binning threshold with 

maximum contrast, the binary binning threshold with maximum studentized contrast, and the ternary binning threshold. 
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Binary 

(Max 

Contrast) 

Distance 

Range 

(km) 

Area 

(km²) 

# 

Training 

Points 

Weigh

t 

SD 

Weigh

t 

Stud. 

Contras

t 

Contras

t 

1 0 ˂ x ≤ 

0.25 

1,771 7 3.03 0.38 7.79 3.16 

2 0.25 ˂ x ≤ 

294 

284,43

8 

48 -0.13 0.14 -7.79 -3.16 

Binary 

(Max 

Studentized

)  

Distance 

Range 

(km) 

Area 

(km²) 

# 

Training 

Points 

Weigh

t 

SD 

Weigh

t 

Stud. 

Contras

t 

Contras

t 

1 0 ˂ x ≤ 1.0 4,338 11 2.58 0.30 8.27 2.79 

2 1.0 ˂ x ≤ 

294 

281,87

1 

44 -0.21 0.15 -8.27 -2.79 

Ternary Distance 

Range 

(km) 

Area 

(km²) 

# 

Training 

Points 

Weigh

t 

SD 

Weigh

t 

Stud. 

Contras

t 

Contras

t 

1 0 ˂ x ≤ 0.5 2,653 8 2.76 0.35 7.58 2.90 

2 0.5 ˂ x ≤ 

4.0 

4,705 4 1.49 0.50 2.98 1.55 

3 4.0 ˂ x ≤ 

294 

278,85

1 

43 -0.22 0.15 -7.22 -2.36 

 

Table 3.5: Faults 5.3 (‘undifferentiated Quaternary’ and younger, slip rates ≥ 0.2 mm/yr) categorical weights: From left to 

right, columns represent for each category: a weight ID number, the range of native units represented, the area occupied in 

km², the number of training points, W+, standard deviation of W+, and studentized contrast. Statistics are presented for the 

binary binning threshold with maximum contrast, the binary binning threshold with maximum studentized contrast, and the 

ternary binning threshold.  
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3.3 Functions Fit by Area  

 

All functions used to calculate gradational (smoothed) weights use cumulative area as the 

independent variable. Cumulative area is reported in the original cumulative weight table 

by the ArcSDM tool. 

 

3.3.1 Heat Flow 

 

Figure 2.18 plots cumulative area on the x-axis and shows a linear function (red points 

and line) fit through categorical W+ values plotted by their ‘area midpoint’ (green 

points). This function over-predicted the number of training sites by 0.7 systems. The 

equation calculated was: 

 

𝑊𝑒𝑖𝑔ℎ𝑡 = (−12604.2636246792 ∗ Area) + 1.35529093731054; 𝑟2  

=  0.9957     (3 − 1) 

 

The following modified function predicts the correct number of training sites: 

 

𝑊+ = (−12604.2636246792 ∗ Area) + 1.3420     (3 − 2) 

 

𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 109 

 

To use these functions in a different geographic region, heat flow would need to be used 

as the independent variable. To provide a way to use heat flow to predict weights, a 

function was fit between heat flow and cumulative area. These equations were generated 

using heat flow values that ranged approximately between 40 – 120 mW/m²; they are 

therefore only valid for converting heat flow values within that range. The following fifth 
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order polynomial function did well providing a conversion between native units and 

cumulative area: 

 

𝐴𝑟𝑒𝑎 = (−0.000693899588288 ∗ 𝐻𝐹5)  + (0.294208771652126 ∗ 𝐻𝐹4)  

− (46.8680126599787 ∗ 𝐻𝐹3)  + (3,438.58527075588 ∗ 𝐻𝐹2)  

− (116991.862789404 ∗ 𝐻𝐹)  +  1,777,327.48529318; 𝑟2

= 0.9992     (3 − 3) 

 

𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 ; 

𝐻𝐹 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑓𝑙𝑜𝑤 𝑖𝑛 𝑚𝑊/𝑚2 

 

3.3.2 Strain Rate 

 

Figure 2.20 plots cumulative area on the x-axis and shows a third-order polynomial 

function (red points and line) fit through categorical weight values plotted by their ‘area 

midpoint’ (green points). This function over-predicted the number of training sites by 0.1 

systems. The equation calculated was: 

 

𝑊𝑒𝑖𝑔ℎ𝑡 = (−0.118435239069701 ∗ 𝐴𝑟𝑒𝑎3) + (0.784909048939455 ∗ 𝐴𝑟𝑒𝑎2)

− (2.113741868168450 ∗ 𝐴𝑟𝑒𝑎) + 1.374329871373890; 𝑟2

= 0.9824     (3 − 4) 

 

The following modified function predicts the correct number of training sites: 

 

𝑊𝑒𝑖𝑔ℎ𝑡 = (−0.118435239069701 ∗ 𝐴𝑟𝑒𝑎3) + (0.784909048939455 ∗ 𝐴𝑟𝑒𝑎2)

− (2.113741868168450 ∗ 𝐴𝑟𝑒𝑎) + 1.3725     (3 − 5) 

 

𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 105 
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To use these functions in a different geographic region, strain rate would need to be used 

as the independent variable. To provide a way to use strain rate to predict weights, a 

function was fit between strain rate and cumulative area. These equations were generated 

using strain rate values that ranged approximately between 0 – 212 10−9 /yr; they are 

therefore only valid for converting strain rate values within that range. The following 

exponential function did well providing a conversion between native units and 

cumulative area: 

 

𝐴𝑟𝑒𝑎 =  136419.491338333 ∗ 𝑒−0.043507263595984∗𝑆𝑡𝑟𝑎𝑖𝑛;  𝑟2 = 0.9886     (3 − 6) 

 

𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 ; 

𝑆𝑡𝑟𝑎𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒 𝑖𝑛 

2𝑛𝑑 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒 𝑡𝑒𝑛𝑠𝑜𝑟 (10 − 9/𝑦𝑟)  

 

3.3.3 Fault Subset 2.4 (‘Latest Quaternary’ and Younger of All Slip Rates)  

 

Figure 2.23 plots cumulative area on the x-axis and shows a logarithmic function (red 

points and line) fit through ternary categorical weight values plotted by their ‘area 

midpoint’ (green points). This function overpredicted the number of training sites by 4.4 

systems. The equation calculated was: 

 

𝑊+ = (−0.659945933421018 ∗ ln  (𝐴𝑟𝑒𝑎)) − 0.135379493730506; 𝑟2

=  0.997     (3 − 7) 

 

The following modified function predicts the correct number of training sites: 

 

𝑊+ = (−0.659945933421018 ∗ ln (𝐴𝑟𝑒𝑎)) − 0.212     (3 − 8) 
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𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 105 

 

To use these functions in a different geographic region, distance to the fault would need 

to be used as the independent variable. To provide a way to use distance to the fault to 

predict weights, a function was fit between distance to the fault and cumulative area. 

These equations were generated using distance to the fault values that ranged 

approximately between 0 - 240 km; they are therefore only valid for converting distance 

to the fault values within that range. The following sixth order polynomial function 

seemed to do well providing a conversion between native units and cumulative area: 

 

𝐴𝑟𝑒𝑎 = (0.000000790047029 ∗ 𝐷𝑖𝑠𝑡6) − (0.000326639118518 ∗ 𝐷𝑖𝑠𝑡5)

+ (0.051030997043967 ∗ 𝐷𝑖𝑠𝑡4) − (3.428770898797550 ∗ 𝐷𝑖𝑠𝑡3)

+ (38.555560768598000 ∗ 𝐷𝑖𝑠𝑡2) + (7012.46373696272 ∗ 𝐷𝑖𝑠𝑡)  

+  1,033.52639986356; 𝑟2 = 1.0     (3 − 9) 

 

𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 ; 

𝐷𝑖𝑠𝑡 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎 𝑓𝑎𝑢𝑙𝑡 𝑖𝑛 𝑘𝑚 

 

3.3.4 Fault Subset 5.3 (‘Undifferentiated Quaternary’ and Younger with Slip 

Rates Equal to or Greater Than 0.2 mm/yr) 

 

Figure 2.24 plots cumulative area on the x-axis and shows a logarithmic function (red 

points and line) fit through ternary categorical weight values plotted by their ‘area 

midpoint’ (green points). This function overpredicted the number of training sites by 4.4 

systems. The equation calculated was: 

 



115 

 

𝑊+ = (−0.607483309885314 ∗ ln (𝐴𝑟𝑒𝑎))  +  6.931121975694720; 𝑟2

=  0.9742     (3 − 10) 

 

The following modified function predicts the correct number of training sites: 

 

𝑊+ = (−0.607483309885314 ∗ ln  (𝐴𝑟𝑒𝑎)) +  6.79     (3 − 11) 

 

𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 

 

To use these functions in a different geographic region, distance to the fault would need 

to be used as the independent variable. To provide a way to use distance to the fault to 

predict weights, a function was fit between distance to the fault and cumulative area. 

These equations were generated using distance to the fault values that ranged 

approximately between 0 - 240 km; they are therefore only valid for converting distance 

to the fault values within that range. The following fourth order polynomial function 

seemed to do well providing a conversion between native units and cumulative area: 

 

𝐴𝑟𝑒𝑎 = (−0.00007591509007 ∗ 𝐷𝑖𝑠𝑡4) + (0.055895867869941 ∗ 𝐷𝑖𝑠𝑡3)

− (18.244881994546700 ∗ 𝐷𝑖𝑠𝑡2) + (3393.93506971629 ∗ 𝐷𝑖𝑠𝑡)

−  1342.97973891707; 𝑟2 = 0.9999     (3 − 12) 

 

𝐼𝑛 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 𝐴𝑟𝑒𝑎 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 ; 

𝐷𝑖𝑠𝑡 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎 𝑓𝑎𝑢𝑙𝑡 𝑖𝑛 𝑘𝑚 

 

3.4 Review of Fitting Individual Layers by Area  

 

The 'fit by area' approach appeared to work very well with heat flow (overprediction of 

0.7 systems) and strain rate (overprediction of 0.1 systems) but not as well with faults 
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(overprediction of 4.4 systems with 2.4 subset, overprediction of 8.3 systems with 5.3 

subset). For continuously varying phenomena such as heat flow and strain rate data, the 

‘fit by area’ approach was able to generate gradational weight values that closely 

predicted the number of training sites, indicating that the technique can distribute weights 

in a way that does not overpredict within a layer. 

 

The fit by area approach however did not work as well examining distance from fault 

layers, which unlike heat flow and strain rate is non-continuous. All attempts to fit 

distance from faults by area resulted in modest overpredictions in training site count (by 

approximately 8 to 15%). Only three categorical weights could be generated for a 

distance-based layer because only very local distance ranges correlated with geothermal 

systems. One weight could be generated from distances within 1 km. A second threshold 

was obtainable within the 2.5 – 4 km range. No additional positive weight categories 

could be produced, apparently because faults do not contribute to permeability beyond 

some critical distance, most likely less than 5 km. The third weight in any ternary binning 

would therefore represent a very large portion of the total area, over 90% of the total area 

for both the 2.4 and 5.3 subset. This likely causes any fit line to be sensitive to the third 

weight, magnifying the impact of its associated uncertainty. 

 

3.5 Multilayer Analysis Conditional Independence Testing 

 

Conditional dependencies between layers typically cause weights-of-evidence-derived 

posterior probability maps to overpredict the number of training sites (Bonham-Carter, 

1994). Table 3.6 shows the number of training sites over-predicted by a series of 

posterior probability models (maps). Each of these maps are based on a unique 

combination of the above described evidence layers in either categorical weight format or 

smoothed weight format. 
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Fault Method 

Strain & 

Heat: 

Multiclass 

Categorical 

Heat: 

Multiclass 

Categorical 

(No Strain) 

Strain: 

Multiclass 

Categorical 

(No Heat) 

Strain & 

Heat: 

Smoothed 

By Area 

Heat: 

Smoothed 

By Area 

(No 

Strain) 

Strain: 

Smoothed 

By Area 

(No Heat) 

2.4 Faults Binary 

250m 1.6 1 3 1.4 1 3.3 

2.4 Faults Binary 1 

km 5.2 1.9 5.5 5.2     

2.4 Faults Ternary 

Categorical 9.1 2.7 8.2 9.3     

2.4 Smoothed By 

Area (Ternary)       12.5 3 11.2 

       
5.3 Faults Binary 

250m 5.2     4.7     

5.3 Faults Binary 1 

km 7.6     7.4     

5.3 Faults Ternary 

Categorical 8.7     8     

5.3 Smoothed By 

Area (Ternary)       14.3     

       

No Faults -2.7     -3     

 

Table 3.6: Conditional independence overprediction results table: The table reports the number of training sites each 

multilayer posterior probability model overpredicted by. Fifty-five training sites were used in the model. Rows represent 

different fault subsets or techniques, blue cells represent categorical models, and green cells represent smoothed models. 

Three-layer models using categorical continuous data are depicted with red text. Three-layer models using smoothed 

continuous data are depicted with purple text. 
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The rows in Table 3.6 represent different subsets of the normal faults layer. The first 

group (2.4) is the fault subset seen outlined in blue in Figure 2.2 on the lower left side 

and in the map Figure 1.3. They represent the two youngest groups of normal faults 

(‘Historic’ and ‘Latest Quaternary’) with no consideration of their slip rate. The second 

group of rows in Table 3.6 show the 5.3 subset, seen outlined in blue in Figure 2.2 on the 

upper right side and in the map Figure 1.4. They represent all normal faults of known 

Quaternary ages with slip rates equal to or greater than 0.2 mm/yr. The bottom row 

shows maps produced without faults. 

 

The columns in Table 3.6 show whether strain rate or heat flow data were included in a 

map and whether the weights were derived categorically (blue) or smoothed (fit by area 

(green)). Weights derived by area (green) used functions that were manually adjusted to 

predict the exact number of training sites to avoid overpredictions from propagating 

through a multilayer model. The columns with darker shading use both heat flow and 

strain rate, the columns with lighter shading use only one layer. 

 

A basic check for whether overpredictions are significant is a simple ratio of actual 

divided by predicted number of training sites (Bonham-Carter, 1994). Table 3.7 shows 

the conditional independence ratio for each model. The conditional independence ratio is 

a simple guide to assess conditional independence. The test used to calculate these 

values, the ArcSDM ACCI test states:  
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Fault Method 

Strain & 

Heat: 

Multiclass 

Categorical 

Heat: 

Multiclass 

Categorical 

(No Strain) 

Strain: 

Multiclass 

Categorical 

(No Heat) 

Strain & 

Heat: 

Smoothed 

By Area 

Heat: 

Smoothed 

By Area 

(No 

Strain) 

Strain: 

Smoothed 

By Area 

(No Heat) 

2.4 Faults Binary 

250m 0.972 0.982 0.948 0.975 0.982 0.943 

2.4 Faults Binary 1 

km 0.914 0.967 0.909 0.914     

2.4 Faults Ternary 

Categorical 0.858 0.953 0.870 0.855     

2.4 Smoothed By 

Area (Ternary)       0.815 0.948 0.831 

       
5.3 Faults Binary 

250m 0.914     0.921     

5.3 Faults Binary 1 

km 0.879     0.881     

5.3 Faults Ternary 

Categorical 0.863     0.873     

5.3 Smoothed By 

Area (Ternary)       0.794     

       

No Faults 1.052     1.058     

 

Table 3.7: Conditional independence ratio table: The table reports the number of training sites each multilayer posterior 

probability model predicted divided by the actual number of training sites. Fifty-five training sites were used in the model. 

Rows represent different fault subsets or techniques, blue cells represent categorical models, and green cells represent 

smoothed models. Three-layer models using categorical continuous data are depicted with red text. Three-layer models using 

smoothed continuous data are depicted with purple text. 
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‘Values below 1.00 may indicate conditional dependence among two or more of your 

data sets. Bonham-Carter, 1994 suggest that values < 0.85 may indicate a problem.’ 

 

Nearly all the tests in Table 3.7 have ratios greater than 0.85. The only tests that do not 

meet that standard use a faults layer that was fit by area. For this reason, it was decided 

that the fit by area approach did not as work well with the fault layers but could still be 

useful for demonstrating relative favorability. 

 

The ACCI tool also runs the ‘Agterberg & Cheng Conditional Independence Test.’ This 

uses a 1-tailed test to calculate the probability that the inaccuracy in prediction of number 

of training sites is not due to chance alone. Table 3.8 shows those values for some 

models. Any ACCI test result below 95% is considered acceptable. The test never returns 

a result below 50%. Most of the calculated values are in the 60 – 85 % range and are 

considered good.  
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Fault Method 

Strain & 

Heat: 

Multiclass 

Categorical 

Heat: 

Multiclass 

Categorical 

(No Strain) 

Strain: 

Multiclass 

Categorical 

(No Heat) 

Strain & 

Heat: 

Smoothed 

By Area 

Heat: 

Smoothed 

By Area 

(No 

Strain) 

Strain: 

Smoothed 

By Area 

(No Heat) 

2.4 Faults Binary 

250m 62.6% 63.9% 64.9% 60.9%     

2.4 Faults Binary 1 

km 85.3% 59.4% 76.4% 85.0%     

2.4 Faults Ternary 

Categorical 97.7% 64.8% 88.1% 97.9%     

2.4 Smoothed By 

Area (Ternary)             

       
5.3 Faults Binary 

250m 81.5%     72.3%     

5.3 Faults Binary 1 

km 90.6%     83.2%     

5.3 Faults Ternary 

Categorical 94.3%     87.5%     

5.3 Smoothed By 

Area (Ternary)             

       

No Faults 30.5%     0.0%     

 

Table 3.8: Agterberg-Cheng Conditional Independence Test results table: The table reports the ACCI, which uses a 1-tailed 

test to calculate the probability that the inaccuracy in prediction of number of training sites is not due to chance alone for each 

multilayer model. Rows represent different fault subsets or techniques, blue cells represent categorical models, and green cells 

represent smoothed models. Three-layer models using categorical continuous data are depicted with red text. Three-layer 

models using smoothed continuous data are depicted with purple text.  
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3.5.1 Conditional Independence Using Different Fault Layers  

 

A basic trend was observed in Table 3.6 and in all the other conditional independence 

tables. Models using faults consistently overpredicted the least when using the smallest 

distance threshold, 250 m. The 1 km model overpredicted more than the 250 m model. 

The ternary model always predicted more than the 1 km model. The fit by area always 

predicted more than the ternary. This appears to be because the smaller areas covered in 

the models with the smaller thresholds caused less conditional dependence with other 

layers (strain rate mainly) despite having higher weight values. 

 

3.5.2 Conditional Independence Between Layer Pairs  

 

Conditional dependencies between strain rate and faults are the cause for most of the 

overpredictions. In Table 3.6, as larger thresholds are used with faults, models only using 

strain rate overpredicted more than models that only used heat flow. For example, a 

model overpredicted by 9.1 systems that used ternary 2.4 faults with categorical strain 

rate and heat flow. Removing heat flow and only using faults and strain led to 

overpredictions of 8.2, whereas removing strain rate and only using faults and heat flow 

the model overpredicted by 2.7 systems. 

 

The bottom row of Table 3.6 shows models generated without faults, using only strain 

rate and heat flow. These models slightly underpredicted the number of training sites. 

Table 3.6 shows that heat flow and faults have low conditional dependencies. In models 

without strain, overpredictions are low between heat flow and all categorical fault layers. 

 

3.5.3 Conditional Independence Between Categorical & Smooth Models 
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The models that use strain rate and heat flow fit by area predict almost exactly the same 

number of systems predicted in categorical tests. This can be seen in Table 3.6; as the 

row changes (different fault technique), the red numbers (categorical heat flow and strain 

rate) and purple numbers (smoothed heat flow and strain rate) are nearly identical. The 

layers that were individually fit by area perform nearly identically to categorical weights 

in multilayer analyses. This indicates that evidence layers created using the fit by area 

approach can be used in place of categorical layers without significantly altering overall 

conditional independence within a model. 

 

3.6 Maps  

 

A map was produced for each probability model that utilized faults for both categorical 

and smoothed depictions of heat flow and strain rate (Figure 3.1 to Figure 3.14). Maps 

display the posterior probability divided by the prior probability and show the number of 

times more or less likely of finding a geothermal system based on chance alone. Warmer 

colors indicate ‘more likely’ relative to the cooler colors that represent ‘less likely.’ 
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Figure 3.1: Geothermal favorability map using categorical weights for heat flow, strain rate, and a binary 250-meter buffer on 

the 2.4 fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). The map surface shows the posterior 

probability divided by the prior probability and can thus be interpreted as ‘the number of times more likely one would 

encounter a geothermal system than due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict lower 

likelihoods. Layers used in this map include: categorical weights for heat flow, strain rate, and a binary 250-meter buffer on 

the 2.4 fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). Identified moderate and high 

temperature geothermal systems used as training sites are depicted as green circles. 



125 

 

 

Figure 3.2: Geothermal favorability map using categorical weights for heat flow, strain rate, and a binary 1-km buffer on the 

2.4 fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). The map surface shows the posterior 

probability divided by the prior probability and can thus be interpreted as ‘the number of times more likely one would 

encounter a geothermal system than due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict lower 

likelihoods. Layers used in this map include: categorical weights for heat flow, strain rate, and a binary 1-km buffer on the 2.4 

fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). Identified moderate and high temperature 

geothermal systems used as training sites are depicted as green circles. 
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Figure 3.3: Geothermal favorability map using categorical weights for heat flow, strain rate, and ternary buffers on the 2.4 

fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). The map surface shows the posterior 

probability divided by the prior probability and can thus be interpreted as ‘the number of times more likely one would 

encounter a geothermal system than due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict lower 

likelihoods. Layers used in this map include: categorical weights for heat flow, strain rate, and ternary buffers on the 2.4 fault 

subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). Identified moderate and high temperature 

geothermal systems used as training sites are depicted as green circles. 
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Figure 3.4: 

Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, and a binary 250-meter buffer on the 2.4 

fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). The map surface shows the posterior 

probability divided by the prior probability and can thus be interpreted as ‘the number of times more likely one would 

encounter a geothermal system than due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict lower 

likelihoods. Layers used in this map include: weights fit ‘by area’ for heat flow, strain rate, and a binary 250-meter buffer on 

the 2.4 fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). Identified moderate and high 

temperature geothermal systems used as training sites are depicted as green circles. 
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Figure 3.5: 

Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, and a binary 1-km buffer on the 2.4 fault 

subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). The map surface shows the posterior probability 

divided by the prior probability and can thus be interpreted as ‘the number of times more likely one would encounter a 

geothermal system than due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict lower likelihoods. 

Layers used in this map include: weights fit ‘by area’ for heat flow, strain rate, and a binary 1km buffer on the 2.4 fault subset 

(Age equal to or younger than ‘Latest Quaternary’, all slip rates). Identified moderate and high temperature geothermal 

systems used as training sites are depicted as green circles. 
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Figure 3.6: Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, and ternary buffers on the 2.4 

fault subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). The map surface shows the posterior 

probability divided by the prior probability and can thus be interpreted as ‘the number of times more likely one would 

encounter a geothermal system than due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict lower 

likelihoods. Layers used in this map include: weights fit ‘by area’ for heat flow, strain rate, and ternary buffers on the 2.4 fault 

subset (Age equal to or younger than ‘Latest Quaternary’, all slip rates). Identified moderate and high temperature 

geothermal systems used as training sites are depicted as green circles. 
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Figure 3.7: Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, the 2.4 fault subset (Age equal to 

or younger than ‘Latest Quaternary’, all slip rates). The map surface shows the posterior probability divided by the prior 

probability and can thus be interpreted as ‘the number of times more likely one would encounter a geothermal system than 

due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict lower likelihoods. Layers used in this map 

include: weights fit ‘by area’ for heat flow, strain rate, and the 2.4 fault subset (Age equal to or younger than ‘Latest 

Quaternary’, all slip rates). Identified moderate and high temperature geothermal systems used as training sites are depicted 

as green circles. 
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Figure 3.8: Geothermal favorability map using categorical weights for heat flow, strain rate, and a binary 250-meter buffer on 

the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 

mm/yr). The map surface shows the posterior probability divided by the prior probability and can thus be interpreted as ‘the 

number of times more likely one would encounter a geothermal system than due to chance alone.’ Warmer colors depict 

higher likelihoods, cooler colors depict lower likelihoods. Layers used in this map include: categorical weights for heat flow, 

strain rate, and a binary 250-meter buffer on the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ 

and slip rate equal to or younger than 1.0 mm/yr). Identified moderate and high temperature geothermal systems used as 

training sites are depicted as green circles. 
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Figure 3.9: Geothermal favorability map using categorical weights for heat flow, strain rate, and a binary 1-km buffer on the 

5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 

mm/yr). The map surface shows the posterior probability divided by the prior probability and can thus be interpreted as ‘the 

number of times more likely one would encounter a geothermal system than due to chance alone.’ Warmer colors depict 

higher likelihoods, cooler colors depict lower likelihoods. Layers used in this map include: categorical weights for heat flow, 

strain rate, and a binary 1-km buffer on the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and 

slip rate equal to or younger than 1.0 mm/yr). Identified moderate and high temperature geothermal systems used as training 

sites are depicted as green circles. 
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Figure 3.10: Geothermal favorability map using categorical weights for heat flow, strain rate, and ternary buffers on the 5.3 

fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 mm/yr). 

The map surface shows the posterior probability divided by the prior probability and can thus be interpreted as ‘the number 

of times more likely one would encounter a geothermal system than due to chance alone.’ Warmer colors depict higher 

likelihoods, cooler colors depict lower likelihoods. Layers used in this map include: categorical weights for heat flow, strain 

rate, and ternary buffers on the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate 

equal to or younger than 1.0 mm/yr). Identified moderate and high temperature geothermal systems used as training sites are 

depicted as green circles. 
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Figure 3.11: Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, and a binary 250-meter buffer 

on the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 

mm/yr). The map surface shows the posterior probability divided by the prior probability and can thus be interpreted as ‘the 

number of times more likely one would encounter a geothermal system than due to chance alone.’ Warmer colors depict 

higher likelihoods, cooler colors depict lower likelihoods. Layers used in this map include: weights fit ‘by area’ for heat flow, 

strain rate, and a binary 250-meter buffer on the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ 

and slip rate equal to or younger than 1.0 mm/yr). Identified moderate and high temperature geothermal systems used as 

training sites are depicted as green circles. 
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Figure 3.12: Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, and a binary 1-km buffer on 

the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 

mm/yr). The map surface shows the posterior probability divided by the prior probability and can thus be interpreted as ‘the 

number of times more likely one would encounter a geothermal system than due to chance alone.’ Warmer colors depict 

higher likelihoods, cooler colors depict lower likelihoods. Layers used in this map include: weights fit ‘by area’ for heat flow, 

strain rate, and a binary 1 km buffer on the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and 

slip rate equal to or younger than 1.0 mm/yr). Identified moderate and high temperature geothermal systems used as training 

sites are depicted as green circles. 
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Figure 3.13: Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, and ternary buffers on the 5.3 

fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 mm/yr). 

The map surface shows the posterior probability divided by the prior probability and can thus be interpreted as ‘the number 

of times more likely one would encounter a geothermal system than due to chance alone.’ Warmer colors depict higher 

likelihoods, cooler colors depict lower likelihoods. Layers used in this map include: weights fit ‘by area’ for heat flow, strain 

rate, and ternary buffers on the 5.3 fault subset (Age equal to or younger than ‘undifferentiated Quaternary’ and slip rate 

equal to or younger than 1.0 mm/yr). Identified moderate and high temperature geothermal systems used as training sites are 

depicted as green circles. 
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Figure 3.14: Geothermal favorability map using weights fit ‘by area’ for heat flow, strain rate, the 5.3 fault subset (Age equal 

to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 mm/yr). The map surface shows 

the posterior probability divided by the prior probability and can thus be interpreted as ‘the number of times more likely one 

would encounter a geothermal system than due to chance alone.’ Warmer colors depict higher likelihoods, cooler colors depict 

lower likelihoods. Layers used in this map include: weights fit ‘by area’ for heat flow, strain rate, and the 5.3 fault subset (Age 

equal to or younger than ‘undifferentiated Quaternary’ and slip rate equal to or younger than 1.0 mm/yr). Identified 

moderate and high temperature geothermal systems used as training sites are depicted as green circles.  
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4.0 Discussion 

 

The present study sought to estimate geothermal potential in Nevada by applying 

geographic and mathematical techniques informed by prior geothermal assessments. 

Geologic processes that drive hydrothermal systems were modeled by systematically 

transforming raw geologic data into layers that best represent their contributions to 

geothermal activity. Potentially relevant data were examined, sometimes using multiple 

processing techniques. Evidence data and processing approaches with the most useful 

correlations were used to create maps depicting favorability. Automated programming 

techniques were developed and applied to assist in isolating data subsets, execute 

geoprocessing tools and weight tests, and to compare weight test results. Techniques 

were developed and applied to fit smooth functions to weights derived via WofE.  

 

The Discussion section begins by comparing the approaches used in the present study 

with approaches used in prior studies for context. Next, the best performing geothermal 

favorability maps from the present study are presented and examined to understand 

locations of and driving forces behind high favorability areas. Then, results from the 

present study are overlain on results from prior studies for direct comparison. Finally, 

summaries of additional findings are presented along with future work topics generated 

over the course of the present study. 

 

4.1 Comparing Approach with Prior Works 

 

The different reviewed studies used different evidence data, different techniques to 

measure correlations, and different geographic processing tools to arrive at favorability 

estimates. Table 4.1 summarizes evidence layers used in each study. Each study uses one 

layer to characterize heat (shaded red), except Williams and DeAngelo (2008), which 

also uses Quaternary magmatism. Each study had multiple layers related to permeability. 
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One of those layers always included something related to Quaternary faults (shaded 

purple). All studies incorporated seismicity (shaded green) except the current thesis. All 

studies used a map depicting something related to deformation, or strain (shaded tan) 

except Williams and DeAngelo (2008), though a layer estimating the stress regime was 

used in models not reviewed in the present study. Faulds et al. (2015) used many 

additional layers to characterize permeability. Notwithstanding these differences, all 

these studies use very similar types of data. 
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Layer 

Coolbaugh et al., 

2005 

Williams 

and 

DeAngelo, 

2008 

Faulds et al., 

2015 This Study 

Heat Thermal Gradient Heat Flow 

Temp at 3 

km Heat Flow 

Faults Gravity/Topography 

Fault 

Distance 

Faults 

(Many) 

Fault 

Distance 

Seismicity Earthquakes Earthquakes Earthquakes  

Strain 

Crustal Dilation & 

Slip Rate  Strain Rate 

Strain 

Rate 

Other  Magmatism 

Many 

Permeability 

Layers  
 

Table 4.1: Prior works evidence layer table: This table shows evidence layers used in the reviewed studies. Columns depict the 

different studies. Rows depict types of evidence layers. Colors denote the type of evidence layer with red representing heat, 

purple representing Quaternary faults, green representing seismicity, and tan representing strain or deformation. Each cell 

denotes the actual type of data used.  
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Notable differences between the present study and prior studies include weight 

smoothing, the use of a fine study grid to verify and exploit local scale weight variations, 

the use of a newer strain rate map, the use of additional exploratory geographic 

processing techniques, a refined characterization of heat, the use of newly available 

QFFDB attribute information, and good conditional independence results. 

 

4.1.1 Coolbaugh et al., 2005 

 

Though Coolbaugh et al. (2005) used a logistic regression tool instead of WofE to 

generate weights, similar techniques were used to interpret and classify ranges of data 

into categories as were employed in the present study, and a similar looking map was 

produced (Figure 1.10). Categories needed to contain enough training sites to generate 

significant weights, just as in a WofE analysis. This resulted in evidence layers that were 

broken into multiple independently weighted categories. The present study used similar 

data to that used in Coolbaugh et al. (2005), but there are notable differences. 

 

The ‘combined gravity and topographic gradient’ map in Coolbaugh et al. (2005) 

represented effective vertical displacement along faults. The present study’s use of 

Quaternary faults addresses the same geologic process. 

 

The fault dilation map used in Coolbaugh et al. (2005) is a precursor to the strain rate 

map used in the present study, Coolbaugh et al. (2005) foresee the development of newer 

maps saying, ‘Significant improvements are expected in the future as GPS station 

network expands and measurement accuracies improve.’ This layer also included fault 

slip rates as an important component. 

 

The seismicity map used in Coolbaugh et al. (2005) employed the general technique 

adopted in the present study for characterizing the possible geothermal contribution from 
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seismicity and broke the evidence layer into two categories. The present study 

experimented with different search radii and used seismic moment instead of earthquake 

magnitudes, as in Williams and DeAngelo (2008) but ultimately found correlations with 

seismic data to be weaker than with other evidence data, leading to the decision to not use 

seismicity in the present study. 

 

The present study used similar data and techniques to that used in Coolbaugh et al. (2005) 

to represent heat. Both studies interpolated a heat flow map. Coolbaugh et al. (2005) 

transformed that map into a thermal gradient map by assigning thermal conductive values 

to lithologic units in a geologic map. 

 

4.1.2 Williams and DeAngelo, 2008 

 

Williams and DeAngelo (2008) directly informed the present study’s approach for 

assessing Quaternary faults and heat flow. Williams and DeAngelo (2008) used the 

traditional distance-based binary weighting approach with faults as did the present study. 

The present study expanded on the standard technique by generating multiple binary 

thresholds, a ternary threshold set, and a smoothed function. The present study’s use of 

heat flow data to represent heat was adopted directly from Williams and DeAngelo 

(2008). The present study only differed in this sense from Williams and DeAngelo (2008) 

by experimenting with temperature at depth data and different interpolation methods. 

 

Williams and DeAngelo (2008) looks at the entire western US (Figure 1.11). Weights 

derived across such a large area cannot consider regional variability between the different 

tectonic environments present across the entire Western US but instead averages those 

affects out over the different environments. This may have resulted in a diminished 

contribution to favorability from faults (disproportionately present within the Great 

Basin) compared with high heat flow (present within and outside Great Basin). More 
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importantly, the Williams and DeAngelo (2008) assessment makes estimates about 

Nevada using data from the entire West while the present study is more calibrated for the 

extensional & transtensional tectonic conditions present in Nevada. 

 

The large study area of Williams and DeAngelo (2008) demanded that a coarse grid be 

used for the analysis (pixels of 2x2 km). Fracture permeability is understood to operate at 

very local scales (Gleeson and Ingebritsen, 2016). The present study uses a 250 m grid. 

Major changes in correlation were observed at sub-kilometer scales when looking at 

distance from faults in the present study (Figure 2.2). 

 

In Williams and DeAngelo (2008), fault distance had to evaluated in increments no finer 

than 2 km (the grid size), and a 4 km binary buffer was used. The present study was able 

to find more precise binary thresholds, generate ternary thresholds, and smooth the 

transition from positive to negative weights. 

 

The QFFDB did not have complete information on slip sense, recency, and slip rate at the 

time of Williams and DeAngelo (2008). QFFDB now has that information for all faults in 

the study area. The present study uses those attributes in detail, eliminating many faults 

used in the Williams and DeAngelo (2008) analysis. As noted earlier, 54% of Nevada is 

within 4 km (the search distance used in Williams and DeAngelo, 2008) of a Quaternary 

fault from the QFFDB. Finding the highest correlating subsets of the QFFDB resulted in 

stronger W+ from fewer faults, raising the favorability in more promising areas and 

preventing less-promising areas from appearing overly favorable. Figure 1.11 shows 

elevated posterior probability values in eastern Nevada, driven largely by faults that were 

excluded from the present study’s analysis. 

 

Williams and DeAngelo (2008) estimated undiscovered resources quantitatively by 

extrapolating relationships discovered in well-explored subregions of the study area 
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(Williams and DeAngelo, 2008). The present study did not attempt to make any 

quantitative estimates of undiscovered resource. 

 

High conditional dependence between evidence layers in Williams and DeAngelo (2008) 

study only allowed for posterior probability maps to be used to depict relative 

favorability. 

 

Williams and DeAngelo (2008) uses an RBF map for interpolating heat flow, while the 

present study’s EBK showed a much stronger correlation in Nevada.  However, the 

Williams and DeAngelo (2008) RBF is very similar to the RBF used in the present study. 

 

Williams and DeAngelo (2008) didn’t use strain rate data, which appear to be a useful 

proxy for potentially elevated rates of extensional and transtensional strain related to 

active permeability generation. 

 

Williams and DeAngelo’s (2008) use of seismicity generated low weights relative to the 

other evidence layers. The attempt to use the same approach to assess seismicity in the 

present study generated relatively low weight values and was therefore not used to 

generate posterior probability maps. Williams and DeAngelo (2008) used weighted 

earthquakes based on seismic moment. This approach may have not been best for 

characterizing sustained seismicity because of the strong focus on event size. 

 

Williams and DeAngelo (2008) uses categorical weightings to model continuous 

phenomena like heat flow and seismicity, resulting in abrupt changes in posterior 

probability when binning thresholds are passed. The present study was able to 

successfully smooth weights for continuous phenomenon. 
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4.1.3 Faulds et al., 2015 

 

Faulds et al. (2015) used processing techniques and weightings that benefited from 

having a diverse team providing multidisciplinary expert guidance. Evidence data were 

first explored using WofE and logistic regression testing, then weighting relationships 

were determined by expert consensus after considering data-driven correlations as well as 

expert geologic knowledge. Faulds et al. (2015) characterized geothermal favorability by 

presenting three maps: ‘The Fairway’, an ‘overall favorability model’ and ‘exploration 

opportunities’ (Figure 1.14). The Fairway model is the most similar to a WofE posterior 

probability map in the sense that it is comprised of evidence data relating to permeability 

and heat. The overall favorability model incorporates direct evidence, and the exploration 

opportunities map incorporated information about exploration history into the overall 

favorability model to highlight areas with high favorability that are not well explored. 

 

The evidence data and geographic techniques used in Faulds et al. (2015) are very 

different than those used in the present study, making any direct comparison difficult.  

Faulds et al. (2015) uses many more datasets to characterize permeability. Faulds et al. 

(2015) characterize local, intermediate, and regional scale permeability layers from data 

that were not assessed in the present study. More importantly, Faulds et al. (2015) built 

many of the data sets used in their study while completing the project, producing local-

scale high-quality data that is not generally be available for a geothermal assessment 

covering a larger area such as the state of Nevada. In particular, Faulds et al., 2015 

identified favorable structural settings and worked to assign detailed slip rates to 

Quaternary faults in their study area. Faulds et al. (2015) also show different measures of 

favorability using colors that are scaled to show different ranges of data than colors used 

in the present study. For all these reasons any direct comparisons between the present 

study and Faulds et al. (2015) can only be done qualitatively and with an understanding 

of the many differences between the models. 
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4.1.4 Coolbaugh and Bedell, 2006 

 

Coolbaugh and Bedell (2006) was the only study discovered in a literature review that 

smoothed functions related to weight values derived through WofE and is therefore is 

especially useful for comparison to the current study. The upper figure in Figure 1.16 

shows one example of a smoothed function fit through ‘density function’ values of 

Coolbaugh and Bedell, which are shown to be nearly equivalent to weights of evidence in 

the lower Figure 1.16 figure. Values are plotted at their native unit midpoint and the 

smoothing functions were fit using native units as the independent variable. 

 

Fitted values for the evidence layer seen in Figure 1.16 and for other evidence layers 

allowed for smoothly varying posterior probability maps. The version on the left of 

Figure 1.15 was derived through categorical weights, the figure on the right was derived 

using smoothed weights, resulting in fewer abrupt contrasts and improved favorability 

modeling in some regions. 

 

Coolbaugh and Bedell (2006) directly informed the present study’s approach to fitting 

smoothed functions to categorically derived weight values. The present study’s 

recommended approach to investigate how to best bin a continuous evidence layer 

included the methodology seen in Figure 1.16 of using manually determined binning 

increments, equally spaced binning increments, and experimenting with logarithmic and 

polynomial transformations when fitting. 

 

Coolbaugh and Bedell (2006) was successful in eliminating geologically artificial 

changes in favorability by generating smoothly varying weights but often had to fit 

functions through noisy data sets because of the nature of the distribution of training sites 

relative to ranges of the evidence data. 
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The present study was able to reduce noise in data when fitting by area and used an 

iterative approach in discovering bin ranges that promoted gradual declines in weight 

while maintaining important statistical considerations. The present study also went 

beyond the work of Coolbaugh and Bedell by demonstrating the ability to smooth 

weights without significantly altering conditional independence by using cumulative area 

as the independent variable when fitting and transforming the independent variable when 

appropriate. 

 

4.2 Geothermal Favorability Maps  

 

The geothermal favorability maps created in the present study vary based on whether 

smooth weights were applied, which fault subset was used, and whether one of the layers 

was removed resulting in a two-layer favorability map. Conditional independence tests 

produced values used to highlight the best-performing combinations of evidence layers. 

Once the best models were identified, prospective areas in those maps could be identified 

and examined further to see why the model identified them and whether the region has 

already been extensively explored. 

 

4.2.1 Best Favorability Maps 

 

One way to understand which models perform best and why is by understanding the 

results of conditional independence tests that show the conditional independence ratio 

and the ACCI. Table 3.7 shows the conditional independence ratio, the ratio of actual to 

predicted training sites where values below 0.85 ‘may indicate a problem.’ This test was 

used to disqualify models with values below 0.85. 
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A few general patterns can be observed in Table 3.7. All models that used three layers 

have values above 0.85 except for those that use smoothed weights for fault layers. Better 

values were seen when shorter buffers were applied to faults. Better values were seen 

using the 2.4 fault subset rather than the 5.3 subset. When smoothed weights were used 

for strain rate and heat flow, values were very close to those from categorical models, 

leading to the preference for models that use smoothed heat flow and strain rate. 

 

Table 3.8 shows the results of the ACCI test which calculates the probability that the 

difference between actual and expected was not due solely to chance using a 1-tailed test. 

This test was used to highlight models that performed well. Values below 95% are 

acceptable. Again, better values were seen when shorter buffers were applied to faults 

and when using the 2.4 fault subset rather than the 5.3 subset. 

 

Choosing a ‘best’ performing model requires balancing the pros and cons of each option. 

The best performers in terms solely of conditional independence test values would always 

contain the shortest search radius to faults, the binary 250 m models. But these models 

present a limited view of Quaternary faults. Looking only within 250 m may not consider 

fault dip or unmapped related structures and may be too granular a view given the 250 m 

cell size of the study. Models using a 1 km fault radius (Figure 3.5 and Figure 3.12) also 

pass minimal statistical thresholds for the conditional independence ratio and ACCI tests, 

and therefore they may be a preferred choice for the ‘best’ model that maintains strong 

measures for conditional independence. 

 

Models that do not possess strong measures for conditional independence can still be 

used to display relative favorability (Coolbaugh et al., 2005). This makes the ternary 

models appealing because they add more detail than the binary models and sometimes 

meet minimal conditional independence criteria even though they do not perform as well 

on conditional independence tests as binary models. The maps that used smoothed fault 
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weights in multilayer models always performed more poorly on conditional independence 

tests, at least partially because of the inability to model an accurate fit to a distance-based 

evidence layer.  Models using smoothed faults could therefore best be used to show 

relative favorability, but they have the advantage of generating more continuously 

variable predictive statistics. The models that smoothed all layers (Figure 3.7 and Figure 

3.14) were chosen as the ‘best’ model to display relative favorability despite their poor 

performance on conditional independence tests because of the purpose for which they 

will be used. Because they show relative favorability, they can be used as a visual tool to 

get an intuitive sense of the distribution of geothermal favorability as estimated by the 

present study and to compare qualitatively against other maps that depict relative 

favorability (such as those produced in Williams and DeAngelo 2008). 

 

A total of four ‘best’ models (maps) were chosen. All used smoothed weights for heat 

flow and strain rate because smoothed layers for these evidence layers did not negatively 

affect accurate prediction of the number of training sites. Two ‘best’ models used the 2.4 

subset and two used the 5.3 subset. For each subset, one model used a binary faults layer 

(producing a model with strong conditional independence results) and the other model 

used a smoothed faults layer (to display relative favorability) (Figure 4.1). Using 

smoothed fault data introduces uncertainties but may help to account for potentially 

unmapped Quaternary faults which tend to occur in clusters. 
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Figure 4.1: Comparison of best performing models: The four models identified as best are displayed to allow for easy 

comparison. The upper two figures (a and b) use the 2.4 fault subset, the lower two figures (c and d) use the 5.3 subset. The 

figures on the left (a and c) smooth all layers by area, the figures on the right (b and d) use a 1 km binary layer for faults. 

Hashed polygons were overlain to highlight areas where the ratio of poster to prior probability is greater than 5.  

a b 

c d 
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4.2.2 Areas of High Favorability 

 

Figure 4.2 shows geographic maps for the 2.4 fault subset on the top row and for the 5.3 

subset on the bottom row. Plots on the left and right show the same underlying relative 

favorability map; plots on the left show hatch patterns where the ratio of posterior to prior 

probability exceeded 5 in the relative favorability surfaces, plots on the right show 

arbitrarily defined regions of high favorability identified with names to allow for 

discussion of individual favorable areas. Showing the same underlying data on left and 

right plots was done to illustrate how favorable regions were identified. Most of the same 

regions appeared in maps for both fault subsets. The maps that show favorable zones also 

show heat flow and thermal gradient well locations to give an indication of the 

exploration history in different areas. Many of the zones identified as having high 

favorability are already known to host geothermal resources. 
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Figure 4.2: Identification of high favorability regions: These maps show regions identified by models as having high 

favorability. Names were assigned to broad geographic regions to allow for discussion of actual locations. Upper figures (a and 

b) show relative favorability surfaces generated using the 2.4 fault subsets, lower figures (c and d) show relative favorability 

surfaces generated using the 5.3 fault subsets. Plots on the left (a and c) show the same underlying relative favorability surface 

as plots on the right (b and d). Plots on the left (a and c) show hatch marks where the ratio of prior to posterior probability 

exceeds 5, plots on the right (b and d) show names regions identified using plots on the left.  

a b 

c d 



153 

 

Maps generated using the 2.4 fault subset in Figure 4.2 show high favorability and 

potentially limited exploration in zones referred to in the figure as Reese River Valley, 

Gabbs Valley, Pyramid Lake, Walker Lake, Toiyabe, Queen Valley, and Lamoille 

Valley. Many of these areas have high estimates for heat flow, young faults, and in some 

cases, high strain rates. 

 

The region referred to as the “Reese River Valley” appears to be especially favorable and 

underexplored. The elevated strain rates appear very likely to induce enhanced 

transtension in this particular area under the Faulds et al., (2012) premise that elevated 

strain rates northeast of the Walker Lane drive enhanced transtension. This could be 

driving potentially unknown hydrothermally active structures. Similar factors drive the 

high favorability estimates in the Desert Valley and Black Rock Desert regions. The 

region referred to as the “Lamoille Valley” may also present an interesting opportunity to 

explore near a young fault and potentially elevated heat flow. 

 

Maps generated using the 5.3 fault in Figure 4.2 show high favorability and potentially 

limited exploration in zones referred to in the figure as Big Smoky Valley, Toiyabe, 

Walker Lake, Queen Valley, and Fish Lake Valley. Many of these areas have high 

estimates for heat flow and strain rate as well as faults with relatively high designations 

for slip rate. Regions in and near the Walker Lane are highlighted in these maps because 

they tend to possess faults with elevated slip rates and also tend to be have high estimated 

strain rates. Regions highlighted by this process may be less reliable than regions 

highlighted examining the 2.4 fault subset for two reasons: high strain rates in the Walker 

Lane likely do not lead to elevated transtension in normal structures unless as part of a 

pull-apart basin complex, also the slip rate designations used to generate the 5.3 subset 

may be biased toward better-studied areas. Results from these maps may provide unique 

insights but must be viewed understanding the potential limitations. 
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4.3 Comparing Results with Prior Works 

 

It can be difficult to directly compare results from different geothermal assessments. 

Across different studies, digital data depicting results may not be available, favorability 

may be calculated using different evidence data and approaches, and available 

representations of results may depict different measures of favorability. 

 

Areas of high favorability identified in the present study were overlain on maps from 

Williams and DeAngelo (2008) and Faulds et al. (2015) to better understand similarities 

and differences. These were the only similar studies for which digital data could be 

obtained that could be visualized alongside results from the present study. Williams and 

DeAngelo (2008) was the only reviewed study that displays the same property used in the 

present study (ratio of posterior and prior probability). This allowed for direct 

comparisons to be made and for a visual comparison to show identical symbology. 

Qualitative comparisons were made with a favorability map from Faulds et al. (2015) by 

overlaying outlines of high favorability areas identified by the present study. 

 

4.3.1 Williams and DeAngelo, 2008 

 

Figure 4.3 highlights how Williams and DeAngelo (2008) calculated high favorability 

across much of northern Nevada and how the present study was able to geographically 

constrain the distribution of high favorability areas. Figure 4.3 shows two models from 

the present study on the top row and two models from Williams and DeAngelo (2008) on 

the bottom row. The maps in the top row depict results from the present study with all 

layers smoothed by area and respectively using the 2.4 and 5.3 fault subsets; hatch marks 

indicate areas where the ratio of posterior to prior probability exceeded 5. Maps on the 

bottom row data use data from Williams and DeAngelo (2008) and show results of the 

overall geothermal model, named ‘Model 1,’ (Figure 4.3c) and the model showing 
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amagmatic geothermal potential named ‘Model 13.’ (Figure 4.3d). Hatch marks from the 

maps on the top row are overlain to highlight how the present study was able to more 

specifically target highly favorable areas within a region of relatively high favorability 

identified in Williams and DeAngelo (2008). All maps in Figure 4.3 use the same colors 

to represent the same property, the ratio of posterior probability to prior probability from 

a relative favorability surface, so a direct visual comparison shows similar information. 

  



156 

 

 

Figure 4.3: Comparison maps with Williams and DeAngelo, 2008: These maps were arraigned to compare the results from the 

present study and Williams and DeAngelo, 2008. Hatched polygons were placed where the ratio of posterior to prior 

probability is greater than 5 in the present study in the upper figures (a and b). In the lower figures (c and d), the same 

hatched polygons were overlain on results of Williams and DeAngelo, 2008, which were symbolized using the same colors from 

the present study. Both studies represented displayed the same units with the same symbology and can therefore be directly 

compared quantitatively. 

a b 

c d 
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Figure 4.4 is identical to Figure 4.3 except that it includes locations of Quaternary faults 

and heat flow wells. Figure 4.4 helps to illustrate how high favorability estimates in 

Nevada by Williams and DeAngelo (2008) are driven mainly by uniformly high 

estimated heat flow in northern Nevada and large fault buffers across the entire state. 
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Figure 4.4: Comparison maps with Williams and DeAngelo, 2008 showing faults and heat flow wells: These maps were 

arraigned to compare the results from the present study (a, b) and Williams and DeAngelo, 2008 (c, d). Hatched polygons were 

placed where the ratio of posterior to prior probability is greater than 5 in the present study in the upper figures (a, b). In the 

lower figures (c, d), the same hatched polygons were overlain on results of Williams and DeAngelo, 2008, which were 

symbolized using the same colors from the present study. Both studies represented displayed the same units with the same 

symbology and can therefore be directly compared quantitatively. All maps show Quaternary faults symbolized by their slip 

sense and heat flow wells symbolized by their heat flow in mW/m².  

a b 

c d 
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Figure 4.4 helps to illustrate how the present study’s elimination of many faults based on 

their slip sense, recency, and/or slip rate significantly contributed to the differences 

observed between the present study and Williams and DeAngelo (2008). Williams and 

DeAngelo (2008) did not have access to comprehensive information about slip sense, 

recency, and slip rate. The 4 km buffer used around all Quaternary faults in Williams and 

DeAngelo (2008) can be observed in the lower figures of Figure 4.4, elevating 

favorability across most of Nevada. Selecting the highest correlating subsets and finding 

more precise distance thresholds may have helped to increase measured weights with 

more prospective faults and reduce false positives by not weighting other faults. 

 

The present study’s EBK heat flow map appeared to capture more local variation in heat 

flow data compared with the heat flow estimated from Williams and DeAngelo (2008), 

which had high values uniformly across much of northern Nevada. Modeling this 

variation more precisely could help to reduce the areas identified as highly prospective. 

The maps from the present study provide fewer highly prospective targets than the maps 

from Williams and DeAngelo (2008). 

 

Major differences exist due to the use of different evidence data. The use of strain rate to 

highlight areas with potentially elevated permeability in the present study would also lead 

to differences, as would the use of Quaternary magmatism and seismicity in Williams and 

DeAngelo (2008). 

 

Most of the favorable areas identified in the present study are regions of very high 

favorability in Williams and DeAngelo (2008) (Figure 4.4). Notable large areas of high 

favorability predicted by Williams and DeAngelo (2008) do not appear in maps from the 

present study in the fault systems that were excluded from the present study in and near 

the Walker Lane (strike-slip) and in northeastern Nevada (not recently active). 
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The present study uses similar approaches to Williams and DeAngelo (2008) when 

modeling data related to Quaternary faults and heat flow, the main drivers of high 

favorability seen in Williams and DeAngelo (2008). Despite using similar data and 

techniques, the present study was able to significantly reduce the distribution of high 

favorability areas by more narrowly isolating geographic areas associated with favorable 

faults and high heat flow, targeting distinct regions of Nevada as potential future 

exploration targets (Figure 4.2). 

 

4.3.2 Faulds et al., 2015 

 

Figure 4.5 shows two models from the present study on the top row and two models from 

Faulds et al. (2015) on the bottom row. The maps from the present study fit continuous 

layers by area and use 1 km binary weights for both the 2.4 and 5.3 subset. Figure 4.5 

shows the fairway map and the overall favorability model from Faulds et al. (2015) in the 

lower figures and uses the symbology the authors provided publicly. Only a qualitative 

comparison of these studies can be made because they depict favorability using different 

units and use different symbology. 

  



161 

 

 

Figure 4.5: Favorability maps compared with those of Faulds et al., 2015: These maps were arranged to compare the results 

from the present study and Faulds et al., 2015. Hatched polygons were placed where the ratio of posterior to prior probability 

is greater than 5 in the present study in the upper figures. In the lower figures, the same hatched polygons were overlain on 

results of Faulds et al., 2015, which used different units than the present study and were symbolized using the symbology in 

the publicly available data. Because different units were used, and a different symbology was applied, only qualitative 

comparisons can be made between maps from the two studies. 

a b 

c d 
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The hatch marks used in the upper figures in Figure 4.5 show areas where the ratio of 

posterior to prior probability exceeded 5. These same hatch marks are overlain on the 

Faulds et al. (2015) data in the maps on the bottom row. The bottom-left figure shows 

“The Fairway,’ the more directly comparable map to the maps from the present study. In 

this figure, hatch marks tend to occur in areas with relatively high values in The Fairway 

map, meaning that the present study is highlighting places that were also identified as 

favorable in Faulds et al. (2015). 

 

Several regions show very similar distributions of high favorability, particularly in the 

regions identified in the Fairway map in Figure 4.2 as Reese River Valley and Gabbs 

Valley, which both have high estimates for heat flow and strain rate as well as young 

faults. Areas of high favorability in both studies also include areas referred to as Big 

Smoky Valley, Buena Vista Valley, and Walker Lake. 

 

Figure 4.6 is identical to Figure 4.5, but it shows Quaternary faults and heat flow data and 

zooms into the figures with favorability maps from Faulds et al. (2015). Much of the 

similarity observed between the two studies is driven by the fact that both studies were 

heavily influenced by the QFFDB faults. Hatch marks can be seen closely following 

patterns of high favorability in the Fairway map. The hatch marks show a conservative 

view of the present study’s results because they depict binary fault models at a high 

posterior to prior probability ratio. This results in many small areas being outlined. Many 

of these areas likely contain the presence of normal faults and relatively high estimates 

for heat flow and strain rate. 
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Figure 4.6: Favorability maps compared with those of Faulds et al. (2015) Fairway map: These maps were arranged to 

compare the results from the present study and the Fairway map from Faulds et al. (2015). Hatched polygons were placed 

where the ratio of posterior to prior probability is greater than 5 in the present study in the upper figures (a and b). In the 

lower figures (c and d), the same hatched polygons were overlain on results of Faulds et al. (2015), which used different units 

than the present study and were symbolized using the symbology in the publicly available data. Because different units were 

used, and a different symbology was applied, only qualitative comparisons can be made between maps from the two studies. 

All figures besides figure d show heat flow well locations and faults. Lower figures (c and d) also show outlines of favorable 

zones identified in Figure 4.2 and the outline of the Walker Lane seen in Figure 1.1.  

a b 

c d 
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Faulds et al., 2015 created specialized local-scale data, including information related to 

favorable structural settings and precise slip rates on faults, to calculate favorability at a 

fine scale resulting in a map that shows significant variations at the sub-kilometer level. 

The high spatial overlap seen in high favorability patterns between the two studies may 

help validate that the present study’s predictions appear reasonable in many areas and 

was able to highlight local targets by focusing in on regional evidence data (Figure 4.6). 

 

The present study is limited because it only uses three regional and publicly available 

evidence data sets, and therefore may not be able to identify local favorability in all the 

same areas identified by Faulds et al. (2015), who used high quality local-scale data and 

specialized experts. Many areas identified as favorable by Faulds et al. (2015) were not 

identified as such by the present study. Many of these areas appear to be driven by local-

scale data representing permeable structural settings (ovals of higher favorability) and 

sometimes other evidence data not used in the present study (Figure 4.6). 

 

The present study may however identify places that were not highly favorable in Faulds 

et al. (2015). Faulds et al. (2015) uses an intermediate permeability layer where they 

apply a 500m buffer to all Quaternary faults; this can be observed by comparing the 

lower left and right figures in Figure 4.6 and noticing that every fault trace seen in the left 

figure has a corresponding increase in favorability in the right figure. Some of these 

patterns were also highlighted by the present study as represented by the hatch marks but 

many are not. Those that are also identified by the present study may be good local 

targets for future exploration efforts. Examples may include areas identified in the lower 

right figure of Figure 4.6 as being in or near the ‘Big Smoky Valley,’ ‘Reese River,’ 

‘Granite Springs,’ and the eastern ‘Gabbs Valley’ zones. Favorable areas in the ‘Walker 

Lake’ zone may be less reliable because they fall within the estimated extent of the 

Walker Lane. 
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The present study’s use of data-driven weight relationships and smoothing of continuous 

evidence data may help to more accurately apply the contribution of regional scale 

evidence data to geothermal prospectivity regionally and locally where high-quality 

local-scale data are not available. 

 

4.4 Additional Findings  

 

4.4.1 Fit by Area Approach  

 

The 'fit by area' approach worked well as an ‘individual layer smoothing technique’ with 

heat flow and strain rate but not as well with faults. The layers individually smoothed by 

area also performed well in multilayer analyses, calculating nearly identical values to the 

categorical models. Performing well in both regards indicates that this technique may be 

able to correctly characterize the relationship between weights and the cumulative area of 

an evidence layer as a mathematical function. Being able to fit a function to estimate 

cumulative area from native units could allow for the functions derived in the present 

study to be applied to identical evidence layers for other geographic areas. 

 

Generating smoothed weights has several advantages over the categorical approach. The 

most salient improvement is the elimination of abrupt changes of favorability driven by 

bin boundaries of categorical evidence layers. To generate a single weight for a range of 

values in an evidence layer, that range must be isolated from all other ranges and assessed 

independently. A single weight value calculated for that range in a categorical analysis 

applies to the entire range, resulting in a situation where abrupt changes in weight occur 

at the bin boundaries in traditional WofE studies. 

 

Eliminating abrupt changes in weightings for continuous phenomena like heat flow and 

strain rate may help to more accurately reflect each layer individually by reducing 
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overpredictions and underpredictions, perhaps with fewer errors to propagate through a 

multilayer model. If so, multilayer models that use more than one evidence layer with 

smoothed weights may be more accurate than the equivalent categorical model. 

 

Despite the apparent success of this technique, it is limited. The fit by area approach 

requires using a function, which will inevitably have errors unless a perfect goodness of 

fit measure is achieved. That function is limited by the ability for a dataset to generate 

bins that result in categorical weights that will fit a function. Without the ability to know 

which type of function will be used (heat flow used linear, strain rate used polynomial, 

faults used logarithmic), the best approach appears to be to find gradual declines in 

weight while maintaining gradual increases in area and sufficient training sites. This 

hopefully leads each categorical weight value to be as unbiased as possible, allowing for 

many functions to be tested when fitting. 

 

4.4.2 Geographic Processing Techniques  

 

Performing a geothermal assessment involves many uncertainties. Each raw data source 

has issues relating to quality and completeness. Different approaches could be used to 

interpret raw geologic information. Those interpreted data can be subject to different 

techniques to assign weights. The middle step, of trying to best characterize raw geologic 

data into a mathematical setting, is very important. 

 

Faults were assessed by looking at their slip sense, recency, strain rate, and dilation and 

slip tendencies using distance and density-based approaches. Selecting subsets based on 

slip sense, recency, and slip rate was effective at increasing the strength of weights while 

reducing the spatial area being assigned positive weights. Automated Python tools greatly 

assisted by quickly generating cumulative fault subsets, preparing data for weight testing, 

running weight tests, and summarizing WofE statistics for comparison. 
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Heat was assessed using an approach similar to Williams & DeAngelo (2008), though a 

different interpolation method was explored as well as the possibility of using 

temperature at depth maps that incorporated thermal affects from sediments. Exploring 

other surfaces depicting heat was a useful demonstration of the effectiveness of the 

approach ultimately adopted. Strain rate data were obtained as an interpolated map, so it 

was sampled to the study grid. Automated python plotting tools were helpful for 

exploring heat flow and strain rate data by generating cumulative and categorical 

weighting tests, and summarizing WofE statistics for comparison. 

 

Earthquakes were assessed using approaches from Williams & DeAngelo (2008). 

Automated Python tools greatly assisted by quickly generating different density surfaces 

with different search radii, preparing data for weight testing, running weight tests, and 

summarizing WofE statistics for comparison. The lack of useful correlations indicates 

that the geographic processing techniques used in this analysis may not have properly 

characterized the effects of seismicity on permeability or that it may not be possible to do 

so. The technique explored in the present study essentially showed cumulative energy 

release from earthquakes within a set of chosen distances. High values of cumulative 

energy release are usually driven by large events that do not necessarily sustain 

permeability. Permeability in hydrothermal systems may be best sustained in settings that 

experience relatively continuous seismicity over time. 

 

4.4.3 Evidence Data 

 

The present study used three evidence layers to assess geothermal favorability. Using few 

evidence layers risks producing too simplistic a range of favorable scenarios but benefits 

from being able to use data that correlate strongly, extend regionally, and are less likely 

to portray the same process. Many of the other studies examined use four or more 
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evidence layers (Table 4.1). The present study considered evidence layers and techniques 

used in prior analyses and adopted those that best appeared to fit the data. 

 

All studies used evidence layers that represented heat and contributions from faults; the 

present study adopted approaches similar to Williams and DeAngelo (2008) using 

interpolated heat flow and distance from faults (Table 4.1). With heat flow, the present 

study used a different interpolator (EBK) and explored temperature at depth conversions 

but otherwise used the same technique to generate categorical weights. The present study 

used the same distance-based approach for faults as Williams and DeAngelo (2008) but 

was able to exclude many faults based on attributes and use more precise distance 

thresholds. The present study’s use of strain rate data was informed by prior assessments 

(Coolbaugh et al., 2005, Faulds et al., 2015) and other research that point to its relevance 

for geothermal exploration (Faulds et al., 2012, Kreemer et al., 2009). The present study 

derived weights for multiple categories spanning the range of strain rate values in 

Nevada. 

 

Many evidence layers and techniques used in prior assessments were not adopted for the 

present study. Seismicity showed weak correlations that may not be characterizing 

sustained seismicity well. Magmatism was not used because it is not considered the likely 

heat source in most of Nevada. Potential field geophysics data such as gravity and 

magnetic field maps were not used because available approaches did not characterize 

structural controls well consistently across Nevada. Structural setting information and 

magnetotelluric data were not available statewide. Dilation and slip tendency calculations 

did not correlate well at the scale of the present study. 

 

In the present study, interpolated heat flow represents heat, faults represent known 

locations of potentially elevated permeability, and areas of elevated strain rate represent 
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potentially elevated permeability in known structures as well as potentially unknown 

structures. 

 

4.4.4 Cell Size 

 

The present study used a very fine grid size compared to prior assessments. Using a 250m 

grid to model faults was probably helpful because large changes in W+ were seen in 

nearly every fault subset at sub-kilometer scales. 

 

4.4.5 Two Layer Models 

 

Conditional independence results show that most of the conditional dependence between 

layers exists between fault and strain rate layers, which makes sense because both 

represent similar forces and are being used to model permeability. Table 3.7 shows good 

conditional independence results when the 2.4 fault subset is paired with heat flow. 

Pairing faults with strain rate often resulted in weaker (higher conditional independence) 

values than the equivalent three-layer model. Models using two layers were produced 

during the present study but were not presented as maps. 

 

4.4.6 Strain Rate Weighting 

 

Faulds et al. (2012) argue that it would be beneficial to measure ‘empirical relationships 

between strain rate and geothermal potential.’ The present study attempts to do this. 

Faulds et al. (2012) also argue that elevated strain rates drive conditions that produce 

hydrothermal systems particularly in extensional areas of Nevada northeast of the Walker 

Lane (Figure 1.1). These authors warn about assigning high weights to areas of high 

strain rate within the Walker Lane where strike-slip faulting, not normal faulting 

dominates: 
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'The correlation between strain rates and capacity of existing geothermal power plants in 

the western USA suggests that it may be possible to develop empirical relationships 

relating strain to geothermal potential, which could ultimately guide resource 

assessments and exploration strategies. However, higher strain rates alone do not equate 

with resource potential. For example, higher strain rates along the San Andreas fault 

system and Walker Lane-eastern California shear zone would seemingly favor 

geothermal activity, but strike-slip faulting includes a component of shortening, which 

tends to restrict fluid flow. Accordingly, robust geothermal systems in these zones of 

dextral shear only occur in transtensional pull-apart basins and/or in areas of recent 

volcanism (e.g., Salton Trough, The Geysers, and Coso). It would appear that without 

recent magmatism, extensional or transtensional deformation is a necessary ingredient in 

generating most viable geothermal systems.' 

 

Faulds et al. (2015) used WofE to measure ‘maximum W+ = 0.96 +/- 0.27 with 16% of 

study area using the 34 high enthalpy benchmarks’ using the same strain rate map used in 

the present study (Kreemer et al., 2012). This discovery helped guide weightings 

developed to model regional scale permeability (Figure 1.12). No other attempts to 

correlate this strain rate map with geothermal were discovered in a literature review, 

though other versions of strain rate maps, including earlier versions, have been shown to 

correlate with geothermal activity. 

 

High strain rates in the Walker Lane represent a different set of processes than the 

elevated strain rates northeast of the Walker Lane, though either could lead to the 

development of a hydrothermal system through its respective processes. The intent of the 

present study and prior studies was to weight a strain rate map for its contribution to 

enhanced transtension in normal faults. Though elevated strain rates could lead to the 

development of hydrothermal systems in pull-apart basins or other structures related to 
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dextral shear (known examples include Walker Lake, Lee Hot Springs, Teels Marsh, 

Rhodes Marsh, and Columbus Marsh), weights developed in the present study sought to 

characterize different processes and therefore may not accurately depict contributions 

from strain rate within the Walker Lane. 

 

4.5 Future Work 

 

4.5.1 Additional Evidence Layers 

 

Additional evidence layers could be explored and potentially incorporated. A combined 

structural database could be developed to include faults as well as lineations of deep 

structures derived through regional-scale potential geophysics, particularly gravity and 

magnetics. Favorable structural setting information could be explored as a potential 

evidence layer to be used in future studies relating to permeability. The kernel density 

approach with earthquakes showed correlation with geothermal training sites and may be 

useful for mapping permeability. 

 

4.5.2 Other Possible Uses of Dilation and Slip Tendency 

 

Dr. Drew Siler hypothesized that approaches that use dilation tendency might reveal 

stronger results on a local scale than on a regional scale (Dr. Drew Siler, personal 

communication, 2018). He notes that higher certainty in the direction of the stress field at 

local scales along with detailed fault mapping would provide better environments to 

pursue either distance or density-based approaches. A completely different use for 

dilation and slip tendency calculations could include isolating fault segments with 

relatively high values as precise exploration targets within favorable regions. 
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4.5.3 Other Possible Uses of Earthquake Data 

 

Earthquake data could potentially be used differently. The QFFDB is probably 

conservative when attributing recency to a fault’s age without proof, therefore many of 

the faults in the QFFDB assigned with an older age might be active. Perhaps seismicity 

could be used to better understand recency of fault activity as well as whether the fault 

experiences sustained seismicity. This may need to consider, for example, for every fault 

segment: the distance to an earthquake, the direction to an earthquake, and the fault’s dip 

to understand whether earthquakes from the historic catalog can be attributed to fault 

segments. 

 

Techniques could potentially be developed to recognize sustained seismicity over time as 

a proxy for dynamic permeability generation. Defining a signature for sustained 

seismicity would be difficult, but if possible, it may be a useful way to optimize 

earthquake data. Some earthquake forecasting tools use only seismicity data (ignoring 

fault data) to generate predictions; Dr. Tom Parsons suggests it may be possible to adapt 

earthquake forecasting tools to forecast ongoing permeability generation by searching for 

a sustained seismicity signal (Dr. Tom Parsons, personal communication, 2019). 

 

4.5.4 Using Density Functions on Fault Subsets 

 

The exploratory work that was not pursued using density functions with faults may have 

had more potential than previously noticed. For example, Figure 2.3 shows plots where it 

may be possible to categorize the small class range where all the systems get picked up 

(the class range where blue dots rise quickly) by isolating it, applying bins that distribute 

area evenly and fitting a function. Further refining an optimal radius may also be useful, 

since 1 km and 2 km distances performed better than 5 km and 10 km distances. 
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Density approaches may have two advantages: fault density could serve as a proxy for 

fault complexity (although better mapped areas get favorably biased) and it might be 

possible to generate more weightable categories than with distance (distance ranges are 

limited by actual distance). Perhaps the continuous nature of a density function would 

lead to results similar to those encountered when fitting continuous phenomena such as 

heat flow and strain rate. Using a distance function for modeling faults was found to be 

constraining because no more than three categorical weights could be generated (ternary) 

and it forces a function to be fit using one point to represent a large majority of the area.  

Perhaps simple or kernel density functions could be applied to faults or fault subsets 

(possibly selected by slip sense and recency, possibly weighted by dilation or slip 

tendency or another parameter), with testing for an optimal search radius. Then a fit could 

be applied by area to the entire range of density values without the constraints from a 

ternary binned distance-based surface. Alternatively, one could pursue density functions 

on fault subsets that are weighted based on a ‘combined’ indication derived from multiple 

indicators of fault activity such as seismicity and dilation tendency.  
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5.0 Conclusions 

 

The present study develops new methodologies to assess geothermal resource favorability 

and applies them to arrive at a new assessment to predict where best to explore for active 

hydrothermal systems in the state of Nevada. The developed methods adopt best practices 

from prior assessments and refine prior approaches when possible. Nevada has high 

potential for containing undiscovered geothermal resources. The relatively 

comprehensive publicly available regional data coverage makes it possible to build good 

predictive maps and provides a good proving ground for refining methodologies. While 

the general framework was adopted directly from prior WofE-based geothermal 

assessments, new techniques were put forward to: optimally transform ‘raw’ geologic and 

geophysical data, automate processing and visualization, generate robust categorical 

weights, and calculate smoothed weights from categorical weights. Python-based tools 

developed in the present study greatly enhanced the efficiency of evaluating multiple 

processing scenarios. The improved methodology of smoothing weights minimizes 

potential over-prediction issues and eliminates geologically irrelevant artifacts of the 

modeling process. 

 

The present study sought to create a simple representation of geothermal favorability by 

using the best regionally-available versions of data commonly used in geothermal 

assessments. The predictions in the present study may offer a somewhat conservative 

view of geothermal favorability by only taking three evidence data types into account, but 

each layer represents a major predictive factor. No other evidence data used in other 

studies with regional coverage appeared to represent similar significance. The final 

predictive maps therefore account for the relative contributions of the most reliable 

evidence data and do so impartially by using data-driven weights. 
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Approaches and results of the present study were compared with the most similar prior 

geothermal assessments of the region to contextualize why decisions were made and how 

the results compare with other estimates of geothermal favorability. The present study 

predicted regional and local zones of high favorability in Nevada. These results were then 

presented alongside results from prior assessments for context, identifying many known 

geothermal areas, but in some cases highlighting areas that were not identified by other 

assessments. 

 

Williams and DeAngelo (2008) assessed geothermal potential of the entire western 

United States and therefore produced high favorability over most of Nevada with little 

local variation between areas of relatively higher or lower favorability. The present study 

aimed to: narrow the size of the geographic area highlighted as very favorable by 

Williams and DeAngelo (2008), identify regions that were identified differently in the 

models, and assess which evidence data were driving the differences. Williams and 

DeAngelo (2008) displayed favorability as the ratio of posterior to prior probability using 

a relative favorability surface; the present study displayed the same parameters and 

symbology allowing for a similar comparison. The present study was effective at 

highlighting distinct regions from within favorable areas identified in Williams and 

DeAngelo (2008). 

 

Faulds et al. (2015) assessed geothermal favorability over a large portion of Nevada and 

produced a fine scale map using regional and local scale data. Because Faulds et al. 

(2015) produced a local-scale map that portrayed large changes in favorability over small 

distances, comparisons were made with models from the present study that highlighted 

local to regional-scale patterns of elevated permeability. This was done using models that 

performed well on conditional independence tests and showed a geographically 

constrained pattern of elevated favorability. Though the two studies displayed different 

measures of favorability and used different symbologies, many favorable areas 
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highlighted in the present study were also identified by Faulds et al. (2015), showing that 

the techniques used in the present study were affective at using regional-scale data to 

make reasonable regional to local-scale predictions. Many areas of elevated favorability 

identified by Faulds et al. (2015) fell within favorable zones identified in the present 

study. The present study identifies several areas with relatively high favorability and low 

exploration, some of which were not identified as such by Faulds et al. (2015). These 

areas represent promising locations to target future exploration and may potentially be 

used to validate predictions made in the present study. 

 

Techniques and findings from the present study can be applied in future resource 

investigations. The quantitative measures relating evidence layers such as Quaternary 

faults, strain rate, and heat flow to geothermal resource potential could be used directly in 

future geothermal resource investigations exploring areas sharing a similar geologic 

setting. However, the analysis techniques developed in the present study, such as 

smoothed weights, optimal evidence layer characterization via systematic exploration, 

and Python tools can be applied more broadly to a wide range of other resource 

investigations.  



177 

 

References Cited 

 

Agterberg, F.P., and Cheng, Q., 2002. Conditional Independence Test for Weights-of-

Evidence Modeling. Natural Resources Research, v. 11, no. 4, p. 249-255. 

 

Bennett, R.A., Wernicke, B.P., Niemi, N.A., Friedrich, A.M., and Davis, J.L., 2003, 

Contemporary Strain Rates in the Northern Basin and Range Province from GPS data. 

Tectonics, v. 22, no. 2, p. 3-1 – 3-31. 

 

Blackwell, D.D., 1989. Regional Implications of Heat Flow of the Snake River Plain, 

Northwestern United States: Tectonophysics, v. 164, p. 323-343. 

 

Blackwell, D.D., Richards, M., 2004. Geothermal Map of North America. American 

Association of Petroleum Geologists, Tulsa, Oklahoma, 1 sheet, scale 1:6,500,000. 

 

Blackwell, D., Waibel, A. F., and Richards, M., 2012. Why Basin and Range Systems 

Are Hard to Find: The Moral of the Story is They Get Smaller with Depth. Transactions, 

Geothermal Resources Council, 36, 1321-1326. 

 

Blewitt, G., Coolbaugh, M.F., Holt, W., Kreemer, C., Davis, J.L., and Bennett, R.A., 

2002. Targeting of Potential Geothermal Resources in the Great Basin from Regional 

Relationships Between Geodetic Strain and Geological Structures. Geothermal Resources 

Council Transactions, v. 26, p. 523-525. 

 

Bonham-Carter, G.F., 1994, Geographic Information Systems for Geoscientists: 

Modelling with GIS (Computer Methods in the Geosciences Volume 13): Tarrytown, 

New York, Pergamon Press/Elsevier Science Publications, 398 p. 

 



178 

 

Coolbaugh, M.F. and Bedell, R., 2006, A Simplification of Weights of Evidence Using a 

Density Function, Fuzzy Distributions, and Geothermal Systems. GIS for the Earth 

Sciences: Geological Association of Canada, Special Publication 44, p. 115-130. 

 

Coolbaugh, M.F., Raines, G.L., and Zehner, R.E., 2007. Assessment of Exploration Bias 

in Data-Driven Predictive Models and the Estimation of Undiscovered Resources. 

Natural Resources Research, v. 16, n. 2, p199-207. 

 

Coolbaugh, M.F., Raines, G.L., Zehner, R.E., Shevenell, L.A., Williams, C.F., 2006. 

Prediction and Discovery of New Geothermal Resources in the Great Basin: Multiple 

Evidence of a Large Undiscovered Resource Base. Geothermal Resources Council 

Transactions, v. 30, p. 867-874. 

 

Coolbaugh, M., Zehner, R., Kreemer, C., Blackwell, D., Oppliger, G., Sawatzky, D., 

Blewitt, G., Pancha, A., Richards, M., Helm-Clark, C., Shevenell, L., Raines, G., 

Johnson, G., Minor, T., and Boyd, T., 2005. Geothermal Potential Map of the Great 

Basin, Western United States: Nevada Bureau of Mines and Geology Map 151. 

 

Coolbaugh, M., Zehner, R., Kreemer, C., Blackwell, D., and Oppliger, G., 2005b. A Map 

of Geothermal Potential for the Great Basin, U.S.A: Recognition of Multiple Geothermal 

Environments. Geothermal Resources Council Transactions, v. 29, p. 223–228. 

 

Dobson, P. F. 2016, A Review of Exploration Methods for Discovering Hidden 

Geothermal Systems. Geothermal Resources Council Transactions v. 40, 695–706. 

 

ESRI, 2017. ArcGIS Desktop: Release 10.4. Redlands, CA: Environmental Systems 

Research Institute. 

 



179 

 

Faulds, J.E., Henry, C.D., and Hinz, N.H., 2005. Kinematics of the Northern Walker 

Lane: An Incipient Transform Fault Along the Pacific – North American Plate Boundary. 

Geology, v. 33, no. 6, p. 505-508. 

 

Faulds, J.E., and Henry, C.D., 2008. Tectonic Influences on the Spatial and Temporal 

Evolution of the Walker Lane: An Incipient Transform Fault Along the Evolving Pacific 

– North American Plate Boundary. Circum-Pacific Tectonics, Geologic Evolution, and 

Ore Deposits: Tucson, Arizona Geological Society, Digest 22, p. 437-470. 

 

Faulds, J.E., and Hinz, N.H., 2015. Favorable Tectonic and Structural Settings of 

Geothermal Systems in the Great Basin Region, Western USA: Proxies for Discovering 

Blind Geothermal Systems. Proceedings World Geothermal Congress, Melbourne, 

Australia, 19-25 April 2015, 6 p. 

 

Faulds, J., Hinz, N., dePolo, C., Hammond, W., Kreemer, C., Shevenell, L., Coolbaugh, 

M., Queen, J., Siler, D., Visser, C., Wannamaker, P., 2015. Discovering Blind 

Geothermal Systems in the Great Basin Region: An Integrated Geologic and Geophysical 

Approach for Establishing Geothermal Play Fairways. Federal Agency and Organization: 

DOE EERE – Geothermal Technologies Program. Award Number: DE-EE0006731. 

 

Faulds, J.E., Hinz, N., Kreemer, C., Coolbaugh, M.F., 2012. Regional Patterns of 

Geothermal Activity in the Great Basin Region, Western USA: Correlation with Strain 

Rates. Geothermal Resources Council Transactions, v. 36, p. 897–902. 

 

Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., Horowitz, 

S., Meyers, W. B., and Simons, F. F., 1999. Stressed Rock Strains Groundwater at Yucca 

Mountain, Nevada. GSA 

Today, 9(5), 2–9. 



180 

 

 

Geological Survey of Finland (GSF), 2018. Spatial Data Modeler 5 for ArcGIS Pro, 

https://github.com/gtkfi/ArcSDM. 

 

Gleeson T, Ingebritsen S, 2016, Crustal permeability. Wiley, New York. DOI: 

10.1002/9781119166573. p. 4-5. 

 

Hammond, W.C., and Thatcher, W., 2004. Contemporary Tectonic Deformation of the 

Basin and Range Province, Western United States: 10 Years of Observation with the 

Global Positioning System. Journal of Geophysical Research, v. 109, B08403. 

 

Koenig, J.B. and McNitt, J.R., 1983. Controls on the Location and Intensity of Magmatic 

and Nonmagmatic Geothermal Systems in the Basin and Range Province. Geothermal 

Resources Council Special Report No. 13, p. 93. 

 

Kreemer, C., Blewitt, G., and, Hammond, W.C., 2009. Geodetic Constraints on 

Contemporary Deformation in the Northern Walker Lane: 2. Velocity and Strain Rate 

Tensor Analysis, in Late Cenozoic Structure and Evolution of the Great Basin-Sierra 

Nevada Transition. Geological Society of America Special Volume 447, p. 17-31. 

 

Kreemer, C., Hammond, W.C., Blewitt, G., Austin, A.A., and Bennett, R.A., 2012. A 

Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, Western 

United States. Nevada Bureau of Mines and Geology Map 178, scale 1:1,500,000. 

 

Krivoruchko K. and Gribov A., 2014. Pragmatic Bayesian Kriging for Non-Stationary 

and Moderately Non-Gaussian data. Mathematics of Planet Earth. Proceedings of the 

15th Annual Conference of the International Association for Mathematical Geosciences. 

Springer 2014, pp. 61-64. 

https://github.com/gtkfi/ArcSDM


181 

 

 

Morris, A., Ferrill, D., A., and Henderson, D., B., 1996. Slip-Tendency Analysis and 

Fault Reactivation. Geology 24, no. 3: 275–78. 

 

NCEDC, 2016, Northern California Earthquake Data Center. UC Berkeley Seismological 

Laboratory. Dataset. doi:10.7932/NCEDC. 

 

Pérouse, E., and Wernicke, B., 2017. Spatiotemporal Evolution of Fault Slip Rates in 

Deforming Continents: The Case of the Great Basin Region, Northern Basin and Range 

Province. Vol. 13, 2017. https://doi.org/10.1130/GES01295.1. 

 

Saltus, R.W., and Jachens, R.C., 1995. Gravity and Basin-Depth Maps of the Basin and 

Range Province, Western United States. Geophysical Investigation Map, 1995. USGS 

Publications Warehouse. 

http://pubs.er.usgs.gov/publication/gp1012. 

 

Sass, J.H., A.H. Lachenbruch, R.J. Munroe, G.W. Greene, and T.H. Moses, Jr., 1971. 

Heat flow in the Western United States. Journal of Geophysical Research, v. 76, n. 26, p. 

6376-6413. 

 

Siler, D.L., Faulds, J.E., Mayhew, B., Mcnamara, D.D., 2016. Analysis of the 

Favorability for Geothermal Fluid Flow in 3D: Astor Pass Geothermal Prospect, Great 

Basin, Northwestern Nevada, USA. Geothermics 60, 1–12. 

https://doi.org/10.1016/j.geothermics.2015.11.002 

 

Siler, D.L., Zhang, Y., Spycher, N.F., Dobson, P.F., McClain, J.S., Gasperikova, E., 

Zierenberg, R.A., Schiffman, P., Ferguson, C., Fowler, A., Cantwell, C., 2017. Play-

http://pubs.er.usgs.gov/publication/gp1012


182 

 

fairway Analysis for Geothermal Resources and Exploration Risk in the Modoc Plateau 

Region. Geothermics 69. https://doi.org/10.1016/j.geothermics.2017.04.003 

 

Raines, G.L., Bonham-Carter, G.F. and Kemp, L., 2000, Predictive Probabilistic 

Modelling Using ArcView GIS: ArcUser, v. 3, n. 2, p. 45-48. 

 

U.S. Geological Survey (USGS), 2006. Quaternary Fault and Fold Database for the 

United States. Accessed 2018, from US Geological Survey web site: 

http//earthquake.usgs.gov/hazards/qfaults/. 

 

Williams, C.F., 2004. Development of Revised Techniques for Assessing Geothermal 

Resources. Proceedings, 29th Workshop on Geothermal Reservoir Engineering, Stanford 

University, Stanford, California. 

 

Williams, C.F., 2007. Updated Methods for Estimating Recovery Factors for Geothermal 

Resources. Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford 

University, Stanford, California. 

 

Williams, C.F., DeAngelo, J., 2008. Mapping Geothermal Potential in the Western 

United States. Geothermal Resources Council Transactions v. 32, 181-188. 

 

Williams, C.F., DeAngelo, J., 2011. Evaluation of Approaches and Associated 

Uncertainties in the Estimation of Temperatures in the Upper Crust of the Western 

United States. Geothermal Resources Council Transactions, v. 35, 1599-1605. 

 

Williams, C.F., Reed, M.J., Mariner, R.H., DeAngelo, J., and Galanis, S.P.J., 2008. 

Assessment of Moderate- and High-Temperature Geothermal Resources of the United 

States: US Geological Survey Fact Sheet 2008–3082, p. 4. 

https://doi.org/10.1016/j.geothermics.2017.04.003


183 

 

Appendices 

  



184 

 

Appendix 1: Temperature at Depth Map 

 

Appendix 1: Estimated Temperature at 3 km depth using sediment thickness: The background colors show estimated 

temperature (degrees Celsius) at 3 km depth. Training sites are depicted as white pentagons. 
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Appendix 2: EBK Statistics 

 

Model RMSE rmsStd model transformation time(s) subsetSize overlap 

1 18.329 1.#QNAN POWER NONE 6 100 3 

2 18.334 0.980 POWER NONE 10 100 5 

3 18.413 0.995 POWER NONE 3 100 1 

4 18.424 1.#QNAN WHITTLE_DETRENDED EMPIRICAL 30 100 3 

5 18.430 1.#QNAN EXPONENTIAL_DETRENDED EMPIRICAL 30 100 3 

6 18.439 1.#QNAN K_BESSEL_DETRENDED EMPIRICAL 139 100 3 

7 18.440 1.#QNAN WHITTLE EMPIRICAL 33 100 3 

8 18.442 1.#QNAN K_BESSEL EMPIRICAL 141 100 3 

9 18.448 1.008 POWER NONE 9 500 1 

10 18.450 0.995 POWER NONE 30 500 5 

11 18.457 0.991 POWER NONE 4 250 1 

12 18.465 1.016 POWER NONE 14 250 5 

13 18.470 0.996 POWER NONE 18 500 3 

14 18.473 1.021 POWER NONE 9 250 3 

15 18.473 1.#QNAN EXPONENTIAL EMPIRICAL 33 100 3 

16 18.517 1.539 EXPONENTIAL_DETRENDED EMPIRICAL 12 100 1 

17 18.558 1.438 EXPONENTIAL EMPIRICAL 53 100 5 

18 18.566 1.542 K_BESSEL_DETRENDED EMPIRICAL 52 100 1 

19 18.575 1.445 K_BESSEL EMPIRICAL 248 100 5 

20 18.603 1.445 K_BESSEL_DETRENDED EMPIRICAL 495 500 5 

21 18.626 1.#QNAN LINEAR NONE 2 100 3 

22 18.632 1.452 WHITTLE_DETRENDED EMPIRICAL 12 100 1 

23 18.636 1.427 K_BESSEL_DETRENDED EMPIRICAL 247 100 5 

24 18.641 1.405 WHITTLE EMPIRICAL 57 100 5 

25 18.646 0.978 LINEAR NONE 3 100 5 

26 18.646 1.441 WHITTLE_DETRENDED EMPIRICAL 55 100 5 

27 18.664 1.356 K_BESSEL_DETRENDED EMPIRICAL 87 250 1 

28 18.667 1.397 EXPONENTIAL_DETRENDED EMPIRICAL 53 100 5 

29 18.669 1.536 EXPONENTIAL EMPIRICAL 13 100 1 

30 18.686 1.607 K_BESSEL EMPIRICAL 52 100 1 

31 18.687 1.413 K_BESSEL EMPIRICAL 155 500 1 

32 18.688 1.623 K_BESSEL_DETRENDED EMPIRICAL 318 250 5 

33 18.704 1.370 K_BESSEL EMPIRICAL 485 500 5 

34 18.710 1.554 K_BESSEL_DETRENDED EMPIRICAL 215 250 3 

35 18.714 1.548 K_BESSEL EMPIRICAL 308 250 5 

36 18.727 1.386 K_BESSEL EMPIRICAL 83 250 1 
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37 18.741 0.992 LINEAR NONE 1 100 1 

38 18.761 1.582 EXPONENTIAL_DETRENDED EMPIRICAL 62 500 3 

39 18.763 1.588 EXPONENTIAL_DETRENDED EMPIRICAL 61 250 5 

40 18.777 1.595 K_BESSEL_DETRENDED EMPIRICAL 166 500 1 

41 18.780 1.427 EXPONENTIAL_DETRENDED EMPIRICAL 18 250 1 

42 18.790 1.486 K_BESSEL_DETRENDED EMPIRICAL 340 500 3 

43 18.796 1.732 EXPONENTIAL_DETRENDED EMPIRICAL 40 250 3 

44 18.800 0.990 LINEAR NONE 3 500 5 

45 18.828 0.994 LINEAR NONE 2 500 3 

46 18.829 1.399 WHITTLE EMPIRICAL 13 100 1 

47 18.848 1.018 LINEAR NONE 2 250 3 

48 18.850 1.556 K_BESSEL EMPIRICAL 207 250 3 

49 18.857 1.004 LINEAR NONE 1 500 1 

50 18.858 1.455 EXPONENTIAL EMPIRICAL 15 250 1 

51 18.883 1.013 LINEAR NONE 2 250 5 

52 18.886 0.992 LINEAR NONE 1 250 1 

53 18.892 1.641 WHITTLE_DETRENDED EMPIRICAL 60 250 5 

54 18.896 1.542 K_BESSEL EMPIRICAL 338 500 3 

55 18.919 1.537 EXPONENTIAL EMPIRICAL 57 250 5 

56 18.938 1.428 WHITTLE_DETRENDED EMPIRICAL 58 500 3 

57 18.939 1.495 EXPONENTIAL_DETRENDED EMPIRICAL 88 500 5 

58 18.945 1.343 WHITTLE_DETRENDED EMPIRICAL 87 500 5 

59 18.970 1.548 EXPONENTIAL_DETRENDED EMPIRICAL 26 500 1 

60 18.979 1.457 WHITTLE_DETRENDED EMPIRICAL 16 250 1 

61 19.007 1.568 EXPONENTIAL EMPIRICAL 38 250 3 

62 19.072 1.512 EXPONENTIAL EMPIRICAL 85 500 5 

63 19.100 1.456 EXPONENTIAL EMPIRICAL 25 500 1 

64 19.118 1.716 WHITTLE_DETRENDED EMPIRICAL 39 250 3 

65 19.150 1.441 WHITTLE EMPIRICAL 61 250 5 

66 19.183 1.571 WHITTLE_DETRENDED EMPIRICAL 24 500 1 

67 19.183 1.397 WHITTLE EMPIRICAL 53 500 3 

68 19.197 1.420 WHITTLE EMPIRICAL 78 500 5 

69 19.222 1.336 WHITTLE EMPIRICAL 16 250 1 

70 19.239 1.467 EXPONENTIAL EMPIRICAL 56 500 3 

71 19.345 1.648 WHITTLE EMPIRICAL 40 250 3 

72 19.362 1.408 WHITTLE EMPIRICAL 24 500 1 

73 20.436 1.#QNAN THIN_PLATE_SPLINE NONE 2 100 3 

74 20.436 0.959 THIN_PLATE_SPLINE NONE 3 100 5 

75 20.553 0.968 THIN_PLATE_SPLINE NONE 1 100 1 
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76 20.595 0.977 THIN_PLATE_SPLINE NONE 1 250 3 

77 20.682 0.959 THIN_PLATE_SPLINE NONE 1 500 1 

78 20.690 0.959 THIN_PLATE_SPLINE NONE 2 500 3 

79 20.690 0.976 THIN_PLATE_SPLINE NONE 2 250 5 

80 20.708 0.954 THIN_PLATE_SPLINE NONE 1 250 1 

81 20.717 0.958 THIN_PLATE_SPLINE NONE 2 500 5 

 
Appendix 2: Kriging parameters and cross-validation statistics used to select a best performing EBK model. 
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Appendix 3: Python Code 

 

The code included below should work with a standard installation of ArcGIS. Modules 

used in the scripts are all part of the standard installation of ArcGIS. 
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Processing Tools 

 

''' 

Python Processing Tools: 4 tools. 

1) Subset-Distance Cumulative Weight Test Tool 

2) Density Function and Cumulative Weight Tool 

3) Continuous Layer Reclassify and Cumulative Weight Test Tool 

4) Categorical Weight Test Tool 

 

To use tools, set toolbox locations, folder locations, and tool parameters. 

Then uncomment code in the 'Tools' section 

 

Jacob DeAngelo 

''' 

 

# Import modules 

import sys, string, os, time, csv 

import numpy as np 

import arcpy 

import ntpath 

from arcpy import env 

 

# Clock 

starttime = time.clock() 

print "Starting  " + time.strftime("%I:%M:%S", time.localtime()) 

 

 

# Set toolbox location(s): Xtools and ArcSDM toolboxes must be referenced 

arcpy.ImportToolbox(r'C:\Program Files (x86)\DataEast\XTools Pro\Toolbox\XTools 

Pro.tbx') # This filepath must point to the xTools toolbox 

arcpy.ImportToolbox('C:\ArcProjects\Workspace\ArcSDM2018\ArcSDM-

master\ArcSDM-master\Toolbox\ArcSDM.pyt') # This filepath must point to the 

ArcSDM toolbox 

 

 

''' 

Folders: Input, output, workspace 

''' 

 

inPathName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\NevadaState1\sdmIn7' # 

Folder contining input data 
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# 'Categorical Weight Test Tool' outPath 

#outPathName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\NevadaState2\calcWofE\inLa

yers\flt_r3Aug2018\mess' # Folder to contain output data 

# 'Continuous Layer Reclassify and Cumulative Weight Test Tool' outPath 

#outPathName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\NevadaState2\heat_250m_v3\

mess' # Folder to contain output data 

# 'Density Function and Cumulative Weight Tool, calculate weights tools' outPath 

#outPathName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\NevadaState2\eq1\ptDensLog

NotWeighted\replicationVerification' # Folder to contain output data 

# 'Subset-Distance Cumulative Weight Test Tool' outPath 

outPathName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\NevadaState2\fault_subsets_A

ug2018\replicateVerify' # Folder to contain output data 

outWorkspaceName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\initialAttempts\junkToDelete' 

# Workspace folder, to contain junk files 

 

''' 

Tool User Settings 

''' 

 

# Parameters for all tools: List of training sites, name of study area raster 

trainingSets = ["gs.shp"] # List of training point shapefiles to be analyzed 

studyAreaRasterName = "nev250m" # Name of study area raster in inPathName folder 

 

# Parameters for 'Subset-Distance Cumulative Weight Test Tool': Attributes must be 

present in all evidence data 

evidenceSets = ["fdn.shp", "fds.shp"] # Evidence data sets 

attribute1 = 'agecode' # Attribute 1 

attribute2 = 'slipcode' # Attribute 2 

 

# Parameters for 'Continuous Layer Reclassify and Cumulative Weight Test Tool' 

contLayers = ["hf_ebk250"] # Name of the raster file to be reclassified & weight tested. 

These must be placed in the output folder. 

numberOfIntervals = '50' # Number of intervals used for reclassification 

reclassInterval = "1" # Size of each interval (in units 

 

# Parameters for 'Density Function and Cumulative Weight Tool, Calculate Weights 

Tool' 
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shpList = ['e15.shp'] # List of evidence data sets to be analyzed 

radiusList = [1000,2000] # List of radii used in density functions 

fieldList = [''] # If user wants to weight based on an attribute, enter attribute name(s) in 

this list 

 

# Parameters for 'Categorical Weight Test Tool' 

catList = ["fn24r_t4", "fn24r_t5"] # Name(s) of categorical rasters for which weights will 

be calculated. These must be placed in the output folder. 

 

 

''' 

Set Geoprocessing environments, other settings: no not modify these 

''' 

 

inPath = inPathName + '\\' 

outPath = outPathName + '\\' 

outWorkspace = outWorkspaceName + '\\' 

arcpy.gp.overwriteOutput = True 

arcpy.CheckOutExtension("spatial") 

studyAreaRaster = inPath + studyAreaRasterName # Do not change this 

cellSize = int(str(arcpy.GetRasterProperties_management(studyAreaRaster, 

"CELLSIZEX"))) # Do not change this 

prjFileName = evidenceSets[0].replace(".shp", ".prj") 

prjFile = inPath + prjFileName 

prjString = open(prjFile, 'r').read() 

rastExtent = arcpy.sa.Raster(studyAreaRaster).extent 

arcpy.env.extent = rastExtent 

arcpy.env.snapRaster = studyAreaRaster 

arcpy.env.mask = studyAreaRaster 

arcpy.env.workspace = outWorkspace 

arcpy.env.scratchWorkspace = outWorkspace 

arcpy.env.outputCoordinateSystem = prjString 

arcpy.env.cellSize = cellSize 

 

 

''' 

Internal modules: no not modify these 

''' 

 

def eucDist(evidenceIn, distRast, cellSize): 

    arcpy.gp.EucDistance_sa(evidenceIn, distRast, "", cellSize, "") 
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def reclassByIntFlipAndMax(unclassRast, rInterval): 

 

    # Reclassification Prep 

    rasterMinx = arcpy.GetRasterProperties_management(unclassRast, "MINIMUM") 

    rasterMin = rasterMinx.getOutput(0) 

    rasterMaxx = arcpy.GetRasterProperties_management(unclassRast, "MAXIMUM") 

    rasterMax = rasterMaxx.getOutput(0) 

    print "Raster min :" + rasterMin 

    print "Raster max :" + rasterMax 

 

    # New modified minimum value 

    ratioMinInt = int(float(rasterMin)/float(rInterval)) 

    rastMinMod = ratioMinInt * float(rInterval) 

 

    # Create class numbers 

    rastRange = float(rasterMax)-float(rasterMin) 

##    numIntervals = math.ceil(rastRange/float(rInterval)) 

    numIntervals = 40 

    blankRange = range(int(numIntervals)) 

    reclassInt = [(x+1) for x in blankRange] 

    revArray = reclassInt[::-1] 

 

    # Min reclass value calc 

    def minReclassValue(reclassInt): 

        ratioMinInt = int(float(rasterMin)/float(rInterval)) 

        minimumValueRange = [((x+ratioMinInt)*float(rInterval)) for x in blankRange] 

        minimumValueRange.remove(minimumValueRange[0]) 

        joj = math.ceil(float(rasterMin))-1 

        newMin = (float(rasterMin))-(float(rInterval)) 

        minimumValueRange.insert(0, newMin) 

        if minimumValueRange[0] == -1: 

            minimumValueRange.remove(minimumValueRange[0]) 

            minimumValueRange.insert(0, 0.0) 

        else: 

            pass 

        return minimumValueRange 

 

    # Max reclass value calc 

    def maxReclassValue(reclassInt): 

        ratioMinInt = int(float(rasterMin)/float(rInterval)) 

        maximumValueRange = [(((x+ratioMinInt)*float(rInterval))+float(rInterval)) for x 

in blankRange] 
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        maximumValueRange.remove(maximumValueRange[len(maximumValueRange)-

1]) 

        maximumValueRange.insert(len(maximumValueRange), 

math.ceil(float(rasterMax))) 

        return maximumValueRange 

 

    minValueRange = minReclassValue(reclassInt) 

    maxValueRange = maxReclassValue(reclassInt) 

 

    # Make 1 string 

    kk = ''.join('{} {} {};'.format(v[0], v[1], k+1) for k,v in 

enumerate(zip(minValueRange, maxValueRange))) 

    fullString = kk[:-1] 

    quoteString = '"' + fullString + '"' 

    print fullString 

    return fullString 

 

    # Toggle code under & over this message to flip reclass 

##    minValueRange = minReclassValue(reclassInt) 

##    maxValueRange = maxReclassValue(reclassInt) 

##    revMinRange = minValueRange[::-1] 

##    revMaxRange = maxValueRange[::-1] 

## 

##    # Make 1 string 

##    kk = ''.join('{} {} {};'.format(v[0], v[1], k+1) for k,v in 

enumerate(zip(revMinRange, revMaxRange))) 

##    pString = kk[:-1] 

##    fullString = pString + ';NODATA ' + str((reclassInt[len(reclassInt)-1])+1) 

##    return fullString 

 

 

def reclassByInt(unclassRast, rInterval): 

 

    # Reclassification Prep 

    rasterMinx = arcpy.GetRasterProperties_management(unclassRast, "MINIMUM") 

    rasterMin = rasterMinx.getOutput(0) 

    rasterMaxx = arcpy.GetRasterProperties_management(unclassRast, "MAXIMUM") 

    rasterMax = rasterMaxx.getOutput(0) 

    print "Raster min :" + rasterMin 

    print "Raster max :" + rasterMax 

 

    # New modified minimum value 
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    ratioMinInt = int(float(rasterMin)/float(rInterval)) 

    rastMinMod = ratioMinInt * float(rInterval) 

 

    # Create class numbers 

    rastRange = float(rasterMax)-float(rasterMin) 

    numIntervals = math.ceil(rastRange/float(rInterval)) 

##    numIntervals = 50 

    blankRange = range(int(numIntervals)) 

    reclassInt = [(x+1) for x in blankRange] 

    revArray = reclassInt[::-1] 

 

    # Min reclass value calc 

    def minReclassValue(reclassInt): 

        ratioMinInt = int(float(rasterMin)/float(rInterval)) 

        minimumValueRange = [((x+ratioMinInt)*float(rInterval)) for x in blankRange] 

        minimumValueRange.remove(minimumValueRange[0]) 

        joj = math.ceil(float(rasterMin))-1 

        newMin = (float(rasterMin))-(float(rInterval)) 

        minimumValueRange.insert(0, newMin) 

        if minimumValueRange[0] == -1: 

            minimumValueRange.remove(minimumValueRange[0]) 

            minimumValueRange.insert(0, 0.0) 

        else: 

            pass 

        return minimumValueRange 

 

    # Max reclass value calc 

    def maxReclassValue(reclassInt): 

        ratioMinInt = int(float(rasterMin)/float(rInterval)) 

        maximumValueRange = [(((x+ratioMinInt)*float(rInterval))+float(rInterval)) for x 

in blankRange] 

        maximumValueRange.remove(maximumValueRange[len(maximumValueRange)-

1]) 

        maximumValueRange.insert(len(maximumValueRange), 

math.ceil(float(rasterMax))) 

        return maximumValueRange 

 

##    minValueRange = minReclassValue(reclassInt) 

##    maxValueRange = maxReclassValue(reclassInt) 

## 

##    # Make 1 string 
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##    kk = ''.join('{} {} {};'.format(v[0], v[1], k+1) for k,v in 

enumerate(zip(minValueRange, maxValueRange))) 

##    fullString = kk[:-1] 

##    quoteString = '"' + fullString + '"' 

##    print fullString 

##    return fullString 

 

    # Toggle code under & over this message to flip reclass 

    minValueRange = minReclassValue(reclassInt) 

    maxValueRange = maxReclassValue(reclassInt) 

    revMinRange = minValueRange[::-1] 

    revMaxRange = maxValueRange[::-1] 

 

    # Make 1 string 

    kk = ''.join('{} {} {};'.format(v[0], v[1], k+1) for k,v in enumerate(zip(revMinRange, 

revMaxRange))) 

    fullString = pString + ';NODATA ' + str((reclassInt[len(reclassInt)-1])+1) 

    return fullString 

 

def reclassEqInt(unclassRast, numInterval): 

 

    # Reclassification Prep 

    rasterMinx = arcpy.GetRasterProperties_management(unclassRast, "MINIMUM") 

    rasterMin = rasterMinx.getOutput(0) 

    rasterMaxx = arcpy.GetRasterProperties_management(unclassRast, "MAXIMUM") 

    rasterMax = rasterMaxx.getOutput(0) 

    print "Raster min :" + rasterMin 

    print "Raster max :" + rasterMax 

 

    # Calcluate reclass interval value 

    rInterval = str((float(rasterMax) - float(rasterMin))/float(numInterval)) 

 

    # New modified minimum value 

    ratioMinInt = int(float(rasterMin)/float(rInterval)) 

 

    # Create class numbers 

    rastRange = float(rasterMax)-float(rasterMin) 

    numIntervals = math.ceil(rastRange/float(rInterval)) 

    blankRange = range(int(numIntervals)) 

    reclassInt = [(x+1) for x in blankRange] 

 

    # Min reclass value calc 



196 

 

    def minReclassValue(reclassInt): 

        ratioMinInt = int(float(rasterMin)/float(rInterval)) 

        minimumValueRange = [(float(rasterMin)+(float(rInterval)*intNum)) for intNum in 

blankRange] 

        minimumValueRange.remove(minimumValueRange[0]) 

        newMin = (float(rasterMin))-(float(rInterval)) 

        minimumValueRange.insert(0, newMin) 

        if minimumValueRange[0] == -1: 

            minimumValueRange.remove(minimumValueRange[0]) 

            minimumValueRange.insert(0, 0.0) 

        else: 

            pass 

        return minimumValueRange 

 

    # Max reclass value calc 

    def maxReclassValue(reclassInt): 

        maximumValueRange = [(float(rasterMin)+(float(rInterval)*intNum)) for intNum in 

reclassInt] 

        maximumValueRange.remove(maximumValueRange[len(maximumValueRange)-

1]) 

        maximumValueRange.insert(len(maximumValueRange), 

math.ceil(float(rasterMax))) 

        return maximumValueRange 

 

    minValueRange = minReclassValue(reclassInt) 

    maxValueRange = maxReclassValue(reclassInt) 

    revMinRange = minValueRange[::-1] 

    revMaxRange = maxValueRange[::-1] 

 

    # Make 1 string 

    kk = ''.join('{} {} {};'.format(v[0], v[1], k+1) for k,v in enumerate(zip(revMinRange, 

revMaxRange))) 

    pString = kk[:-1] 

    fullString = pString + ';NODATA ' + str((reclassInt[len(reclassInt)-1])+1) 

    return fullString 

 

def reclassRaster(distRaster, reclassString): 

    # Process: Reclassify 

    euclidDistReclass = distRaster + "r" 

    arcpy.gp.Reclassify_sa(distRaster, "Value", reclassString, euclidDistReclass, 

"DATA") 
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def calcWts(trainPts, inRaster, outTable): 

    # Process: Calculate Weights 

    arcpy.CalculateWeightsTool_ArcSDM(inRaster, "", trainPts, "Ascending", outTable, 

"2", "1", "-99", "1") 

 

def catWts(trainPts, inRaster, outTable): 

    # Process: Calculate Weights 

    arcpy.CalculateWeightsTool_ArcSDM(inRaster, "", trainPts, "Categorical", outTable, 

"2", "1", "-99", "1") 

 

def nhLog(eqIn, nhField, radius, nhRaster): 

    # Process: Point Statistics 

    arcpy.gp.PointStatistics_sa(eqIn, nhField, nhRaster, cellSize, "Circle " + str(radius) + " 

MAP", "SUM") 

 

    # Process: Log10 

    arcpy.gp.Log10_sa(nhRaster, nhRaster + 'l') 

 

def nhSum(eqIn, nhField, radius, nhRaster): 

    # Process: Point Statistics 

    arcpy.gp.PointStatistics_sa(eqIn, nhField, nhRaster, cellSize, "Circle " + str(radius) + " 

MAP", "SUM") 

 

def logTenRast(rastIn): 

    # Process: Log10 

    arcpy.gp.Log10_sa(rastIn, rastIn + 'l') 

 

def kernelDensity(evidenceIn, nhField, radius, kdRast): 

    arcpy.gp.KernelDensity_sa(evidenceIn, nhField, kdRast, cellSize, str(radius), 

"SQUARE_KILOMETERS") 

 

def simpleDensity(evidenceIn, nhField, radius, sdRast): 

    arcpy.gp.PointDensity_sa(evidenceIn, nhField, sdRast, cellSize, "Circle " + str(radius) 

+ " MAP", "SQUARE_KILOMETERS") 

 

def lineDensity(evidenceIn, nhField, radius, ldRast): 

    arcpy.gp.LineDensity_sa(evidenceIn, nhField, ldRast, cellSize, str(radius), 

"SQUARE_KILOMETERS") 

 

def unique_values(table , field): 

    with arcpy.da.SearchCursor(table, [field]) as cursor: 

        return sorted({row[0] for row in cursor}) 
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def selAttrib(inputFaults, ageWtsList, slipWtsList): 

    ageCodes = unique_values(inputFaults, attribute1) 

    slipCodes = unique_values(inputFaults, attribute2) 

    print (ageCodes) 

    print (slipCodes) 

    arcpy.MakeFeatureLayer_management(inputFaults, "fltlyr") 

    for aCat in ageCodes: 

        print aCat 

        for sCat in slipCodes: 

            selStr = '"' + attribute1 + '"' + " <= " + str(aCat) + " AND " + '"' + attribute2 + '"' + 

" <= " + str(sCat) 

            print 'selStr = ' + selStr 

            arcpy.SelectLayerByAttribute_management("fltlyr", "NEW_SELECTION", 

selStr) 

            fltName = (ntpath.basename(inputFaults))[:-4] 

            faultSubset = outPath + fltName + '_' + str(aCat) + '_' + str(sCat) + '.shp' 

            print faultSubset 

            arcpy.CopyFeatures_management("fltlyr", faultSubset, "", "0", "0", "0") 

            if arcpy.management.GetCount(faultSubset)[0] == "0": 

                print 'no data in: ' + faultSubset 

            else: 

                distRaster = faultSubset[:-4] 

                eucDist(faultSubset, distRaster, cellSize) 

                fullRcString = reclassByIntFlipAndMax(distRaster, reclassInterval) 

                reclassRaster(distRaster, fullRcString) 

                for trSet in trainingSets: 

                    print 'Evidence: ' + (ntpath.basename(faultSubset))[:-4] + '. Training:' + trSet 

                    wtsTable = outPath + trSet[:-4] + '_' + str(aCat) + '_' + str(sCat) + '_' + 

(ntpath.basename(faultSubset))[:-4] 

                    calcWts(inPath + trSet, distRaster + "r", wtsTable) 

                    print "Table created: " + wtsTable 

 

                    #CleanUp 

                    # Delete xml if it exists 

                    xmlJunk1 = wtsTable + ".dbf.xml" 

                    try: 

                        os.remove(xmlJunk1) 

                    except OSError: 

                        pass 
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''' 

Tools: There are 4 tools below- to use any of them, uncomment the text 

''' 

 

# Density Function and Cumulative Weight Tool, Calculate Weights Tool: (Uncomment 

next 40 lines to run this) 

## 

##for nameField in fieldList: 

##    for shpName in shpList: 

##        print 'Running on point file: ' + shpName 

##        shpPath = inPath + shpName 

##        for nhRadius in radiusList: 

##            print 'Running on radius: ' + str(nhRadius) 

##            nhRast = outPath + shpName[:-4] + nameField[:1] + str(nhRadius) 

## 

##            #nhSum(shpPath, nameField, nhRadius, nhRast) 

##            simpleDensity(shpPath, nameField, nhRadius, nhRast) 

##            #lineDensity(shpPath, nameField, nhRadius, nhRast) 

##            #kernelDensity(shpPath, nameField, nhRadius, nhRast) 

## 

##            logRaster = 'log' 

##            if logRaster == 'log': 

##                logTenRast(nhRast) 

##                logRast = nhRast + 'l' 

##                fullRcString = reclassEqInt(logRast, numberOfIntervals) 

##                reclassRaster(logRast, fullRcString) 

##            elif logRaster == 'notlog': 

##                fullRcString = reclassEqInt(nhRast, numberOfIntervals) 

##                reclassRaster(nhRast, fullRcString) 

## 

##            for trSet in trainingSets: 

##                print 'Evidence: ' + shpName + '. Training:' + trSet 

##                wtsTable = outPath + shpName[:-4] + nameField + '_' + str(nhRadius) + '_' + 

trSet[:-4] 

##                if logRaster == 'log': 

##                    calcWts(inPath + trSet, nhRast + "lr", wtsTable) 

##                elif logRaster == 'notlog': 

##                    calcWts(inPath + trSet, nhRast + "r", wtsTable) 

##                print "Table created: " + wtsTable 

## 

##                #CleanUp 
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##                # Delete xml if it exists 

##                xmlJunk1 = wtsTable + ".dbf.xml" 

##                try: 

##                    os.remove(xmlJunk1) 

##                except OSError: 

##                    pass 

 

 

# Continuous Layer Reclassify and Cumulative Weight Test Tool: (Uncomment next 17 

lines to run this) 

## 

##for evSet in contLayers: 

##    fullRcString = reclassByInt(outPath + evSet, reclassInterval) 

##    reclassRaster(outPath + evSet, fullRcString) 

##    for trSet in trainingSets: 

##        print 'Evidence: ' + evSet + '. Training:' + trSet 

##        wtsTable = outPath + evSet + '_' + trSet[:-4] 

##        calcWts(inPath + trSet, outPath + evSet + "r", wtsTable) 

##        print "Table created: " + wtsTable 

## 

##        #CleanUp 

##        # Delete xml if it exists 

##        xmlJunk1 = wtsTable + ".dbf.xml" 

##        try: 

##            os.remove(xmlJunk1) 

##        except OSError: 

##            pass 

 

 

# Categorical Weight Test Tool: (Uncomment next 14 lines to run this) 

## 

##for trSet in trainingSets: 

##    for cat in catList: 

##        print 'Evidence: ' + cat + '. Training:' + trSet 

##        wtsTable = outPath + cat + '_' + trSet[:-4] 

##        catWts(inPath + trSet, outPath + cat, wtsTable) 

## 

##        #CleanUp 

##        # Delete xml if it exists 

##        xmlJunk1 = wtsTable + ".dbf.xml" 

##        try: 

##            os.remove(xmlJunk1) 
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##        except OSError: 

##            pass 

 

 

# Subset-Distance Cumulative Weight Test Tool: (Uncomment next 9 lines to run this) 

## 

### Fault selection 

##ageWts = [] 

##slipWts = [] 

## 

##for evSet in evidenceSets: 

## 

##    print 'Evidence:' + evSet 

##    selAttrib(inPath + evSet, ageWts, slipWts) 

 

 

''' 

Clock 

''' 

 

stoptime = time.clock() 

print "Done  " + time.strftime("%I:%M:%S", time.localtime()) 

elapsed = stoptime-starttime 

print "Elapsed time in seconds " 

print str(elapsed) + " for them to go"   
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Cumulative Plotting Tool 

 

''' 

Cumulative Plotting Tool 

 

Jacob DeAngelo 

''' 

 

# Import modules 

import sys, string, os, time 

import numpy as np 

import matplotlib 

from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas 

from matplotlib.figure import Figure 

import matplotlib.mlab as mlab 

import matplotlib.pyplot as plt 

import matplotlib.gridspec as gridspec 

import glob 

import arcpy 

import ntpath 

from pylab import figure, show, legend, ylabel 

 

# Clock 

starttime = time.clock() 

print "Starting  " + time.strftime("%I:%M:%S", time.localtime()) 

 

# Initial User Settings 

gs = gridspec.GridSpec(1, 2, width_ratios=[3, 2]) # figure size ratio (No need to modify 

this) 

arcpy.ImportToolbox(r'C:\Program Files (x86)\DataEast\XTools Pro\Toolbox\XTools 

Pro.tbx') # This filepath must point to the xTools toolbox 

 

# Important User Settings 

 

# Data folder: The following folder must point to the folder with .dbf files that will be 

plotted 

dataFolderName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\NevadaState2\fault_subsets4\2

019_faultPlot\devVerify1' 

dataFolder = dataFolderName + '//' # Do not change this 

 

# Set Invert of x-axis: 'invert' to invert x-axis, otherwise leave blank 
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invert = '' 

#invert = 'invert' # To invert x-axis, uncomment this line 

 

# If user is plotting distance, set to 'distance' to correctly plot data and labels, otherwise 

leave as 'nonDist' for other surfaces (HF, density, etc) 

usage = 'nonDist' 

#usage = 'distance' # To use distance mode, uncomment this line 

distFactor = 4 # Conversion from 'Class' to 'km' For example, if class represents 250m, 

use '4' (250m = 1km/4) 

 

# Cut the Studentized Contrast in half if nessicary- to do so set to 'scHalf' 

scHalf = '' 

#scHalf = 'scHalf' # To cut SC in half, uncomment this line 

 

 

# Define internal modules 

 

# Read .dbf file 

def Excel2CSV(ExcelFile, SheetName, CSVFile): 

     import xlrd 

     import csv 

     workbook = xlrd.open_workbook(ExcelFile) 

     worksheet = workbook.sheet_by_name(SheetName) 

     csvfile = open(CSVFile, 'wb') 

     wr = csv.writer(csvfile, quoting=csv.QUOTE_ALL) 

     for rownum in xrange(worksheet.nrows): 

         wr.writerow( 

             list(x.encode('utf-8') if type(x) == type(u'') else x 

                  for x in worksheet.row_values(rownum))) 

     csvfile.close() 

 

 

 

# Get unique values, order preserved 

def uVal(seq): 

   checked = [] 

   for e in seq: 

       if e not in checked: 

           checked.append(e) 

   return checked 

 

# Get lisits from .dbf 
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fileList = [] 

for files in glob.glob(dataFolder + '*.dbf'): 

    fileList.append((ntpath.basename(files))[:-4]) 

evList = [] 

radList = [] 

trainList = [] 

for fileName in fileList: 

    evList.append(fileName.split("_")[0]) 

    radList.append(fileName.split("_")[1]) 

    trainList.append(fileName.split("_")[2]) 

evUnique = uVal(evList) 

radUnique = uVal(radList) 

trainUnique = uVal(trainList) 

 

# reorder y-axis 

if str.isdigit(trainUnique[0]) == True: 

    trainUnique.sort(key=float) 

else: 

    pass 

print evUnique 

print radUnique 

print trainUnique 

plotNum = int(str(len(radUnique)) + str(len(trainUnique)) + str(9)) 

print plotNum 

 

 

# Processing 

for evType in range(len(evUnique)): 

 

    # Create a figure with size 6 x 6 inches. 

    fWid = (len(radUnique) * 6) + 2 

    fHei = (len(trainUnique) * 5) + 3 

    fig2 = Figure(figsize=(fWid, fHei), dpi=80, facecolor='w', edgecolor='k') 

 

    # Create a canvas and add the figure to it. 

    canvas2 = FigureCanvas(fig2) 

 

    # Processing 

    for fil in range(len(fileList)): 

        if fileList[fil].split("_")[0] == evUnique[evType]: 

            files = dataFolder + fileList[fil] + '.dbf' 

            print files 
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            # Calculate subplot location number 

            numTrain = (trainUnique.index(fileList[fil].split("_")[2])) 

            numRad = (radUnique.index(fileList[fil].split("_")[1])) 

            sln = (numTrain * (len(radUnique))) + (numRad + 1) 

            print 'Count Training: ' + str(numTrain) 

            print 'Count Radius: ' + str(numRad) 

            print sln 

 

            # dbf to xls 

            xlsFile = files[:-4] + '.xls' 

            try: 

                os.remove(xlsFile) 

            except OSError: 

                pass 

            # Process: Table To Excel 

            arcpy.TableToExcel_conversion(files, xlsFile, "NAME", "CODE") 

 

            # xls to csv 

            fileName = (ntpath.basename(xlsFile))[:-4] 

            if len(fileName)>31: 

                sheetName = (fileName)[:31] 

            else: 

                sheetName = fileName 

            csvFile = xlsFile[:-4] + '.csv' 

            Excel2CSV(xlsFile, sheetName, csvFile) 

            print csvFile 

 

            # Read data from a CSV file 

            r = mlab.csv2rec(csvFile) 

 

            # Create a figure with size 6 x 6 inches. 

            fig = Figure() 

 

            # Create a canvas and add the figure to it. 

            canvas = FigureCanvas(fig) 

 

            # Create a subplot. 

            ax = fig.add_subplot(111) 

            ay = fig2.add_subplot(int(str(len(trainUnique))),int(str(len(radUnique))),sln) 

 

            # Invert setting 
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            if invert == 'invert': 

                ax.invert_xaxis() 

                ay.invert_xaxis() 

 

            # Get data from spreadsheet 

            r.cols = r.dtype.names 

 

            # Distance/Non-Distance Settings 

            if usage == 'distance': 

                xAxisData = r[r.cols[2]]/distFactor 

                xAxisTrainData = (r[r.cols[2]]/4)[:-1] 

            elif usage == 'nonDist': 

                xAxisData = r[r.cols[2]] 

                xAxisTrainData = (r[r.cols[2]])[:-1] 

 

            yAxisData = r[r.cols[6]] 

 

            # Plot Training Count or Percentage 

            trainPlotType = 'Count' 

            if trainPlotType == 'Count': 

                trainData = r[r.cols[5]][:-1] 

            elif trainPlotType == 'Percentage': 

                trainData = r[r.cols[5]][:-1]/r[r.cols[3]][:-1] 

            else: 

                print 'Training plot type was set wrong' 

                pass 

 

            areaCovered = r[r.cols[3]][-25] 

            areaCoveredTotal = r[r.cols[3]][-1] 

            print 'Area Covered (km2): ' + str(areaCovered) 

 

            # Set the title. 

            theTitle = fileName 

 

            if usage == 'distance': 

                titleString = theTitle.split("_")[0] + '.' + theTitle.split("_")[1] + '.' + 

theTitle.split("_")[2] + ' ' + '4km: ' + str('{:,}'.format(int(areaCovered))) + ' km2 (' + 

str(int(100*(areaCovered/areaCoveredTotal))) + '%), ' + str('{:,}'.format(int(r[r.cols[5]][-

25]))) + ' TP.'+  ' +W 1km: ' + str(round(yAxisData[3], 1)) 

                ax.set_title(titleString,fontsize=11) 

                ay.set_title(titleString,fontsize=10) 

            elif usage == 'nonDist': 
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                titleString = theTitle.split("_")[0] + '.' + theTitle.split("_")[1] + '.' + 

theTitle.split("_")[2] 

                ax.set_title(titleString,fontsize=18) 

                ay.set_title(titleString,fontsize=16) 

 

            print titleString 

 

            # Set the X Axis label. 

            if usage == 'distance': 

                ax.set_xlabel("Kilometers",fontsize=12) 

                ay.set_xlabel("Kilometers",fontsize=12) 

            elif usage == 'nonDist': 

                if theTitle.split("_")[1] == 'hf': 

                    xAxisTitle = "mW/m2" 

                elif theTitle.split("_")[1] == 't3': 

                    xAxisTitle = "Degrees Celsius" 

                elif theTitle.split("_")[1] == 'str': 

                    xAxisTitle = "Second Invariant of Strain Rate Tensor (10^-9/yr)" 

                elif theTitle.split("_")[1] == 'strr8cNative': 

                    xAxisTitle = "Second Invariant of Strain Rate Tensor (10^-9/yr)" 

                else: 

                    xAxisTitle = "Class" 

                ax.set_xlabel(xAxisTitle,fontsize=12) 

                ay.set_xlabel(xAxisTitle,fontsize=12) 

 

            # Set the Y Axis label. The limits are set to show weight values between W+ = 0 

and W+ = 4 

            ax.set_ylabel("+ W",fontsize=12) 

            ax.set_ylim(0, 4) 

            ay.set_ylabel("+ W",fontsize=12) 

            ay.set_ylim(0, 4) 

 

            # Display Grid. 

            ax.grid(True,linestyle='-',color='0.75') 

            ay.grid(True,linestyle='-',color='0.75') 

 

            # Generate the Scatter Plot. 

            ax.plot(xAxisTrainData,yAxisData[:-1],'r-', xAxisTrainData, yAxisData[:-1], 'r.'); 

            ay.plot(xAxisTrainData,yAxisData[:-1],'r-', xAxisTrainData, yAxisData[:-1], 'r.'); 

 

            # Error bars 

            error = r[r.cols[7]][:-1] 
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            ax.fill_between(xAxisTrainData, yAxisData[:-1]-error, yAxisData[:-1]+error, 

alpha=0.25) 

            ay.fill_between(xAxisTrainData, yAxisData[:-1]-error, yAxisData[:-1]+error, 

alpha=0.25) 

 

            # Studentized 

            if scHalf == 'scHalf': 

                ax.plot(xAxisTrainData, r[r.cols[12]][:-1]/2, 'm.'); 

                ay.plot(xAxisTrainData, r[r.cols[12]][:-1]/2, 'm.'); 

            else: 

                ax.plot(xAxisTrainData, r[r.cols[12]][:-1], 'm.'); 

                ay.plot(xAxisTrainData, r[r.cols[12]][:-1], 'm.'); 

 

            # Second plot: Training sites count plot 

            ax2 = fig.add_subplot(111, sharex=ax, frameon=False) 

            ay2 = fig2.add_subplot(int(str(len(trainUnique))),int(str(len(radUnique))),sln, 

sharex=ay, frameon=False) 

            ax2.plot(xAxisTrainData, trainData, 'b.', markersize=8) 

 

            ay2.plot(xAxisTrainData, trainData, 'b.', markersize=6) 

            ax2.yaxis.tick_right() 

            ay2.yaxis.tick_right() 

            ax2.yaxis.set_label_position("right") 

            ay2.yaxis.set_label_position("right") 

 

            # Label: Training Count or Percentage 

            if trainPlotType == 'Count': 

                ax2.set_ylabel("Training Points Count",fontsize=12) 

                ay2.set_ylabel("Training Points Count",fontsize=12) 

            elif trainPlotType == 'Percentage': 

                ax2.set_ylabel("Training Points Per Square km",fontsize=12) 

                ay2.set_ylabel("Training Points Per Square km",fontsize=12) 

            else: 

                print 'Training plot type was set wrong' 

                pass 

 

            # Third plot: Contrast 

            ax.plot(xAxisTrainData, r[r.cols[10]][:-1], 'g.', markersize=5) 

            ay.plot(xAxisTrainData, r[r.cols[10]][:-1], 'g.', markersize=5) 

 

            fig.autofmt_xdate() 

            fig.suptitle(theTitle,fontsize=14) 
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            # Save the generated Scatter Plot to a PNG file. 

            outPNG = csvFile.replace(".csv", ".png") 

            #canvas.print_figure(outPNG,dpi=250) 

            #outPNG = csvFile.replace(".csv", ".pdf") 

            canvas.print_figure(outPNG) 

 

            os.remove(xlsFile) 

 

    # Plot Title 

    fig2.suptitle(evUnique[evType] + " + W. Totoal Area (km2): " + 

str('{:,}'.format(int(areaCoveredTotal))),fontsize=20) 

    fig2.subplots_adjust(wspace = 0.35) 

 

    # Generate figures 

    canvas2.print_figure(dataFolder + '_' + evUnique[evType] + '_Summary.png') 

    canvas2.print_figure(dataFolder + '_' + evUnique[evType] + '_Summary.pdf') 

 

 

# Clock 

stoptime = time.clock() 

print "Done  " + time.strftime("%I:%M:%S", time.localtime()) 

elapsed = stoptime-starttime 

print "Elapsed time in seconds " 

print elapsed   
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Categorical Plotting Tool 

 

''' 

Categorical Plotting Tool 

 

Jacob DeAngelo 

''' 

 

# Import modules 

import sys, string, os, time 

import numpy as np 

import matplotlib 

from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas 

from matplotlib.figure import Figure 

import matplotlib.mlab as mlab 

import matplotlib.pyplot as plt 

import matplotlib.gridspec as gridspec 

import glob 

import arcpy 

import ntpath 

from pylab import figure, show, legend, ylabel 

 

# Clock 

starttime = time.clock() 

print "Starting  " + time.strftime("%I:%M:%S", time.localtime()) 

 

# Initial User Settings 

gs = gridspec.GridSpec(1, 2, width_ratios=[3, 2]) # figure size ratio (No need to modify 

this) 

arcpy.ImportToolbox(r'C:\Program Files (x86)\DataEast\XTools Pro\Toolbox\XTools 

Pro.tbx')# This filepath must point to the xTools toolbox 

 

# Important User Settings 

 

# Data folder: The following folder must point to the folder with .dbf files that will be 

plotted 

dataFolderName = 

r'C:\ArcProjects\Datasets\PlayFairway\NevadaPFA\layers\NevadaState2\heat_250m_v3\r

eclass3\2019Plot\devVerify1' 

dataFolder = dataFolderName + '//' # Do not change this 

 

# Set Invert of x-axis: 'invert' to invert x-axis, otherwise leave blank 
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invert = '' 

#invert = 'invert' # To invert x-axis, uncomment this line 

 

# Set either 'plotByCategory' (Uses native 'class' units from .dbf table) or 'plotByClass' 

(must use correspoinding lists in 'binLists' section) 

plotBy = 'plotByCategory' 

 

# If user chooses to plot studentized contrast (Set to 'studentized') or weight/standatd 

deviation (Set to 'catStudentized') 

scType = 'studentized' 

#scType = 'catStudentized' 

 

 

# binLists: 'breakList' must be set to the text after the first '_' in .dbf file name, 

'breakValues' must be set to  bin thresholds 

breakNames = ['r1', 'r2', 'r3'] 

breakValues = [[163, 185, 201, 219, 231], 

[163, 186, 198, 208, 216, 225, 231], 

[145, 177, 192, 201, 211, 227, 231]] 

 

breakDict = dict(zip(breakNames, breakValues)) 

print(breakDict) 

 

# Do not change this 

plotType = 'Categorical' 

#plotType = 'Ascending' 

 

 

# Define internal modules 

 

# Read .dbf file 

def Excel2CSV(ExcelFile, SheetName, CSVFile): 

     import xlrd 

     import csv 

     workbook = xlrd.open_workbook(ExcelFile) 

     worksheet = workbook.sheet_by_name(SheetName) 

     csvfile = open(CSVFile, 'wb') 

     wr = csv.writer(csvfile, quoting=csv.QUOTE_ALL) 

     for rownum in xrange(worksheet.nrows): 

         wr.writerow( 

             list(x.encode('utf-8') if type(x) == type(u'') else x 

                  for x in worksheet.row_values(rownum))) 
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     csvfile.close() 

 

 

 

# Get unique values, order preserved 

def uVal(seq): 

   checked = [] 

   for e in seq: 

       if e not in checked: 

           checked.append(e) 

   return checked 

 

# Get lisits from .dbf 

fileList = [] 

for files in glob.glob(dataFolder + '*.dbf'): 

    fileList.append((ntpath.basename(files))[:-4]) 

evList = [] 

radList = [] 

trainList = [] 

for fileName in fileList: 

    evList.append(fileName.split("_")[0]) 

    radList.append(fileName.split("_")[1]) 

    trainList.append(fileName.split("_")[2]) 

evUnique = uVal(evList) 

radUnique = uVal(radList) 

trainUnique = uVal(trainList) 

 

# reorder y-axis 

if isinstance(trainUnique[0], str) == True: 

    pass 

else: 

    trainUnique.sort(key=float) 

print evUnique 

print radUnique 

print trainUnique 

plotNum = int(str(len(radUnique)) + str(len(trainUnique)) + str(9)) 

print plotNum 

 

 

# Processing 

for evType in range(len(evUnique)): 
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    # Create a figure with size 6 x 6 inches. 

    fWid = (len(radUnique) * 6) + 2 

    fHei = (len(trainUnique) * 5) + 3 

    fig2 = Figure(figsize=(fWid, fHei), dpi=80, facecolor='w', edgecolor='k') 

 

    # Create a canvas and add the figure to it. 

    canvas2 = FigureCanvas(fig2) 

 

    # Processing 

    for fil in range(len(fileList)): 

        if fileList[fil].split("_")[0] == evUnique[evType]: 

            files = dataFolder + fileList[fil] + '.dbf' 

            print files 

 

            # Calculate subplot location number 

            numTrain = (trainUnique.index(fileList[fil].split("_")[2])) 

            numRad = (radUnique.index(fileList[fil].split("_")[1])) 

            sln = (numTrain * (len(radUnique))) + (numRad + 1) 

            print 'Count Training: ' + str(numTrain) 

            print 'Count Radius: ' + str(numRad) 

            print sln 

 

            # dbf to xls 

            xlsFile = files[:-4] + '.xls' 

            try: 

                os.remove(xlsFile) 

            except OSError: 

                pass 

            # Process: Table To Excel 

            arcpy.TableToExcel_conversion(files, xlsFile, "NAME", "CODE") 

 

            # xls to csv 

            fileName = (ntpath.basename(xlsFile))[:-4] 

            if len(fileName)>31: 

                sheetName = (fileName)[:31] 

            else: 

                sheetName = fileName 

            csvFile = xlsFile[:-4] + '.csv' 

            Excel2CSV(xlsFile, sheetName, csvFile) 

            print csvFile 

 

            # Read data from a CSV file 
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            r = mlab.csv2rec(csvFile) 

 

            # Create a figure with size 6 x 6 inches. 

            fig = Figure() 

 

            # Create a canvas and add the figure to it. 

            canvas = FigureCanvas(fig) 

 

            # Create a subplot. 

            ax = fig.add_subplot(111) 

            ay = fig2.add_subplot(int(str(len(trainUnique))),int(str(len(radUnique))),sln) 

 

            # Invert setting 

            if invert == 'invert': 

                ax.invert_xaxis() 

                ay.invert_xaxis() 

 

            # Get data from spreadsheet 

            r.cols = r.dtype.names 

 

            # Plot by Category or Class Settings 

            if plotBy == 'plotByCategory': 

                ax.set_xlabel("Category",fontsize=12) 

                ay.set_xlabel("Category",fontsize=12) 

            elif plotBy == 'plotByClass': 

                ax.set_xlabel("Class",fontsize=12) 

                ay.set_xlabel("Class",fontsize=12) 

            else: 

                ax.set_xlabel("Category",fontsize=12) 

                ay.set_xlabel("Category",fontsize=12) 

 

            # Dictionary lookup for category to class conversion 

            if plotBy == 'plotByCategory': 

                pass 

            elif plotBy == 'plotByClass': 

                # Generate category's average class values 

                sas = breakDict.get(fileList[fil].split("_")[1]) 

                print sas 

                avList = [] 

                for valCode in range(len(sas)): 

                    if sas[valCode-1] > sas[valCode]: 

                        avList.append((sas[valCode]+0)/2) 
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                    else: 

                        avList.append((sas[valCode]+sas[valCode-1])/2) 

                print avList 

            else: 

                pass 

 

            # Set either 'plotByCategory' or 'plotByClass' 

            if plotBy == 'plotByCategory': 

                if plotType == 'Categorical': 

                    xAxisData = r[r.cols[2]] 

                    xAxisTrainData = (r[r.cols[2]])[:-1] 

                elif plotType == 'Ascending': 

                    xAxisData = r[r.cols[2]]/4 

                    xAxisTrainData = (r[r.cols[2]]/4)[:-1] 

                else: 

                    print 'Set the plotType variable to either Categorical or Ascending' 

            elif plotBy == 'plotByClass': 

                if plotType == 'Categorical': 

                    xAxisData = avList 

                    xAxisTrainData = avList[:-1] 

                elif plotType == 'Ascending': 

                    xAxisData = r[r.cols[2]]/4 

                    xAxisTrainData = avList[:-1] 

                else: 

                    print 'Set the plotType variable to either Categorical or Ascending' 

 

            yAxisData = r[r.cols[6]] 

 

            # Plot Training Count or Percentage 

            trainPlotType = 'Count' 

            if trainPlotType == 'Count': 

                trainData = r[r.cols[5]] 

            elif trainPlotType == 'Percentage': 

                trainData = r[r.cols[5]]/r[r.cols[3]] 

            else: 

                print 'Training plot type was set wrong' 

                pass 

 

            areaCovered = r[r.cols[3]][-2] 

            areaCoveredTotal = r[r.cols[3]][-1] 

 

            # Studentized type setting 
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            if scType == 'catStudentized': 

                studCon = r[r.cols[6]]/r[r.cols[7]] 

            else: 

                studCon = r[r.cols[12]] 

 

            print 'Area Covered (km2): ' + str(areaCovered) 

 

            # Set the title. 

            theTitle = fileName 

            titleString = theTitle + '. ' + str('{:,}'.format(int(areaCovered))) + ' km2 (' + 

str(int(100*(areaCovered/areaCoveredTotal))) + '%), ' + str('{:,}'.format(int(r[r.cols[5]][-

2]))) + ' TP' 

            print titleString 

 

            if plotType == 'Categorical': 

                ax.set_title(theTitle,fontsize=12) 

                ay.set_title(theTitle,fontsize=12) 

            elif plotType == 'Ascending': 

                ax.set_title(titleString,fontsize=12) 

                ay.set_title(titleString,fontsize=12) 

            else: 

                print 'Set the plotType variable to either Categorical or Ascending' 

 

            # Set the X Axis label. 

            # Set either 'plotByCategory' or 'plotByClass' 

 

            if plotBy == 'plotByCategory': 

                ax.set_xlabel("Category",fontsize=12) 

                ay.set_xlabel("Category",fontsize=12) 

            elif plotBy == 'plotByClass': 

                if fileList[fil].split("_")[1] == 'strr8cNative': 

                    ax.set_xlabel("Second Invariant of Strain Rate Tensor (10^-

9/yr)",fontsize=12) 

                    ay.set_xlabel("Second Invariant of Strain Rate Tensor (10^-

9/yr)",fontsize=12) 

                else: 

                    ax.set_xlabel("Class",fontsize=12) 

                    ay.set_xlabel("Class",fontsize=12) 

            else: 

                ax.set_xlabel("Category",fontsize=12) 

                ay.set_xlabel("Category",fontsize=12) 

 



217 

 

            # Set the Y Axis label. The limits are set to show weight values between W+ = -1 

and W+ = 4 

            ax.set_ylabel("+ W",fontsize=12) 

            ax.set_ylim(-1, 4) 

            #ax.set_ylim(-2, 2) 

            ay.set_ylabel("+ W",fontsize=12) 

            ay.set_ylim(-1, 4) 

            #ay.set_ylim(-2, 2) 

 

            # Display Grid. 

            ax.grid(True,linestyle='-',color='0.75') 

            ay.grid(True,linestyle='-',color='0.75') 

 

            # Generate the Scatter Plot. 

 

            # Plot Zero Line 

            zeroPts = [] 

            for xad in xAxisData: 

                zeroPts.append(0) 

            print zeroPts 

 

            ax.plot(xAxisData, zeroPts, 'k-', markersize=5, linewidth=2); 

            ay.plot(xAxisData, zeroPts, 'k-', markersize=5, linewidth=2); 

 

            # Plot Weight Line 

            ax.plot(xAxisData,yAxisData,'r-', xAxisData, yAxisData, 'r.', markersize=12); 

            ay.plot(xAxisData,yAxisData,'r-', xAxisData, yAxisData, 'r.', markersize=15); 

 

            # Error bars 

            error = r[r.cols[7]] 

            ax.errorbar(xAxisData, yAxisData, yerr = error, linewidth = 3, color = 'red') 

            ay.errorbar(xAxisData, yAxisData, yerr = error, linewidth = 3, color = 'red') 

 

            # Second plot: Training sites count plot 

            ax2 = fig.add_subplot(111, sharex=ax, frameon=False) 

            ay2 = fig2.add_subplot(int(str(len(trainUnique))),int(str(len(radUnique))),sln, 

sharex=ay, frameon=False) 

 

            ax2.plot(xAxisData, trainData, 'b.', markersize=12) 

            ay2.plot(xAxisData, trainData, 'b.', markersize=15) 

            print xAxisData 

            ax2.yaxis.tick_right() 
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            ay2.yaxis.tick_right() 

            ax2.yaxis.set_label_position("right") 

            ay2.yaxis.set_label_position("right") 

 

            # Label: Training Count or Percentage 

            if trainPlotType == 'Count': 

                ax2.set_ylabel("Training Points Count",fontsize=12) 

                ay2.set_ylabel("Training Points Count",fontsize=12) 

            elif trainPlotType == 'Percentage': 

                ax2.set_ylabel("Training Points Per Square km",fontsize=12) 

                ay2.set_ylabel("Training Points Per Square km",fontsize=12) 

            else: 

                print 'Training plot type was set wrong' 

                pass 

 

            # Third plot: Training sites per area examined 

            ax3 = fig.add_subplot(111, sharex=ax2, frameon=False) 

            ay3 = fig2.add_subplot(int(str(len(trainUnique))),int(str(len(radUnique))),sln, 

sharex=ay2, frameon=False) 

 

            # Plot either area or TpArea - (Training points over area) 

            greenPlot = 'area' 

            if greenPlot == 'TpArea': 

                ax3.plot(xAxisData, r[r.cols[5]]/r[r.cols[3]], 'g.', markersize=10) 

                ay3.plot(xAxisData, r[r.cols[5]]/r[r.cols[3]], 'g.', markersize=13) 

            elif greenPlot == 'area': 

                areaList = r[r.cols[3]] 

                ax3.plot(xAxisData, areaList, 'g.', markersize=10) 

                ay3.plot(xAxisData, areaList, 'g.', markersize=13) 

                ax3.plot(xAxisData, np.cumsum(areaList), 'g-', markersize=10) 

                ay3.plot(xAxisData, np.cumsum(areaList), 'g-', markersize=13) 

            else: 

                print 'Need to set the green point choice- Area or TP/Area' 

 

            print xAxisData 

 

            ax3.set_yticklabels([]) 

            ay3.set_yticklabels([]) 

 

            # Plot Studentized Contrast (It's turned off, uncomment the next 18 lines to 

enable) 

##            ax.plot(xAxisData, studCon, 'm.', markersize=9); 
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##            ay.plot(xAxisData, studCon, 'm.', markersize=12); 

 

##            # Plot Zero Line 

##            zeroPts = [] 

##            for xad in xAxisData: 

##                zeroPts.append(0) 

##            print zeroPts 

## 

##            ax.plot(xAxisData, zeroPts, 'k-', markersize=5, linewidth=2); 

##            ay.plot(xAxisData, zeroPts, 'k-', markersize=5, linewidth=2); 

 

##            ax2.set_yticklabels([]) 

##            ay2.set_yticklabels([]) 

##            ax2.set_xticklabels([]) 

##            ay2.set_xticklabels([]) 

 

##            ax2.set_ylabel("Training Points Count",fontsize=12) 

##            ay2.set_ylabel("Training Points Count",fontsize=12) 

 

            fig.autofmt_xdate() 

            fig.suptitle(theTitle,fontsize=14) 

 

            # Save the generated Scatter Plot to a PNG file. 

            outPNG = csvFile.replace(".csv", ".png") 

            #canvas.print_figure(outPNG,dpi=75) 

            #outPNG = csvFile.replace(".csv", ".pdf") 

            canvas.print_figure(outPNG) 

 

            os.remove(xlsFile) 

 

    # Plot Title 

    if plotType == 'Categorical': 

        fig2.suptitle(evUnique[evType] + "+ W Categorical. Total Area (km2): " + 

str('{:,}'.format(int(sum(r[r.cols[3]])))),fontsize=14) 

    elif plotType == 'Ascending': 

        fig2.suptitle(evUnique[evType] + "+ W Ascending. Total Area (km2): " + 

str('{:,}'.format(int(areaCoveredTotal))),fontsize=14) 

    else: 

        print 'Set the plotType variable to either Categorical or Ascending' 

 

    fig2.subplots_adjust(wspace = 0.35) 
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    # Generate figures 

    canvas2.print_figure(dataFolder + '_' + evUnique[evType] + '_Summary.png') 

    canvas2.print_figure(dataFolder + '_' + evUnique[evType] + '_Summary.pdf') 

 

 

# Clock 

stoptime = time.clock() 

print "Done  " + time.strftime("%I:%M:%S", time.localtime()) 

elapsed = stoptime-starttime 

print "Elapsed time in seconds " 

print elapsed 
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Appendix 4: Other Possible Future Work Topics 

 

The heat flow database could be improved by manually re-evaluating each well to 

understand whether the measured heat flow value reflects crustal background heat flow or 

is influenced by local hydrological disturbances or errors. Every heat flow well examined 

in the present study has already been evaluated in such a manner, but improvements 

could be made to best characterize the underlying raw data systematically across the 

region. Although this would require an investment of time, it would undoubtedly result in 

a more accurate heat flow map. 

 

The robustness of the modeling could be tested and improved by assessing different study 

areas that have different types of geologic terrain. If effects from anomalous geology 

significantly influence the assessment results, it may be best to exclude regions with 

distinct tectonics or hydrology that diverge from the regional character of a study area.  

Areas previously alluded to include the carbonate aquifer system or Walker Lane in the 

southern and western Great Basin, respectively. An example of such an approach is given 

by Coolbaugh et al. (2005) who calculated weights in areas without regional aquifers and 

then extrapolated those weights into areas underlain by regional aquifers. It may be useful 

to examine many different study areas in an analysis of a region. 

 

It may be useful to examine many different training site sets as well. Better training site 

information (e.g., temperature, confidence, favorable structural settings, etc.) could also 

improve model performance. Multiple training site sets could be useful to pair with 

different study area sets. If possible, the 2-D lateral extent of training sites, defined as 

polygons, might provide a better representation of benchmark characteristics. 

 

Estimations of undiscovered resource could be made quantitatively. The models that are 

within acceptable ranges for conditional independence could be used to estimate 

undiscovered resource potential in terms of systems or even electric generation capacity. 
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Python plotting tools could be improved to show bin boundaries, plot by area, calculate 

fits, and report functions. If these improvements were made, a user could experiment with 

a series of bin ranges and quickly see which functions provide the best fits without the 

need for manual statistical evaluation of each bin range and associated curve-fitting. 

 

A map depicting ‘known absence of geothermal’ could be created from locations of well-

understood deep holes or other indicators to rule areas out from consideration or to train 

different data-driven techniques. 

 

Monte Carlo simulations could be explored with training data subsets. This could reveal 

more reliable weighting relationships. 

 

The temperature at depth maps that accounted for sediment thickness did not correlate in 

the present study but might prove useful for other purposes or be a useful standalone 

product. Temperature was estimated at 1, 2, 3, 4, 5 and 6 km depth using both the EBK 

and RBF maps. The temperature at 3 km depth made using the EBK is shown as 

Appendix 1. 




