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Climate variability and change are major factors that affect groundwater resources on a 

global scale. However, it is still poorly understood how components o f the hydrologic 

system respond to these signals o f climate variability. The crucial role o f groundwater in 

the water-energy-food nexus underscores the need to better understand how climate will 

affect groundwater in the future. This need is especially urgent in coastal agricultural 

regions where groundwater is the primary source o f water. This thesis quantifies the 

response of hydrologic processes and human interaction to interannual to multidecadal 

climate variability in coastal aquifers, specifically the El Nino Southern Oscillation (2-7 

year cycle) and Pacific Decadal Oscillation (15-30 year cycle), in Pajaro Valley, California, 

located in California’s coastal aquifer system. I examined whether climate signals were 

present in long-term records o f precipitation, streamflow, groundwater levels, recharge, 

and pumping using Singular Spectrum Analysis. I quantified the response o f these variables 

to modes o f climate variability by performing lag correlations. These analyses illustrate the 

extent to which the Pajaro Valley watershed responds to climatic and anthropogenic 

forcings. The findings from my research can aid water managers in creating sustainable 

groundwater management practices in areas that are highly groundwater dependent and 

experiencing the negative effects o f groundwater overdraft.

is a correct representation o f the content o f this thesis.
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1.0 INTRODUCTION

The effect of climate on critical resources such as water, energy, and food has 

become a global concern not only due to climate change, but to socioeconomic changes 

such as population growth, urbanization, and the growing demand of natural resources as 

well. Interannual to multidecadal climate variability has been shown to influence changes 

in spatiotemporal patterns of various hydrologic processes such as precipitation, 

streamflow, and surface-water and groundwater storage (Brabets and Walvoord, 2009; 

Hanson et al., 2006; Kuss and Gurdak, 2014; McCabe et al., 2004). Climate variability can 

also be linked to the frequency, intensity, and location of extreme climate events such as 

floods, droughts, and hurricanes (Chikamoto et al., 2015; Higgins et al., 2007). In response 

to these concerns, the concept of the water-energy-food nexus emerged.

The Water-Energy-Food (WEF) Nexus concept has recently received broad 

attention in the scientific literature and emerged in the international community as a new 

sustainable development paradigm (Endo et al., 2015; Hoff, 2011; Leek et al., 2015). The 

nexus describes the complex relationship between water, energy and food while also 

accounting for the linkages, conflicts, and tradeoffs between them. Groundwater is the 

largest source o f accessible freshwater and is crucial in meeting water demands globally, 

especially in semi-arid and arid regions and during periods of drought when surface-water 

resources are diminished. This demand for groundwater has led to consequences such as 

groundwater overdraft, seawater intrusion in coastal areas, groundwater quality 

degradation, land subsidence and associated infrastructure damage, streamflow depletion,
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wetland and ecological damage, loss o f springs, and loss o f aquifer storage (Famiglietti, 

2014; Gurdak, 2017; Konikow and Kendy, 2005). With water as an input to agricultural 

production within the WEF Nexus, groundwater depletion is a stressor on agricultural 

regions to meet the demand for food (Smidt et al., 2016). Consequently, many over-drafted 

aquifers sustain many o f the world’s most productive agricultural regions (Famiglietti, 

2014). Therefore, understanding the complex relations between the WEF Nexus may help 

stakeholders reduce conflict and tradeoff between water for food in groundwater supported 

agricultural regions.

The state o f California has a $45 billion agriculture industry that relies on 

groundwater, which accounts for 30-60% of the state’s annual water use. Groundwater is 

critical to the industry especially during dry years and droughts when surface water is 

scarce (CDFA, 2016; Liu, 2017). The Central Coast o f California makes up a substantial 

part o f the state’s agricultural production and is part o f the California Coastal aquifer 

system. In these areas, components o f the nexus are significantly limited due characteristics 

such as large populations, limited freshwater resources, sea level rise and seawater 

intrusion (Masterson and Garabedian, 2007). To grow food these coastal areas require more 

water and energy in an area where these resources are already stressed and vulnerable to 

overdraft, which causes sea water intrusion (Ferguson and Gleeson, 2012; Hanson et al., 

2014).

The WEF Nexus in agricultural regions can be described as follows: water is an 

input to agricultural production (water-food) and is used for cooling at energy generation
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facilities (water-energy); energy is necessary to produce, treat, and distribute water 

(energy-water), as well as power farm machinery (energy-food); and food fuels the labor 

force required to produce both water (food-water) and energy (food-energy) (Wada et al., 

2016). This thesis focuses on the water for food relationship of the nexus, specifically in 

Pajaro Valley, CA, an agricultural region that has been experiencing seawater intrusion 

since the 1950s (Hanson et al., 2014), and how long-term climate variability affects 

groundwater levels o f this coastal aquifer. Understanding the relationship between climate 

and water can better inform sustainable management practices, including conjunctive use 

o f surface-water and groundwater for agriculture and domestic uses, and responding to 

climate variability (Earman and Dettinger, 2011; Gurdak et al., 2007; Hanson et al., 2006; 

Holman, 2006; Wada et al., 2010).

This thesis explores the link between climate and water resources by quantifying 

the relationship between interannual to multidecadal climate oscillations and changes in 

hydrologic processes that affect surface-water and groundwater resources. Two oscillations 

originating in the equatorial Pacific Ocean, the El Nino Southern Oscillation (ENSO) and 

the Pacific Decadal Oscillation (PDO), are linked to shifts in the intensity and timing of 

weather patterns in the western U.S. (Ropelewski and Halpert, 1986; Sabziparvar et al., 

2011; Shang et al., 2011). There is abundant literature that supports how these climate 

oscillations affects surface hydrologic processes (e.g. Brabets and Walvoord, 2009; 

Kondrashov et al., 2005; Mazouz et al., 2012), and other studies infer their teleconnections 

to groundwater levels in areas around the world (Anderson and Emanuel, 2008; Dickinson
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et al., 2004; Fleming and Quilty, 2006; Gurdak et al., 2007; Hanson et al., 2006; Holman 

et al., 2011; Perez-Valdivia et al., 2012; Pool, 2005; Tremblay et al., 2011; Venencio and 

Garcia, 2011). However, it is still poorly understood how groundwater resources respond 

to and preserve signals o f climate variability on interannual to multidecadal timescales.

To address this knowledge gap, this thesis will quantify how the WEF Nexus that 

drives seawater intrusion in the Pajaro Valley Watershed, responds to climate variability 

on interannual to multidecadal timescales. I will explore this by answering the following 

questions: (1) How does climate affect the water for food relationship within WEF nexus, 

in Pajaro Valley?; (2) How does climate influence human interactions in the hydrologic 

system in terms o f groundwater pumping?; (3) To what extent does seawater intrusion 

respond to wet and dry periods? To answer these questions, I will analyze how long-term 

records o f precipitation, streamflow discharge, simulated and observed groundwater levels, 

simulated recharge and groundwater pumping are interconnected and how well these 

variables respond to and preserve ENSO and PDO signals. Correlating hydrologic 

variables to climatic indices are useful in assessing responses to various climatic scenarios 

(Whittemore et al., 2016). I expect that the hydrologic variables will be strongly correlated 

to the ENSO and PDO indices due to their teleconnection with the Central Coast of 

California. I also expect the hydrologic inflows to respond to wet (El Nino) and dry (La 

Nina) periods accordingly; precipitation, streamflow, and simulated recharge will increase 

(decrease) during El Nino (La Nina) events. I expect that simulated groundwater pumping 

will also be well correlated to the climate indices, precipitation, and streamflow discharge;
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pumping will increase (decrease) during dry (wet) periods. Farmers will choose to pump 

less if  there is surface water available, which is connected to climatic forcings such as 

precipitation. Lastly, I anticipate that groundwater levels, observed and simulated, will 

increase (decrease) during wet (dry) periods. If there is surface water available, demand 

for groundwater will decrease, allowing the groundwater levels to increase. Conversely, I 

expect groundwater levels will decrease to levels well below sea level during La Nina 

years, resulting in sea water intrusion.

Previous studies (Kuss and Gurdak, 2014; Velasco et al., 2015) have examined 

responses o f only the groundwater levels in several principal aquifers to modes of 

interannual to multidecadal climate variability. In this study, I evaluate the relationship 

between all parts o f the hydrologic system to climate variability and integrate the response 

of groundwater levels to anthropogenic forcings as well. This research is important due to 

the location of the Pajaro Valley Watershed, a productive agricultural region, in 

California’s coastal aquifer system. The agricultural demand for groundwater has resulted 

in groundwater overdraft and seawater intrusion, resulting and conflict and tradeoff among 

stakeholders o f the water-food component o f the WEF Nexus. This conflict could lead to 

further degradation of groundwater and surface water resources and eventually the inability 

of this area to meet crop demand (Food and Agriculture Organization o f the United 

Nations, 2014). Gaining a deeper understanding of the connections and responses among 

hydrologic variables and human interactions in this area is important in order to advise 

water managers to integrate sustainable water practices. Reducing conflict within this local



6

nexus could help in finding solutions to reduce conflict within the global WEF nexus and 

prepare for the projected increase in demand for water, energy, and food in the future.

2.0 BACKGROUND

2.1 Climate Variability

Natural climate variability occurs on various temporal and spatial scales and is 

characterized in terms o f anomalies, which are defined as the difference between current 

climate conditions and the mean state of conditions (Hurrell et al., 2003; Kuss and Gurdak, 

2014). Some of these anomalies include changes in the mean distribution of sea level 

pressure (SLP), the deviation from mean sea-surface temperatures (SSTs), variations in 

oceanic wind strength, or a combination o f multiple variables (Ghil, 2002; Hurrell et al., 

2003; NOAA, 2018). Climate indices, such as the Multivariate ENSO Index (MEI) and the 

Pacific Decadal Oscillation (PDO) Index, are created using a variety of these anomalies at 

different locations around the globe.

2.2 Climate Variability in the Equatorial Pacific

2.2.1 The El Nino-Southern Oscillation

The El Nino-Southern Oscillation (ENSO) is a system o f natural climate variability 

that occurs irregularly every 2-7 years and is characterized by anomalies in sea surface 

temperature (SST) and sea level pressure (SLP) in the equatorial Pacific (Hanson et al., 

2006; NOAA, 2018). ENSO is considered one of the most important patterns of interannual 

climate variability due to its high frequency, seasonal effects on weather, and global impact



7

on average and extreme weather events (Cayan et al., 1999; McCabe and Dettinger, 1999; 

Ropelewski and Halpert, 1987; Velasco et al., 2015). ENSO has a warm (positive) phase, 

El Nino, and a cool (negative) phase, La Nina, and the MEI (Figure la) is an index made 

up o f the combined El Nino/La Nina phases. The index is based on multiple variables of 

the Comprehensive Ocean-Atmospheric Data Set (COADS), and represents a weighted 

average o f sea level pressure, zonal and meridional winds, sea surface temperature and 

total cloudiness in the equatorial Pacific (Wolter and Timlin, 2011). The positive (negative) 

MEI is related to the positive (negative) ENSO phase (Kuss and Gurdak, 2014; NOAA, 

2018). Generally, the Southwestern U.S. experiences above average precipitation during 

the El Nino phase due to the warm waters o f the western Pacific migrating eastward, 

creating a shift in the jet stream (Higgins et al., 2007; McCabe and Dettinger, 1999; Pool, 

2005; Ropelewski and Halpert, 1986; Schonher and Nicholson, 1989). During the La Nina 

phase, the Southern U.S. experiences drier than normal conditions along with cooler SSTs 

in the equatorial Pacific (Kiladis and Diaz, 1989; Ropelewski and Halpert, 1986). In the 

Central Coast o f California, the El Nino phase typically results in above average 

precipitation during winter, and drier conditions during the La Nina phase (Gurdak et al., 

2009; Shang et al., 2011).

2.2.2 The Pacific Decadal Oscillation

The Pacific Decadal Oscillation (PDO) is described as a long-lived El Nino- 

composite pattern of Pacific climate variability on a decadal to interdecadal timescale 

(Kuss and Gurdak, 2014; Mantua and Hare, 2002; Zhang et al., 1997). The PDO has two
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general periodicities of 15-30 years and 50-70 years and is characterized by anomalies in 

SST and SLP in the North Pacific Ocean. Climate anomalies associated with the PDO are 

similar to that of the ENSO with comparable shifts in the jet stream (Mantua and Hare, 

2002). During the positive (negative) phase o f the PDO, SSTs are cooler (warmer) than 

normal along the coast o f California (Mantua and Hare, 2002). During positive PDO there 

is decreased winter precipitation and sustained droughts in the Northwestern U.S. and 

wetter than normal conditions in the Southwestern U.S., including southern California; 

during negative PDO precipitation patterns are reversed (Hanson et al., 2006; Mantua and 

Hare, 2002; Velasco et al., 2015). Anomalies in climate and oceanic characteristics are 

used to create the PDO Index (Figure lb). Shifts in the phase o f PDO also affect the phase 

and occurrence o f the ENSO; during the negative (positive) PDO, there is a greater 

occurrence of the negative (positive) ENSO (Brown and Comrie, 2004; Gutzler et al., 2002; 

Kuss and Gurdak, 2014). Additionally, the influence o f ENSO can be enhanced by the 

PDO if both oscillations are in the same phase (Cole et al., 2002; Gershunov and Barnett, 

1998; Hamlet and Lettenmaier, 2007; Hunter et al., 2006; McCabe and Dettinger, 1999). 

When PDO is in its positive phase, El Nino events may be more extreme and exhibit wetter 

conditions; during a negative PDO, La Nina event are more frequent (Gershunov and 

Barnett, 1998; Gutzler et al., 2002; Lapp et al., 2013).

2.3 Study Area

Pajaro Valley is located on the Central Coast of California and comprises the 

coastal portion o f the Pajaro River Watershed that borders the Monterey Bay Pajaro Valley
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contains the city o f Watsonville and other small towns such as Freedom and Las Lomas. 

Approximately 40% of the area serviced by the Pajaro Valley Water Management Agency 

(PVWMA) is agricultural land, 47% is natural vegetation, and 13% is urban land (Hanson 

et al., 2014). Pajaro Valley is one of the most productive agricultural regions in the world, 

with crop value estimated at over $900 million annually (Hanson et al., 2014; PV Water, 

2014). Pajaro Valley is completely reliant on groundwater to irrigate crops; nearly 100% 

of irrigated agriculture is supported by groundwater from the coastal aquifer system (PV 

Water, 2014). As a result, Pajaro has been experiencing seawater intrusion since the 1950s 

due to groundwater overdraft, a common issue for coastal aquifers. Surface water from 

diverted creeks, streams, and rivers is used for urban supply, while pumped groundwater 

is the primary supply o f irrigated agriculture. Demand for water in the valley has increased 

due to population growth and the transition to water intensive crops. As a result, there has 

been an average groundwater overdraft o f 12,950 acre-feet (15,973,566 m3) per year 

(Hanson et al., 2014). These current conditions create critical challenges in the WEF Nexus 

of Pajaro Valley, in addition to the climate-driven factors already affecting the hydrologic 

system (Hanson et al., 2014; Wada et al., 2016).

Surface water and groundwater in Pajaro Valley are used as input for agricultural 

production (Wada et al., 2016). The Pajaro Valley hydrologic system starts with inflows 

from precipitation and streamflow. Streamflow enters the valley in the Pajaro River through 

the Chittenden gap and as runoff from the local stream networks. Infiltration o f runoff, 

along with infiltration o f irrigation water, contributes to groundwater recharge (Hanson et
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al., 2014). Like many coastal hydrological regions, Pajaro Valley is almost completely 

reliant on local groundwater for irrigation. Water issues in this area are aggravated by 

current and projected spatial problem of seawater intrusion. Future seawater intrusion will 

be determined by future groundwater pumping and climate variability (Wada et al., 2016). 

In addition to groundwater pumping, climate also affects the availability o f groundwater 

for domestic and agricultural use. Climate change and climate variability have been 

identified as major stressors on the availability and sustainability o f groundwater resources 

in California and other regions of the world (Green et al., 2011; Taylor et al., 2012).

3.0 METHODOLOGY

3.1 Data Selection

The observed and simulated data used in this study include climate indices, 

precipitation, streamflow discharge, groundwater levels, recharge volumes, and pumping 

volumes. All data sets are compiled on a monthly timescale; information for each dataset 

can be found in Table 1.

Observed data includes climate indices, precipitation, streamflow discharge, and 

groundwater levels. Climate indices were obtained from the Earth System Research 

Laboratory, Physical Sciences Division of NOAA (NOAA, 2019). I used the pre-1950 

version o f the MEI because several o f the other data sets in this study start before 1950. 

MEI and PDO cover the period of 1908 through 2017. Precipitation data was obtained from 

California’s Department o f Water Resources (DWR) California Data Exchange Center or 

the Watsonville Water (WTW) meteorological station, and spans from 1908 through 2017.
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This station is located in Watsonville, CA, and was selected due to its central location 

within the Pajaro Valley Watershed. The relatively long precipitation record length o f 110 

years (Table 1) also makes it a good choice for identifying ENSO and PDO signals.

Streamflow discharge data was obtained from a stream gauge (11159200) in the 

United States Geological Survey (USGS) National Water Information System (NWIS) 

(https://waterdata.usgs.gov/nwis). The stream gauge is located in Corralitos, CA and 

measures streamflow on the Corralitos Creek (COR). The data for the COR stream gauge 

spans from 1957 through 2017 and was selected due to its proximity to the WTW 

precipitation station and because it is the largest tributary in the valley. Groundwater level 

data was also obtained from USGS NWIS; one well (365231121482801 

012S001E24G001M) was selected due to the length and completeness o f the record. This 

well is part o f the California Coastal Basin aquifers system and has a depth o f 61 m below 

land surface. The data spans from 1947 through 1983 and groundwater levels are measured 

in meters above or below land sea level.

Simulated data includes groundwater levels, recharge volumes, and pumping 

volumes with each data type containing an inland and coastal dataset. This data was 

generated as output o f the Pajaro Valley Hydrologic Model (PVHM) developed using 

MODFLOW (Hanson et al., 2014). All data span from 1963 through 2014 with the 

exception o f the groundwater level data that starts in 1964 (Table 1).

3.2 Time Series Analysis

Time series analysis was performed using the USGS Hydrologic and Climatic

https://waterdata.usgs.gov/nwis
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Analysis Toolkit (HydroClimATe) (Dickinson et al., 2014). HydroClimATe is a computer 

program developed by the USGS for assessing the relations between variable climatic and 

hydrologic time-series data. The program automates methods such as time-series pre

processing, spectral analysis such as Fourier transform and Singular Spectrum Analysis 

(SSA), correlation analysis, and projections (Dickinson et al., 2014). For this study, I used 

HydroClimATe to pre-process data, perform SSA and lag correlations.

3.2.1 Data Pre-Processing

Several steps o f preprocessing using HydroClimATe are necessary to remove any 

autocorrelation and anthropogenic signals from a time series and prepare the data for SSA. 

The preprocessing steps generally follow those outlined by Kuss and Gurdak (2014) and 

Hanson et al. (2006). These steps include interpolation, cumulative departure, detrending, 

and normalization using equations from Dickinson et al. (2014). Interpolation is used to 

estimate missing values within a data set. For this thesis, interpolation is used to give each 

data set a uniform monthly time interval by estimating values for months that are missing 

data. Once the data is interpolated, a cumulative departure curve is created, which is 

calculated as the sum of the differences between consecutive values in a timeseries and the 

mean o f the series:
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CD =  £ (  Xi — x) (Eq. 1)

where

CD is the cumulative departure curve
x t is the value at time i
x  is the mean o f the timeseries
X j

x

The transformation of the time series to a cumulative departure allows intermittent 

temporal processes such as precipitation to be compared to persistent time series such as 

groundwater level data. The curve fitting method is then used to detrend each time series. 

A 3rd order polynomial is fit to a timeseries to represent the trend. Residuals for the 

timeseries are calculated as the difference between the fitted polynomial and the timeseries 

at time t. These residuals represent the time series with the trend removed (Dickinson et 

al., 2014). The residuals are then standardized to create normalized departures from the 

historic mean, which facilitates statistical comparisons among many different data types 

for correlation. Standardization transforms normally distributed variables to a new variable 

that has a sample mean equal to zero and a sample standard deviation equal to one:

(Eq,2)

where
Zi
Xi
x
s

is the normalized variable, 
is the mean o f the original timeseries, 
is the sample mean o f the timeseries, and 
is the sample standard deviation
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These preprocessing steps were performed on each timeseries to prepare for SSA. 

The reader is directed to Dickinson et al. (2014) for additional details about the pre

processing and Singular Spectrum Analysis (SSA) methods.

3.2.2 Singular Spectrum Analysis (SSA)

SSA is a nonparametric method o f principal component analysis that has been 

widely used to detect quasi-periodic oscillations and other interannual to multidecadal 

oceanic-atmospheric phenomena hydrologic time-series (Hanson et al., 2004; Kuss and 

Gurdak, 2014; Vautard et al., 1992). SSA was chosen for this analysis because it is useful 

in analyzing short, noisy timeseries, and assumes quasi-periodic rather than periodic 

oscillations. In this thesis, SSA is performed on the normalized departures o f each 

individual climate index, precipitation, streamflow discharge, groundwater level, simulated 

recharge and pumping time-series. The purpose of SSA is to decompose the original time

series into independent and interpretable, reconstructed components (RCs) that can be 

interpreted as oscillatory patterns. No information is lost in the reconstruction process

because the sum of these individual RCs equal the original time series (Ghil et al., 2002;

Hanson et al., 2004; Hassani, 2007). My analysis follows the steps that are outlined in 

Dickinson et al. (2014). The SSA starts by utilizing a trajectory matrix X  is composed of 

a series o f windows of the time series that have a length o f M. The dimensions o f the 

trajectory matrix are Mr by N r  

where
Nt is equal to N-M+1,
N  is the number of time steps in the timeseries, and
Mt is the embedding dimension of X
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This is then used to construct the covariance matrix C:

d d t
C = —  <E,.3)

where
C  is an Mr by Mr covariance matrix,
D  is an Mr by Nt trajectory matrix, and
D T is the transpose o f X.

Then, the eigenvectors and eigen values o f C are obtained by the eigenanalysis of 

C in the following form:

CE =  XE (Eq. 4)

where
E is an Mr by Mr matrix o f the eigenvectors, and
A is the vector of eigenvalues of length Mr.

A matrix o f the principal components A, is obtained by projecting the eigenvectors E onto 

the trajectory matrix D:

A =  ETD (Eq. 5)

where
E is an Mt by Mr matrix of the eigenvectors, and
A is an Mr by Nt matrix o f the principal components.

The RCs are then formed from the following:
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RC = - j  +  1 )Ek (/) (Eq. 6)

where
K is the set o f eigenvectors that are used in the reconstruction,
Mt is a normalization factor,
Lt is a bound o f summation, and
Ut is a bound o f summation.

The values o f Mt, Lt, and Ut vary depending on the interval within the time series:

The majority o f the variance within each hydrologic time-series is captured in the 

first 10 RCs, along with statistically significant oscillatory patterns for each data type. The 

Ghil and Mo significance test was used to determine which of these 10 RCs were 

statistically significant against a red-noise null hypothesis (Ghil and Mo, 1991). For each 

time-series, composite RCs were created from statistically significant RCs that fall within 

the periodicity ranges of ENSO and PDO. The composite RCs are calculated by grouping 

and summing the significant RCs by the following period ranges: 2-7 years (ENSO- 

composite), 12-35 (PDO-composite). By summing RCs based on similar period ranges, 

composite RCs are created that represent significant oscillatory modes within each time 

series that are consistent with ENSO or PDO (Gurdak et al., 2007; Kuss and Gurdak, 2014). 

These ENSO-composite and PDO-composite RCs are used for lag correlation analyses.

r l < t <  m t - 1

MT < t  < Nt (Eq. 7)
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3.2.3 Lag Correlations

Measuring the delayed response o f one hydrologic variable to another is useful for 

assessing their relationship in a hydrologic system. Lag correlations measure the strength 

of association between two variables at different time shifts by calculating lag correlation 

coefficients (Helsel and Hirsch, 2002). Lag correlations were performed following the 

methods from Kuss and Gurdak (2014) and Velasco et al. (2015). Before each correlation, 

the explanatory and response composite RCs were truncated to have the same start and end 

date, i.e. climate index truncated to match the length o f the precipitation record, 

precipitation truncated to match groundwater levels, etc. HydroClimATe reports both 

forward and backward lags between two time-series; only the first 60 months (5 years) of 

forward lags were considered based on the previous work of Hanson et al. (2006, 2004). 

Hanson et al. (2006, 2004) studied aquifers in the southwestern U.S. and found that lag 

times of groundwater level correlations to ENSO and PDO fell within a range of 7 months 

to 5 years. Additionally, positive and negative correlation coefficients were reported based 

on known and assumed connections between the explanatory and response variables. For 

example, the positive (negative) phase o f ENSO and PDO is known to increase (decrease) 

precipitation in central California, therefore I evaluated only the positive correlation 

coefficients between climate indices and precipitation. I evaluated only negative 

correlation coefficients between inverse relationships such as precipitation and observed 

groundwater because as precipitation increases (decreases) the depth to groundwater 

decreases (increases). Correlation coefficients were calculated for each monthly time lag
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using a 95% confidence level; coefficients above this level were considered statistically 

significant.

4.0 RESULTS AND DISCUSSION

4.1 Percent Variance of Climate Variability Signals in Hydrologic Time Series

Results o f the SSA showed that each time series contained statistically significant 

oscillatory signals that can be attributed to ENSO and PDO (Appendix A). The RCs 

consistent with ENSO were detected more frequently than PDO components. Of the 

hydrologic time series, ENSO was detected in 38.8% (31 of 80) o f the RCs and PDO was 

detected in 20% (16 o f 80) o f the RCs (Appendix A). The amount o f variance in the RCs 

attributed to ENSO for observed time-series ranged from 6 to 14% and from 1 to 5% for 

simulated time-series (Table 2). Although the variance in RCs associated with ENSO was 

detected more frequently, the PDO accounts for the largest amount o f variance in RCs for 

both observed and simulated time-series (Table 2). For observed hydrologic data, PDO 

ranged from 30 to 85%, and from 77 to 98% variance (Table 2). These results are consistent 

with previous findings from Gurdak et al. (2007), Kuss (2011), Kuss and Gurdak (2014), 

and Velasco et al. (2015), that lower frequency climate oscillations tend to contain most of 

the variance in hydrologic time-series as compared to higher frequency oscillations.

4.2 Lag Correlations

Results in this section are organized by explanatory variable in the lag correlations; 

headings denote the explanatory variable (climate, precipitation, and groundwater). These 

explanatory variables are systematically correlated to all other inflows (precipitation,
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streamflow, recharge) and outflows (pumping). Groundwater levels are considered 

responses to changes in inflows and outflows and discussed as a dependent variable. 

Results are organized by explanatory variable to inflows and to outflows, and inflows and 

outflows to groundwater levels.

4.2.1 Climate

Results o f the lag correlations between climate indices and hydrologic inflows 

(precipitation, streamflow discharge, and simulated recharge) are shown in Table 3, Figure 

3; results o f the lag correlation between climate indices and hydrologic outflows (pumping) 

are shown in Table 4, Figure 4. Climate-precipitation lag correlations resulted in higher 

minimum, maximum, and average correlation coefficients for the ENSO correlations than 

the PDO (Table 3, Figure 3). Although they were higher ENSO, the correlation coefficients 

showed a low to moderate maximum correlation (0.31) between ENSO and observed 

precipitation with an average lag time o f approximately 1 year (Table 3, Figure 3). The lag 

correlations were low (0.12) between PDO and observed precipitation with an average lag 

time o f approximately 2 years.

The results o f the lag correlations between climate and streamflow (Table 3, Figure 

3) have the opposite relative correlation strength between ENSO and PDO as compared to 

the climate-precipitation lag correlations (Table 3, Figure 3). PDO had the highest 

maximum correlation to streamflow with a maximum correlation coefficient o f 0.60 and a 

lag o f 1 year, which was the highest lag correlation coefficient between climate and any
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inflow. Streamflow had the shortest average lag (0.63 years) to ENSO variability and 

average lag of 2 years to PDO.

Simulated recharge (Table 3, Figure 3) was moderately correlated to climate for both 

coastal and inland locations with average correlation coefficients ranging from 0.20 to 0.35. 

ENSO had the stronger correlation to simulated recharge (0.42 coastal, 0.47 inland) 

compared to PDO (0.25 coastal, 0.37 inland) (Table 3, Figure 3). The average lag times 

range from 0.71 to 0.75 years for ENSO and 1.3 and 1.6 for PDO (Table 3, Figure 3). For 

correlations between climate and hydrologic inflows (precipitation, streamflow, recharge), 

ENSO had higher correlation coefficient values with simulated data than observed while 

correlation coefficients for observed data were higher for PDO than simulated.

Correlations between climate and hydrologic outflows (pumping) resulted in 

similar maximum correlation coefficients for ENSO (-0.24) and PDO (-0.26) (Table 4, 

Figure 4). These maximum correlations represent a near immediate response because the 

lags range from 0 to 0.25 months (Table 4, Figure 4). The average lag time between climate 

and groundwater pumping ranges between 0.5 to 2.5 years, with ENSO RCs having the 

shortest average lag at 0.5 years.

4.2.2 Precipitation

Results for the lag correlations between precipitation and hydrologic inflows 

(streamflow discharge and recharge) can be found in Table 5, Figure 5; results for lag 

correlations between precipitation and hydrologic outflows (pumping) can be found in 

Table 6, Figure 6. Precipitation and streamflow were strongly correlated with coefficients
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of 0.80 (ENSO-composite) and 0.87 (PDO-composite) (Table 5, Figure 5). Groundwater 

recharge was strongly correlated to precipitation and had maximum correlation coefficients 

that ranged between 0.71 to 0.80 (Table 6, Figure 6). ENSO-composite RCs for streamflow 

and groundwater recharge had an immediate response to ENSO-composite precipitation 

RCs with a lag time of 0 years for both maximum correlations. PDO-related recharge RCs 

reached maximum correlation of 0.71 (coastal recharge) and 0.80 (inland recharge) at a 

0.2-year lag (Table 5, Figure 5b). Lag correlations for precipitation to hydrologic inflows 

(streamflow, recharge) had similar correlation coefficients for both ENSO and PDO- 

composite RCs, and slightly higher correlation coefficients for observed data (streamflow) 

than simulated data (recharge).

Lag correlations between precipitation and groundwater pumping (hydrologic 

outflows) RCs resulted in weaker correlations to ENSO-composite RCs than the PDO- 

composite RCs (Table 6, Figure 6). Average correlation coefficients between precipitation 

and pumping ranged from -0.13 to -0.31 with an average lag of 0.5 years to ENSO- 

composite precipitation and 2.5 years for PDO-composite precipitation.

4.2.3 Groundwater

Results for correlation o f climate indices to groundwater levels are shown in Table 

7, Figure 7; hydrologic inflows (precipitation, streamflow discharge, and recharge) to 

groundwater level results are shown in Table 8, Figures 8 and 9; hydrologic outflows 

(pumping) to groundwater level results are shown in Table 9, Figure 10. Correlations 

between climate index RCs and groundwater level RCs, for both observed and simulated
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groundwater levels, had similar maximum correlation coefficients for ENSO and PDO that 

ranged between 0.44 and 0.48 (Table 7, Figure 7 and 8). Observed groundwater levels had 

the stronger correlation to ENSO climate index (MEI) (0.44) and the longest average lag 

time o f approximately 3.3 years (Table 7, Figure 7a), as compared to the simulated 

groundwater levels (Table 7, Figure 8a). Simulated groundwater levels had similar 

correlation coefficients to ENSO and PDO (Table 7, Figure 8) with values ranging from 

0.42 to 0.48, and corresponding lag time ranging from 0.75 to 2.5 years. Simulated 

groundwater levels had the shortest average lag time to ENSO of 1.5 (coastal) and 1.7 

(inland) years.

For precipitation to groundwater levels, observed data had a moderate maximum 

correlation coefficient of 0.43 to ENSO-composite composite RCs, and a strong maximum 

correlation of 0.65 to PDO-composite RCs (Table 8, Figure 8). Simulated groundwater 

levels had the opposite relationship, with stronger maximum correlations between ENSO- 

composite RCs (0.67-0.72) than PDO-composite RCs (0.5-0.59) (Table 8, Figure 9). PDO- 

composite RCs also had a consistent average lag time of 2.5 years for both observed and 

simulated groundwater level data (Table 8, Figure 8b and 9b). ENSO-composite RCs had 

average lag times that ranged from 0.92 to 3 years.

Lag correlations between streamflow discharge to groundwater levels resulted in a 

strong relationship between the two variables. Observed and simulated (Table 8, Figure 8 

and 9) groundwater levels had similar correlation coefficients that ranged between 0.62 to 

0.77 indicating a strong correlation between streamflow and groundwater levels between
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both ENSO-composite and PDO-composite composite RCs. The exception was between 

ENSO-related streamflow and observed groundwater levels which had a correlation of 

0.28. Groundwater levels had an average lag of 0.5 to 2.5 years to streamflow.

Groundwater levels were moderately to strongly correlated to simulated recharge 

with maximum correlation coefficients ranging from 0.51 to 0.87 for observed groundwater 

levels (Table 8, Figure 8) and 0.63 to 0.68 for simulated groundwater levels (Table 8, 

Figure 9). Both ENSO-related correlations had an average lag o f0.75-0.92 years. Observed 

groundwater (Table 8, Figure 8) levels had a stronger correlation among PDO-composite 

recharge RCs (0.82-0.87) than ENSO-composite composite RCs (0.51-0.52) while 

simulated groundwater levels (Table 8, Figure 9) had similar correlations to both ENSO 

and PDO-composite recharge RCs.

Correlations between groundwater pumping and groundwater levels resulted in a 

moderate to strong relationship (Table 9, Figure 10). Observed groundwater levels (Table

17) had a moderate maximum correlation to simulated pumping (-0.41, coastal and inland), 

which was an immediate response at a lag of 0 years for ENSO-composite composite RCs. 

Correlations among the PDO-composite composite RCs resulted in maximum correlation 

coefficients of -0.36 for coastal groundwater pumping and -0.37 for inland (Table 9, Figure 

10b). Although the correlations were about the same, the lag time ranged between 0.75 

years (inland) and 5 years (coastal). The average lag for these PDO-composite RCs also 

ranged from 1 (inland) to 4.7 (coastal) years. Simulated groundwater levels also resulted 

in a range of values and lag times to simulated pumping (Table 9, Figure 10b). ENSO-
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composite composite RC correlations resulted in a moderate relationship (-0.37, inland; - 

0.57, coastal) to simulated pumping with lag times ranging from 0.5 years (coastal) to 1.3 

years (inland). Simulated groundwater levels had a strong correlation to simulated pumping 

among the PDO-composite RCs. Coastal pumping to groundwater levels had the strongest 

correlation o f -0.9 with a lag of 0 months; inland pumping had a correlation o f -0.73 with 

a lag o f 2 years (Table 9, Figure 10).

4.3 How does climate affect the water for food relationship within the WEF Nexus of 
Pajaro Valley?

To address this first o f three research questions, I found that climate variability has 

a moderate to strong relationship to water availability in the Pajaro Valley Watershed. The 

highest correlation coefficients were between ENSO and precipitation and simulated 

groundwater recharge. Inland simulated recharge also had a slightly stronger response to 

ENSO than coastal recharge. Although I anticipated the surface hydrology in Pajaro Valley 

would respond to ENSO, I expected precipitation to have the strongest response to both 

ENSO and PDO compared to streamflow and recharge. However, the strongest correlation 

of all inflows was between PDO and streamflow discharge; the weakest correlation was 

between PDO and precipitation.

Based on the percent variance o f ENSO and PDO in the precipitation time-series 

(Table 2), it would be expected that PDO would have a stronger influence on temporal 

variability in precipitation; ENSO accounts for 6% of the variance and PDO accounts for 

30%. RC 1 (Appendix A) in the time-series makes up 60% of the variance but was not
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attributed to either ENSO or PDO due to its periodicity o f 55 years. This signal could be 

attributed to 50-70 year low-frequency mode of PDO, which was not used in this analysis. 

Another possible reason for weak to average correlation coefficients between climate and 

precipitation could be the unpredictability of ENSO and PDO bringing high amounts of 

precipitation to the Central Coast of California. The visual representation o f the ENSO and 

precipitation RCs (Figure 11) shows the unpredictability and differing trends between 

ENSO and precipitation. Precipitation is not always responding to the changes in the MEI 

index; in some places it appears to be preceding the index or exhibiting an inverse pattern.

The average lag time between climate and hydrologic inflows ranged from months 

to a maximum of 2 years. This time falls within the expected lag time of 7 months to 5 

years outlined by Hanson et al., 2006. Responses to PDO were longer on average compared 

to responses to ENSO. This was expected due to the length of the period of fluctuation; 

PDO fluctuates less frequently than ENSO. If a period of fluctuation is longer (shorter), it 

will take more (less) time to reach the point o f maximum correlation between two time- 

series. For ENSO-composite composite RCs, the correlation between climate and 

precipitation had the longest lag of 1.1 years. PDO had the longest lag (2 years) to 

streamflow discharge, but also a lag of 1.9 years to precipitation.

Despite having a weak to moderate correlation to climate, precipitation was 

strongly correlated to streamflow discharge and simulated groundwater recharge. This was 

expected due to the direct physical connection between precipitation and the surface 

hydrology. For the maximum correlations, the corresponding lag times ranged from 0 to 7
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months. The lack of a lag between precipitation and streamflow can be attributed to the 

direct surface connection between the two. Having a lag that is on a scale of less than a 

month is another possibility. The timeseries o f precipitation and streamflow (Figure 12) 

are in-phase and nearly identical, with a short time lag. The same near-instantaneous 

response also occurs between the precipitation-recharge timeseries (Figure 13) but is most 

likely related to the simplicity o f the Pajaro Valley Hydrologic Model (MODFLOW) 

model in simulating water flux and travel time through the vadose zone that represents 

recharge.

Based on the timeseries o f precipitation RCs and El Nino and La Nina events 

(Figure 14), there is a visual indication that precipitation patterns respond to ENSO which 

supports the results of the SSA and lag correlation analysis. However, as stated before, 

ENSO is a complex system of ocean and atmospheric interactions, and local precipitation 

patterns are not be completely driven by ENSO. There are places in the timeseries where a 

strong El Nino (La Nina) does not lead to the expected response of an increase (decrease) 

in precipitation. This pattern is also seen in the streamflow discharge timeseries (Figure 

15). Streamflow responds to climate by discharge increasing (decreasing) during El Nino 

(La Nina) events. This is verified by the lag correlation results between climate indices and 

streamflow discharge. However, there are places in the timeseries where streamflow 

discharge is changing without the influence of ENSO such as the increase is discharge 

following the 1977 and preceding the 2007 La Nina events. Simulated recharge responds 

similarly (Figure 16) but both timeseries still generally respond to the changing phases of



27

ENSO. Local precipitation patterns not associated with climate variability will still cause 

a response in the surface hydrology.

4.4 How does climate influence human interactions in the hydrologic system in terms of 
groundwater pumping?

Despite 97% of the variance in the groundwater pumping record being attributed to 

ENSO and PDO (Table 2), pumping and climate are weakly correlated (Table 17). There 

is an inverse relationship between pumping and climate; pumping tends to increase 

(decrease) during dry (wet) periods due to the availability o f water for use. The time-series 

comparing the MEI to simulated pumping (Figure 18) shows this general inverse pattern 

from 1977-2001, but after 2001 starts to show a trend o f pumping increasing when ENSO 

is in its positive (wet) phase. This pattern change could be explained by the change in 

pumping practices in Pajaro and intensified agricultural practices following 1993 (Hanson 

et al., 2014).

Groundwater pumping is an anthropogenic forcing on the hydrologic system. 

Farmers choose when and how much to pump based on a variety of factors, such as 

precipitation, the availability o f surface water, cropping patterns, irrigation methods, and 

market prices, among other factors. Since precipitation was only moderately correlated to 

modes of climate variability, it follows that groundwater pumping would have a low to 

moderate correlation as well. Crop value also influences how much groundwater is 

pumped, this occurred when farmers switched to higher value, water-intensive crops within 

Pajaro Valley (Hanson et al., 2014; PV Water, 2014).
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Despite the moderate correlation to climate, groundwater pumping had a strong 

response to the surface water availability. Groundwater pumping RCs resulted in higher 

correlation coefficients to PDO-related RCs of precipitation and streamflow discharge. Lag 

correlation results for streamflow to groundwater pumping are reported in Appendix B. 

Similar to the results o f climate to inflows, the higher correlation between PDO-composite 

RCs is due to the long period o f fluctuation. PDO changes phase less frequently than ENSO 

and is able to capture long term changes within each timeseries. This long period of 

fluctuation resulted in relatively long lags of 4-5 years (Table 8). ENSO changes phase 

more frequently than PDO, and responses to these changes may be minimal or not present 

in the timeseries at all. Despite correlations between ENSO-composite RCs being low, they 

can also be used to represent an “immediate” human response due to short lags o f 0-1 year.

Although I expected groundwater pumping to be strongly correlated to climate 

variability and precipitation, there are many factors involved in the process. I expected 

pumping to increase during dry periods (La Nina) and decrease during wet periods (El 

Nino). However, the process becomes complex due to the human interaction and motives 

to pump. Pajaro’s growing season is during the summer, when there is less precipitation. 

The decision and amount of pumping depends on the availability of surface water, which 

depends on how much rain occurred in the previous winter. The response rate of farmers 

to wet and dry periods is another factor. The timeseries o f groundwater pumping (Figure

18) shows this responsiveness, which varies over several phases o f ENSO. There are 

several places where there is increased (decreased) pumping during a wet (dry) period, this
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contradiction could be a result o f the lag time between the climate forcing and action by 

farmers. Also, farmers are more inclined to grow higher value crops that require more 

water. This demand for more water is independent o f climate forcings and more dependent 

on market forcings and profit. There are large departures from the mean pumping volume 

after the 1993 switch to more intense agricultural practices. Despite the complexity 

surrounding pumping practices, groundwater pumping did respond to changing surface 

hydrology and the availability of surface water for use; we also see a lagged response to 

wet and dry periods.

4.5 To what extent does seawater intrusion respond to wet and dry periods?

Coastal aquifers are vulnerable to seawater intrusion due to the proximity to the 

ocean. Groundwater pumping increases this vulnerability by lowering the water table. 

Groundwater withdrawals over a long period o f time will eventually create a cone of 

depression that will draw seawater into the aquifer (DWR, 2017; Werner et al., 2013). An 

example o f this is when groundwater levels drop below sea level and seawater flows inland. 

To analyze whether seawater intrusion responds to wet and dry periods, I assume seawater 

intrusion occurs when the observed and simulated groundwater levels drop below sea level, 

2.7 m below land surface.

In the 1940s, groundwater levels in Pajaro Valley were near surface level around 

the coast year round; seawater intrusion was first identified along the Monterey Bay in 

1953 (PV Water, 2014). The raw observed groundwater levels (Figure 19a) mark the 

beginning of seawater intrusion in the Pajaro Valley. Between 1947 and 1975 seawater
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intrusion occurred seasonally; groundwater head was below sea level during the summer 

growing season and rose above sea level in the winter by about the same amount prior to 

the growing season. This seasonality occurred after 1975 but groundwater head stayed 

below sea level for most o f the year until the end of the record. The ENSO-composite RC 

timeseries (Figure 19b) shows that groundwater levels and seawater intrusion respond to 

wet (El Nino) and dry (La Nifia) periods. Groundwater levels respond to wet, strong El 

Nino events for the 1957-1960, 1965-1967, and 1982-1983 periods; during these periods 

groundwater levels were above sea level. However, these responses are followed by sharp 

declines in groundwater levels at the middle or end of these events. The 1972-1974 El Nino 

event occurred after two La Nina events, resulting in groundwater levels rising above sea 

level after a three-year decline. Similar to the other strong El Nino periods, this rise in 

groundwater head was followed by a sharp decline. There are similar declines following 

the moderate El Nino events but on a smaller scale following small increases in 

groundwater head. During dry La Nina periods, groundwater levels are below sea level for 

the 1949-1951, 1954-1956, and 1974-1975 periods. These periods of seawater intrusion 

are followed by increases in groundwater head, similar to the declines in groundwater head 

following El Nino periods.

The simulated record of groundwater levels begins a decade after the identification 

of seawater intrusion in the valley and shows the gradual advancement o f seawater 

intrusion from the coastal to the inland area. Groundwater levels in the coastal area (Figure 

20a) are below sea level for the entirety o f the record. However, groundwater levels rose
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above sea level during and following winters in which there was an El Nino event such as 

1967-1971, 1973-1975, 1983-1984, and 2004-2006. The inland area (Figure 20b) did not 

experience sweater intrusion until 1989, following seasonal declines throughout the mid- 

1980s and the strong La Nina during 1988-1991. Groundwater levels did rise above sea 

level following the 1997-1999 El Nino throughout the growing season but declined again 

following the 2007-2009 La Nina. The ENSO-composite timeseries (Figure 20c) shows 

the coastal and inland areas responding similarly to wet and dry periods. Prior to changing 

agricultural practices in 1993, groundwater levels in the coastal and inland area responded 

to wet and dry periods consistently and similarly. The behavior of the coastal and inland 

timeseries deviate from each other following 1993 and lose the consistent response to El 

Nino and La Nina events.

For both observed and simulated records of groundwater levels, there is a response 

of seawater intrusion to wet (El Nino) and dry (La Nina) periods. However, seawater 

intrusion is also greatly affected by the physical surface processes such as precipitation, 

groundwater recharge, and groundwater pumping. Results o f the lag correlations between 

groundwater levels and climate, precipitation, recharge, and groundwater pumping verify 

the connection of seawater intrusion to climate and physical processes. The response of 

seawater intrusion to changes in the MEI Index and precipitation is lagged by 0.67-3 years 

based on correlating changes in groundwater head to known periods of strong to moderate 

El Nino and La Nina events (Figure 19, 20). The lag correlations between climate and 

observed and simulated groundwater levels (Table 7), verify this delayed response. This
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same delayed response is also verified in the correlations between precipitation and 

observed and simulated (Table 8) groundwater levels. However, changes in groundwater 

recharge and pumping also affect the occurrence o f seawater intrusion but on a shorter 

timescale. Changes in groundwater recharge are directly and physically connected to 

groundwater levels. As a result, groundwater levels respond quickly to groundwater 

recharge (0.5-1 year; Table 8). Changes in groundwater pumping, the cause o f seawater 

intrusion, also influences groundwater levels quickly (0-1 year; Table 9).

Changes in groundwater recharge as a result o f climate variability affect 

groundwater levels and the magnitude o f seawater intrusion. Groundwater pumping, which 

is not always driven by climatic factors, also directly affect seawater intrusion. While 

seawater intrusion does respond to wet and dry periods, it is also responding conjunctively 

to surface hydrological processes and human interaction, both of which may or may not be 

occurring as a result o f modes o f climate variability.

5.0 CONCLUSION

Modes o f climate variability such as the ENSO and PDO were shown to have a 

moderate to strong influence on hydrologic processes in the Pajaro Valley. The use of SSA 

and lag correlations verified this influence by identifying signals in each timeseries that 

can be attributed to ENSO and PDO and the response o f hydrologic variables to these 

signals. Although the PDO accounted for the highest amount o f variance in each timeseries, 

several parts o f the hydrologic system were highly correlated to both ENSO and PDO. The 

surface hydrology (streamflow discharge and simulated recharge) was strongly influenced
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by variations of precipitation which responded irregularly to phases o f ENSO and PDO. 

However, surface-water responded strongly to precipitation, showing surface-water 

availability is dependent on climatic factors.

Anthropogenic forcings on the hydrologic system in the form of groundwater 

pumping responded moderately and irregularly to changes in surface water availability and 

climate. Farmers are motivated to pump groundwater for a variety of reasons, which adds 

to the complexity o f the water-food relationship within the WEF Nexus. Seawater intrusion 

does respond to wet and dry periods but also responds to changes in surface processes such 

as high amounts o f precipitation increasing surface-water availability. Human interactions 

also drive seawater intrusion as groundwater pumping is directly related to declines in 

groundwater levels. Surface-water serves a crucial mediator within the WEF Nexus of 

Pajaro Valley. It is strongly correlated to climate variability and heavily influences 

groundwater levels and pumping practices. When surface water is abundant it alleviates 

the dependence on groundwater for agriculture. With proper management and the 

implementation o f sustainable agricultural practices, surface-water can aid in reducing 

seawater intrusion and reduce conflict within the water for food linkage within the WEF 

Nexus.
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TABLES

Table 1. Summary of data used in this thesis.

Study ID Data Type Source Starting
Year

Ending
Year

Length of 
Record 
(Years)

N Units

MEI Climate Index NOAA 1908 2017 110 1320 unitless
PDO Climate Index NOAA 1908 2017 110 1320 unitless

WTW Precipitation DWR 1908 2017 110 1320 mm

COR Streamflow
Discharge USGS 1957 2017 61 732 m3/s .

G001 Groundwater
Levels USGS 1947 1983 36 432 m

Inland/Coastal
Groundwater

Levels

Simulated
Groundwater

Levels
PVHM 1964 2014 51 612 m

Inland/Coastal
Recharge

Simulated
Recharge PVHM 1963 2014 52 624 m3 •

Inland/Coastal
Pumping

Simulated
Pumping PVHM 1963 2014 52 624 m3

Table 2. The percent variance o f reconstructed components (RCs) attributed to the El Nino- 
Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) for all hydrologic 
datasets.

Percent Variance
Dataset ENSO PDO

Precipitation 6% 30%
Streamflow Discharge 10% 85%
Simulated Recharge
Coastal 4% 93%
Inland 5% 92%
Groundwater PumDine 
Coastal 3% 90%
Inland 4% 82%
Observed Groundwater Levels 14% 85%
Simulated Groundwater Levels
Coastal 2% 98%
Inland 1% 77%
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Table 3. Results o f the climate index to hydrologic inflows lag correlation. Correlations 
performed between El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation 
(PDO) composite reconstructed components (RCs) o f climate indices and precipitation, 
streamflow discharge, and coastal and inland recharge. Minimum, maximum, and average 
correlation coefficients are reported in this table with their corresponding lag time in years. 
All

Index to Inflow Minimum
Correlation

Lag lime 
(years)

Maximum
Correlation

Lag lime 
iyem )

Axmgp
Correlation

Lag Time 
(years)

MEI - precipitation 0.07 0.08 0.31 1.1 0.22 1.1
MEI - streamflow discharge 0.06 1.3 0.29 0.17 0.21 0.63
MEI - coastal recharge 0.07 1.5 0.42 0.50 0.32 0.75
MEI - inland recharge 0.08 1.4 0.47 0.50 0.35 0,71

PDO - precipitation 0.06 0.33 0.12 1.9 0.10 1.9
PDO - streamflow discharge 0.08 4.0 0.60 1.0 0.45 2.0
PDO - coastal recharge 0.07 2.6 0.25 0.50 0.20 1.3
PDO - inland recharge 0.08 3.2 0.37 0.67 0.29 1.6

Table 4. Results of the climate index to hydrologic outflows lag correlation. Correlations 
performed between El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation 
(PDO) composite reconstructed components (RCs) o f climate indices and simulated 
groundwater pumping. Minimum, maximum, and average correlation coefficients are 
reported in this table with their corresponding lag time in years.

Index to Outflow Minimum
Correlation

Lag Time 
(years)

Maximum
Correlation

Lag 111116 
(years)

Average
Correlation

Lag Time 
(years'*

MEI - coastal groundwater 
pumping -0.08 1.0 -0.24 0.25 -0.20 0.50
MEI - inland groundwater 
pumping

-0.07 1.0 -0.21 0.25 -0.17 0.50

PDO - coastal groundwater 
pumping

-0.10 3.9 -0.25 0 -0.14 2.5

PDO - inland groundwater
pum ping

-0.06 2.0 -0.26 0 -0.16 0.95
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Table 5. Results o f the precipitation to inflows lag correlation. Correlations performed 
between El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) 
composite reconstructed components (RCs) o f precipitation to streamflow discharge and 
groundwater recharge. Minimum, maximum, and average correlation coefficients are 
reported in this table with their corresponding lag time in years.

Precipitation to Inflow VJ iniifium 
Correlation

Lag Time 
(years)

Maximum
Correlation

Time
(years)

Average
Correlation

Lag How
(yems)

ENSO-comnosite 
Precipitation - streamflow 0.10 1.1 0.80 0 0.53 0.54
discharge
Precipitation - coastal 0.10 1.0 0.73 0 0.47 0.50
recharge
Precipitation - inland 0.13 0.90 0.74 0 0.49 0.45
recharge

PDO-corrroosite 
Precipitation - streamflow 0.07 4.3 0.87 0.67 0.64 2.1
discharge
Precipitation - coastal 0.08 3.6 0.71 0.20 0.50 1.8
recharge
Precipitation - inland 0.08 3.5 0.8 0.20 0.60 1.8
recharge
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Table 6. Results o f the inflows to outflows lag correlation. Correlations performed between 
El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) composite 
reconstructed components (RCs) o f inflows to groundwater pumping. Minimum, 
maximum, and average correlation coefficients are reported in this table with their 
corresponding lag time in years.

Outflows to Groundwater Levels Miwuiuin
Correlation

Liqt; Time 
(years)

Maximum
Correlation

Lag Time 
(years)

Average Lag Time 
(years)

ENSO-comnosite
Coastal groundwater pumping -
observed groundwater levels -0.07 1.7 -0.41 0 -0.25 0.88

Inland groundwater pumping - 
observed groundwater levels

-0.07 1.7 -0.41 0 -0.23 0.83

Coastal groundwater pumping - 
coastal groundwater levels

-0.11 1.5 -0.57 0.58 -0.42 0.75

Inland groundwater pumping - 
inland groundwater levels

-0.08 0.25 -0.37 1.3 -0.26 1.4

PDO-comoosite
Coastal groundwater pumping - 
observed groundwater levels

-0.09 4.4 -0.36 5.0 -0.22 4.7

Inland groundwater pumping - 
observed groundwater levels

-0.08 2.1 -0.37 0.80 -0.29 .01

Coastal groundwater pumping - 
coastal groundwater levels

-0.07 4.3 -0.9 0 -0.60 ?.l

Inland groundwater pumping - 
inland groundwater levels

-0.43 5.0 -0.73 1.9 -0.64 2.5
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Table 7. Results o f the climate index to groundwater levels lag correlation. Correlations 
performed between El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation 
(PDO) composite reconstructed components (RCs) o f climate indices to observed and 
simulated groundwater levels. Minimum, maximum, and average correlation coefficients 
are reported in this table with their corresponding lag time in years. (*) Despite using 60 
months as the maximum forward lag limit, the lag correlation between the PDO Index and 
observed groundwater levels did not result in a positive correlation coefficient for the first 
60 lags. The threshold was extended in this case and the first statistically significant 
correlation coefficient was reported in this table.

Index to Groundwater Level Minimum Lag Time 
CofrolmioD (yetn)

Maximum Lag Time 
Correction (years)

Average
Correlation

Lag Time 
(years)

MEI - observed groundwater 
levels 0.07 2.2 0.44 3.3 0.28 3.3

MEI - coastal groundwater levels 0.08 2.5 0.42 1.3 0.29 1.5
MEI - inland groundwater levels 0.06 0.67 0.48 1.67 0.32 1.7

PDO - observed groundwater 
levels 0.06* 7.5* 0.06* 7.5* 0.06* 7.5*

PDO - coastal groundwater levels 0.07 4.8 0.44 0.83 0.31 2.4
PDO - inland groundwater levels 0.23 5.0 0.46 2.4 0.38 2.5



44

Table 8. Results o f inflows to groundwater levels lag correlation. Correlations performed 
between El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) 
composite reconstructed components (RCs) o f inflows to observed and simulated 
groundwater levels. Minimum, maximum, and average correlation coefficients are reported 
in this table with their corresponding lag time in years.

Inflows to Groundwater Levels Minimum
Correlation

Lag Time 
(years’*

Maximum
Correlation

Lag Time 
(years)

Average
Correlation

Lag Time 
(years)

ENSO-comnosite
Precipitation - observed 
groundwater levels 0.07 2.2 0.43 3.3 0.31 3.1
Precipitation - coastal 
groundwater levels 0.10 1.8 0.72 0.67 0.53 0.92

Precipitation - inland 
groundwater levels 0.07 2.0 0.67 0.92 0.47 1.0

Streamflow discharge - observed 
groundwater levels 0.08 1.2 0.25 0.25 0.19 0.58
Streamflow discharge - coastal 
groundwater levels 0.08 1.8 0.67 0.58 0.47 0.90

Streamflow discharge - inland 
groundwater levels 0.10 2.0 0.62 0.92 0.43 1.0

Coastal Recharge - observed 
groundwater levels 0.08 1.7 0.51 0.50 0.36 0.83
Inland Recharge - observed 
groundwater levels 0.09 1.6 0.52 0.50 0.37 0.80
Coastal Recharge - coastal 
groundwater levels 0.10 1.75 0.64 0.75 0.46 0.88
Inland Recharge - inland
groundwater levels 0.13 1.9 0.68 1.0 0.46 0.96
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Table 8. (Cont.)

Inflows to Groundwater Levels Minimum Lag Time 
Correlation (years)

MwQfflLnu Lag Time 
Correlation (years)

Average Lag Time 
Correlation (years)

PDO-comoosite 
Precipitation - observed 
groundwater levels 
Precipitation - coastal 
groundwater levels 
Precipitation - inland 
groundwater levels

Streamflow discharge - observed 
groundwater levels 
Streamflow discharge - coastal 
groundwater levels 
Streamflow discharge - inland 
groundwater levels

Coastal Recharge - observed 
groundwater levels 
Inland Recharge - observed 
groundwater levels 
Coastal Recharge - coastal 
groundwater levels 
Inland Recharge - inland 
groundwater levels

0.10 0

0.25 0 

0.10 0

0.10 0 

0.38 0 

0.32 0

0.37 5.0 

0.25 0 

0.09 0 

0.06 0

0.65 2.7

0.50 2.8 

0.59 3.3

0.67 4.8 

0.63 3.0 

0.77 3.3

0.87 1.9 

0.82 2.7 

0.64 4.6 

0.63 5.0

0.50 2.5

0.43 2.5 

0.45 2.5

0.52 2.5 

0.56 2.5 

0.65 2.5

0.71 2.5 

0.68 2.5 

0.47 2.5 

0.44 2.9
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Table 9. Results of the outflows to groundwater levels lag correlation. Correlations 
performed between El Nino-Southern Oscillation (ENSO) and Pacific Decadal Oscillation 
(PDO) composite reconstructed components (RCs) o f groundwater pumping to observed 
and simulated groundwater levels. Minimum, maximum, and average correlation 
coefficients are reported in this table with their corresponding lag time in years.

Outflows to Groundwater Level0 Minimum
Correlation

Lag Time 
(years)

Mtwirowm
Correlation

Lag Time 
(years)

Average
Correlation

Lag Time

ENSO-composite
Coastal gorundwater pumping - 
observed groundwater levels -0.07 1.7 -0.41 0 -0.25 0.88

Inland groundwater pumping - 
observed groundwater levels -0.07 1.7 -0.41 0 -0.23 0.83

Coastal groundwater pumping - 
coastal groundwater levels

-0.11 1.5 -0.57 0.58 -0.42 0.75

Inland groundwater pumping - 
inland groundwater levels -0.08 0.25 -0.37 1.3 -0.26 1.4

PDO-comDosite
Coastal groundwater pumping - 
observed groundwater levels

-0.09 4.4 -0.36 5.0 -0.22 4.7

Inland groundwater pumping - 
observed groundwater levels -0.08 2.1 -0.37 0.8 -0.29 1.0

Coastal groundwater pumping - 
coastal groundwater levels -0.07 4.3 -0.90 0 -0.60 2.1

Inland groundwater pumping - 
inland groundwater levels -0.43 5.0 -0.73 1.9 -0.64 2.5
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FIGURES

Figure 1. The (a) Multivariate ENSO Index on a monthly tiinescale, and the (b) Pacific 
Decadal Oscillation Index on a monthly tiinescale (NOAA, 2018).



California

Explanation

------- watershed boundary

A precipitation station

• groundwaterwdl

O stream gauge

coastal MODFLOW area

■  inland MODFLOW area

California Coastal
✓ ^ Aquifer System

Figure 2. Map o f Pajaro Valley, CA with (a) stations for observed data and (b) area 
simulated data
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0.6 (a) MEI

0.8 (b) PDO

12

Index - precipitation 
Index - streamflow discharge 
Index - coastal recharge 
Index - inland recharge 
Confidence Interval

18 24 30 36

Lag Time (months)
42 48 54 60

Figure 3. Lag correlation plot o f the (a) MEI and (b) PDO to hydrologic inflows. 
Correlation coefficients above the confidence interval are statistically significant.
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0.2 (a) MEI
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u
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0.1 (b) PDO

-0 .3
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Index - coastal pumping 
Index - inland pumping 
Confidence Interval

18 24 30 36

Lag Time (months)
42 48 54 60

Figure 4. Lag correlation plot of the (a) MEI and (b) PDO to hydrologic outflows. 
Correlation coefficients above the confidence interval are statistically significant.
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(a) ENSO-composite

12 18

Precipitation - streamflow discharge 
Precipitation - coastal recharge 
Precipitation - inland recharge 
Confidence Interval

24 30 36

Lag Time (months)
42 48 54 60

Figure 5. Lag correlation plot o f precipitation to inflows for (a) ENSO-composite and (b)
PDO-composite RCs. Correlation coefficients above the confidence interval are
statistically significant.
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0.4
0.1 ^)_PDOj:qm2psite_

12 18

Precipitation - coastal pumping 
Precipitation - inland pumping 
Streamflow discharge - coastal pumping 
Streamflow discharge - inland pumping 
Confidence Interval

24 30 36

Lag Time (months)
42 48 54 60

Figure 6. Lag correlation plot of inflows to outflows for (a) ENSO-composite and (b)
PDO-composite RCs. Correlation coefficients above the confidence interval are
statistically significant.
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- 0.6

- 0.1
12 18

Index - observed groundwater levels 
Index - coastal groundwater levels 
Index - inland groundwater levels 
Confidence Interval

24 30 36

Lag Time (months)
42 48 54 50

Figure 7. Lag correlation plot of the (a) MEI and (b) PDO to observed and simulated -
groundwater levels. Correlation coefficients above the confidence interval are statistically
significant.
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(b) PDO-composite

- 0.2
l? 18 24

Prscipilation - observed groundwater levels 
Streamflow discharge - observed groundwater levels 
Coastal recharge - observed groundwater levels 
Inland recharge - observed groundw ater levels 
Confidence Interval

30 36

Time (months)
42 48 54 60

Figure 8. Lag correlation plot of hydrologic inflows to observed groundwater levels for 
(a) ENSO-composite and (b) PDO-composite RCs. Correlation coefficients above the 
confidence interval are statistically significant.
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Figure 9. Lag correlation plots o f hydrologic inflows to simulated groundwater levels for 
(a) ENSO-composite and (b) PDO-composite RCs. Correlation coefficients above the 
confidence interval are statistically significant.
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0.6 (b) PDO-composite

12 18 24

Coastal pumping - observed groundwater levels 
Inland pumping - observed groundwater levels 
Coastal pumping - coastal groundwater levels 
Inland pumping - inland groundwater levels 
Confidence Interval

30 36

Time (months)
42 48 54 60

Figure 10. Lag correlation plot of hydrologic outflows to observed and simulated 
groundwater levels for (a) ENSO-composite and (b) PDO-composite RCs. Correlation 
coefficients above the confidence interval are statistically significant.
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Year

Figure 11. Timeseries o f ENSO-composite RCs o f precipitation plotted with the MEI 
Index.

Year

Figure 12. Timeseries o f ENSO-composite RCs o f precipitation and streamflow 
discharge.



.58

^  0.6ur*

Figure 13. Timeseries o f ENSO-composite RCs of precipitation and simulated 
groundwater recharge.

1908 1918 1928 1938 1948 19S8 1968 1978 1988 1998 2008 2018
Year

Figure 14. Exported ENSO-composite RCs within the precipitation timeseries are plotted 
with phases o f strong to moderate El Nino and La Nina events (NOAA, ESRL, 2019).
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E xpim ihon  

■  Strong El Nifto

Moderate El Ni&o

g  S traogU tffia

Moderate L* Nifla

Figure 15. Exported ENSO-composite RCs within the streamflow discharge timeseries 
are plotted with phases o f strong to moderate El Nino and La Nina events (NOAA, 
ESRL, 2019).
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—  Cots til Recharge

—  Inland Recbaipe 

■  Strong El N iio

Moderate El Niflo 

B  Strong La Nifla 

Moderate La Nifia'

2014
Year

Figure 16. Exported ENSO-composite RCs within the simulated groundwater recharge 
timeseries are plotted with phases o f strong to moderate El Nino and La Nina events 
(NOAA, ESRL, 2019).
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1964 1974 1984 1994 2004 2014
Year

Figure 17. Timeseries of ENSO-composite simulated groundwater pumping plotted with 
the MEI Index.

1964 1974 1984 1994 2004 2014
Year

Figure 18. Exported ENSO-composite RCs of simulated groundwater pumping volume 
are plotted with phases o f strong to moderate El Nino and La Nina events (NOAA, 
ESRL, 2019). Coastal and inland pumping data were averaged for the purpose o f clarity.
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1947 1951 1955 1959 1963 1967 1971 1975 1979 1983

Year

Explanation 

|  Strong ElNiio

Moderate ElNiflo

^  Strong Lb Ni4»

Moderate La Nifli

Figure 19. The (a) raw observed groundwater levels and (b) exported ENSO-composite 
RCs o f observed groundwater levels are plotted with phases o f strong to moderate El Nino 
and La Nina events (NOAA, ESRL, 2019).
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Figure 20. The (a) raw coastal, (b) raw inland, and the (c) exported ENSO-composite 
RCs of simulated groundwater levels are plotted with phases of strong to moderate El 
Nino and La Nina events (NOAA. ESRL, 2019).
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APPENDIX

Appendix A. Results o f the Singular Spectrum Analysis. Bolded rows denote components 
that were used to create ENSO and PDO-composite RCs.

ID
Reconstructed

Component
(RC)

Period Frequency Power Variance
Error

of
Power

Error of 
Variance

Period
(Years)

CV
Matches

1 660.00 0.00 84.77 0.65 3.30 0.03 55.00
2 220.00 0.00 28.80 0.22 1.12 0.01 18.33
3 110.00 0.01 5.78 0.04 0.22 0.00 9.17
4 77.65 0.01 3.88 0.03 0.15 0.00 6.47 ENSO

MEI
5 62.86 0.02 3.30 0.03 0.13 0.00 5.24 ENSO
6 45.52 0.02 1.73 0.01 0.07 0.00 3.79 ENSO
7 42.58 0.02 1.07 0.01 0.04 0.00 3.55 ENSO
8 42.5G 0.02 0.58 0.00 0.02 0.00 3.55 ENSO
9 34.74 0.03 0.30 0.00 0.01 0.00 2.89 ENSO
10 29.33 0.03 0.23 0.00 0.01 0.00 2.44 ENSO



64

Appendix B. Results o f the Singular Spectrum Analysis (Cont.)

ID
Reconstructed
Component

(RC)
Period Frequency Power Variance

Error
of

Power

Error of 
Variance

Period
(Years)

CV
Matches

1 984.00 0.00 125.45 0.59 4.00 0.02 82.00
2 492.00 0.00 66.09 0.31 2.11 0.01 41.00
3 218.67 0.00 10.19 0.05 0.32 0,00 18.22 PDO
4 115.76 0.01 4.12 0.02 0.13 0.00 9.65

PDO 5 109.33 0.01 1.78 0.01 0.06 0.00 9.11
6 67.86 0.01 1.35 0.01 0.04 0.00 5.66
7 67.86 0.01 1.19 0.01 0.04 0.00 5.66
8 56.23 0.02 0.51 0.00 0.02 0.00 4.69
9 51.79 0.02 0.29 0.00 0.01 0.00 4.32
10 45.77 0.02 0.26 0.00 0.01 0.00 3.81
1 660.00 0.00 66.73 0.60 2.60 0.02 55.00
2 44000 0.00 26.28 0.24 1.02 0.01 36.67 PDO
3 146.67 0.01 7.29 0.07 0.28 0.00 12.22 PDO
4 82.50 0.01 3.22 0.03 0.13 0.00 6.88 ENSO

WTW
5 62.86 0.02 1.71 0.02 0.07 0.00 5.24 ENSO
6 12.00 0.08 1.13 0.01 0.04 0.00 1.00
7 12.00 0.08 1.08 0.01 0.04 0.00 1.00
8 55.00 0.02 0.83 0.01 0.03 0.00 4.58 ENSO
9 47.14 0.02 0.36 0.00 0.01 0.00 3.93 ENSO
10 40.00 0.03 0.21 0.00 0.01 0.00 3.33 ENSO
1 222.00 0.00 19.64 0.85 1.32 0.06 18.50 PDO
2 74.00 0.01 2.86 0.12 0.19 0.01 6.17 ENSO
3 27.75 0.04 0.30 0.01 0.02 0.00 2.31 ENSO
4 12.00 0.08 0.18 0.01 0.01 0.00 1.00

G001 5 12.00 0.08 0.15 0.01 0.01 0.00 1.00
6 9.45 0.11 0.03 0.00 0.00 0.00 0.79
7 8.38 0.12 0.01 0.00 0.00 0.00 0.70
8 6.43 0.16 0.01 0.00 0.00 0.00 0.54
9 6.00 0.17 0.01 0.00 0.00 0.00 0.50 •
10 5.10 0.20 0.00 0.00 0.00 0.00 0.43
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Appendix B. Results o f the Singular Spectrum Analysis (Cont.)

ID
Reconstructed

Component
(RC)

Period Frequency Power Variance
Error

o f
Power

Error o f 
Variance

Period
(Years)

CV
Matches

1 183.00 0.01 40.11 0.54 2.10 0.03 15.25 PDO
2 146.40 0.01 23.46 0.31 1.23 0.02 12.20 PDO
3 56.31 0.02 3.85 0.05 0.20 0.00 4.69 ENSO
4 56.31 0.02 2.27 0.03 0.12 0.00 4.69 ENSO

COR
5 40.67 0.02 0.86 0,01 0.05 0.00 3.39 ENSO
6 12.00 0.08 0.74 0.01 0.04 0.00 1.00
7 12.00 0.08 0.73 0.01 0.04 0.00 1.00
8 26.14 0.04 0.41 0.01 0.02 0.00 2.18 ENSO
9 26.14 0.04 0.36 0.00 0.02 0.00 2.18 ENSO
10 22.18 0.05 0.31 0.00 0.02 0.00 1.85
1 312.00 0.00 36.91 0.60 2.09 0.03 26.00 PDO
2 208.00 0.00 13.74 0.22 0.78 0.01 17.33 PDO
3 12.24 0.08 4.06 0.07 0.23 0.00 1.02
4 12.24 0.08 3.84 0.06 0.22 0.00 1.02

Inland 5 62.40 0.02 1.54 0.03 0.09 0.00 5.20 ENSO
Pumping 6 39.00 0.03 0.53 0.01 0.03 0.00 3.25 ENSO

7 29.71 0.03 0.21 0.00 0.01 0.00 2.48 ESNO
8 6.12 0.16 0.14 0.00 0.01 0.00 0.51
9 6.12 0.16 0.14 0.00 0.01 0.00 0.51
10 27.13 0.04 0.11 0.00 0.01 0.00 2.26 ENSO
1 312.00 0.00 40.36 0.65 2.29 0.04 26.00 PDO
2 208.00 0.00 15.68 0.25 0.89 0.01 17.33 PDO
3 12.24 0.08 1.92 0.03 0.11 0.00 1.02
4 12.24 0.08 1.82 0.03 0.10 0.00 1.02

Coastal 5 62.40 0.02 1.26 0.02 0.07 0-00 5.20 ENSO
Pumping 6 41.60 0.02 0.35 0.01 0.02 0.00 3.47 ENSO

7 31.20 ' 0.03 0.15 0.00 0.01 0.00 2.60 ENSO
8 29.71 0.03 0.08 0.00 0.00 0,00 2.48 ENSO
9 6.12 0.16 0.07 0.00 0.00 0.00 0.51
10 6.12 0.16 0.07 0.00 0.00 0.00 0.51
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Appendix B. Results o f the Singular Spectrum Analysis (Cont.)

ID
Reconstructed

Component
:

Period Frequency Power Variance Error o f 
Power

Error o f 
Variance

Period
(Years)

CV
Matches

1 306.00 0.00 40.18 0.73 2.30 0.04 25.50 PDO
2 204.00 0.00 13.67 0.25 0.78 0.01 17.00 PDO
3 61.20 0.02 0.67 0.01 0.04 0.00 5.10 ENSO
4 47.08 0.02 0.15 0.00 0.01 0.00 3.92 ENSO

Coastal
Groundwater
Levels

5 12.00 0.08 0.07 0.00 0.00 0.00 1.00 .

6 12.00 0.08 0.06 0.00 0.00 0.00 1.00
7 30.60 0.03 0.04 0.00 0.00 0.00 2.55 ENSO
3 25.50 G.04 0.02 0.00 0.00 0.00 2.13 ENSO
9 21.86 0.05 0.01 0.00 0.00 0.00 1.82
10 19.74 0.05 0.00 0.00 0.00 0.00 1.65
1 306.00 0.00 45.55 0.77 2.60 0.04 25.50 PDO
2 122.40 0.01 12.95 0.22 0.74 0.01 10.20
3 61.20 0.02 0.66 0.01 0,04 0.00 5.10 ENSO
4 47.08 0.02 0.12 0.00 0.01 0.00 3.92 ENSO

Inland
Groundwater
Levels

5 30.60 0.03 0.02 0.00 0.00 0.00 2.55 ENSO
6 12.00 0.08 0.01 0.00 0.00 0.00 1.00
7 12.00 0.08 0.01 0.00 0.00 0.00 1.00
8 25.50 0.04 0.01 0.00 0.00 0.00 2.13 ENSO
9 21.86 0.05 0.00 0.00 0.00 0.00 1.82
10 19.74 0.05 0.00 0.00 0.00 0.00 1.65
1 312.00 0.00 45.11 0.68 2.55 0.04 26.00 PDO
2 156.00 0.01 15.70 0,24 0.89 0.01 13.00 PDO
3 56.73 0.02 2.09 0.03 0.12 0.00 4.73 ENSO
4 56.73 0.02 0.92 0.01 0,05 0.00 4.73 ENSO

Inland 5 12.24 0.08 0.35 0.01 0.02 0.00 1.02
Recharge 6 12.24 0.08 0.34 0.01 0.02 0.00 1.02

7 27.13 0.04 0.33 0.01 0.02 0.00 2.26 ENSO
8 22.29 0.04 0.27 0.00 0.02 0.00 1.86
9 20.80 0.05 0.23 0.00 0.01 0.00 1.73
10 16.42 0.06 0.15 0.00 0.01 0.00 1.37
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Appendix B. Results o f the Singular Spectrum Analysis (Cont.)

ID
Reconstructed

Component
(RC)

Period Frequency Power Variance
Error

o f
Power

Error o f 
Variance

Period
(Years)

cv
Matches

1 312.00 0.00 46.97 0.73 2.66 0.04 26.00 PDO
2 156.00 0.01 13.08 0.20 0.74 0.01 13.00 PDO
3 56.73 0.02 1.82 0.03 0.10 0.00 4.73 ENSO
4 56.73 0.02 0.76 0.01 0.04 0.00 4.73 ENSO

Coastal 5 28.36 0.04 0.26 0.00 0.0J 0.00 2.36 ENSO
Recharge 6 12.24 0.08 0.25 0.00 0.01 0.00 1.02

7 12.24 0.08 0.25 0.00 0.01 0.00 1.02
8 22.29 0.04 0.21 0.00 0.01 0.00 1.86 •
9 20.80 0.05 0.18 0.00 0.01 0.00 1.73
10 16.42 0.06 0.12 0.00 0.01 0.00 1.37


