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Hillslopes produce the sediments that are supplied to river channels’ bed. The river bed 
sediments link climatic factors to landscape evolution by regulating the rate of river 
incision. However, the factors that control hillslope sediment size are poorly understood, 
limiting our ability to predict sediment size and model the evolution of sediment size 
distributions across landscapes. Recently separate field and theoretical investigations 
have begun to address this knowledge gap. Here we compare the predictions of several 
emerging modeling approaches to landscapes where high quality field data are available. 
Our goals are to explore the sensitivity and applicability of the theoretical models in each 
field context, and ultimately to provide a foundation for incorporating hillslope sediment 
size into models of landscape evolution. The field data include published measurements 
of hillslope sediment size from the Kohala peninsula on the island of Hawaii and 
tributaries to the Feather River in the northern Sierra Nevada mountains of California, 
and the Inyo Creek catchment of the southern Sierra Nevada. These data are compared to 
predictions adapted from recently published modeling approaches that include elements 
of topography, geology, structure, climate and erosion rate. This research suggests that 
models may be suitable for predicting sediment size distribution, given adequate data for 
environmental factors and the initial size distribution is available.

I certify that the abstract is a correct representation of the content of this thesis.
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1. Introduction & background

The size distributions of sediment produced on hillslopes and supplied to river channels 

influence a wide range of fluvial processes, from bedrock river incision to the creation of 

aquatic habitats. River bedrock incision is the main mechanism for valley evolution. The 

relationship between channel incision into bedrock and the sediments supplied by 

surrounding hillslopes is well established (Sklar & Dietrich., 2004). Given that sediments 

are stream’s primary tool for river-bed abrasion, their size distribution and the amount 

supplied by hillslopes to channels influences the rate of bedrock incision and longitudinal 

profile development of the river. In order to accurately predict channel incision, we must 

understand the factors controlling sediment size distribution (SSD) supplied to the 

channel by the surrounding hillslopes. Currently these factors are poorly understood 

(Dietrich et al., 2003), limiting our ability to predict sediment size and model the 

evolution of their distributions across landscapes.

Recently, separate field and theoretical investigations have begun to address this 

knowledge gap. Here I will be comparing the predicting ability of several emerging 

modeling approaches (Sklar et al., 2016; Leclere, 2017; Roy et al., 2016) in landscapes 

where high quality field data are available. This is done to investigate if it is possible to 

predict SSD accurately and reliably in a wide range of landscapes. My goal is to explore 

the sensitivity and applicability of the theoretical models in each field context, and 

ultimately to provide a foundation for incorporating hillslope sediment size into models 

of landscape evolution.

The field data include published measurements of hillslope sediment sizes mostly 

from the dry side of Kohala peninsula on the island of Hawaii (Marshall & Sklar., 2012) 

and tributaries to the Feather River in the northern Sierra Nevada ranges of California 

(Attal et al., 2015), and an unpublished data set from the Inyo Creek catchment of the 

southern Sierra Nevada (Leclere, 2017; Genetti, 2017). These data are compared to
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predictions adapted from recently published modeling approaches that include elements 

of topography, climatic factors, lithology, and geomorphic processes such as erosion rate 

and weathering. Predictive models for each site are built in ArcGIS using field condition 

datasets such as: digital elevation model (DEM) topography that is used as a source for 

(slope gradient, aspect, solar radiation), bedrock geology data is used for local (lithology, 

mineralogy), climate data is used for extraction of local and global (mean annual 

precipitation and temperature), and finally to estimate the local erosion rates. If the model 

derived simulated data are found to be statistically significant in relation to local 

sediment sizes, a successful prediction for the SSD can be devised into a computationally 

tractable method for incorporating spatial variation in production of hillslope SSD in 

landscape evolution models (figure 1).

2. Predicting hillslope sediment size

To predict the hillslope SSD, one has to understand what factors control the size and 

evolution of the sediments. These factors include the physical weathering rates, chemical 

weathering rates, and the initial size distribution (table 1). Differential heat stress, frost 

cracking, tree throw, and debris flow are some examples of physical weathering that can 

impact the SSD. These factors are hard to quantify and therefore are generalized for my 

study sites, since there are multiple physical weathering processes involved. Same can be 

said about chemical weathering, where multiply processes such as hydrolysis, hydration, 

and differential mineral weathering can produce disparity in size evolution between 

individual particles. However, I assume the difference between chemical weathering 

processes is uniformly applied is negligible. Therefore, here I mainly focus on the 

chemical weathering rates, which controls the sediment evolution. Also I will use 

bedrock fracture spacing, mineral crystal sizes, and some landslide data, depending on 

the study location and availability of data, to representation the initial size distribution.
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2.1 Chemical Weathering Potential

The first model for predicting SSD is by quantifying the chemical weathering that affects 

the particles during their journey through soil, as proposed by Sklar et al., (2016). 

Chemical weathering is controlled by water residence time, mineral solubility, climate 

factors such as temperature and precipitation, and the supply of fresh minerals to the 

surface by physical erosion. Thus, the potential for chemical weathering can be simplified 

to:

Chemical Weathering Potential = f(Lithology, Climate, Tectonics)

Sklar et al. (2016) predicts the weathering of initial size distribution at a given 

location by quantifying the potential for chemical weathering, using the climatic factors 

of mean annual temperature and precipitation. Generally, the biotic factors are being 

controlled by climate and thus are assumed to be predicted by the climate parameter as 

well. Thus the chemical weathering potential (CWP) is defined as:

p . - E a A  L_A
CWP = (— ) be r {t Tmax* (1)

P-rnax

where R = universal ideal gas constant, b = 1/2 and Ea is an activation energy the depends 

on rock type, T= temperature and P = precipitation. The constants (Pmax) and (Tmax) 

represent the global maximum for each variable and not for any given study region. The 

chemical weathering potential ranges from 0 for no chemical weathering to 1 for 

maximum chemical weathering. However, chemical weathering is also controlled by the 

amount of soluble minerals available. When all soluble minerals have completely 

weathered away, there is only insoluble minerals left. Even if climatic variables are are at 

maximum force, the potential chemical weathering is still zero (Sklar et al., 2016).
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However, the potential for weathering captured by CWP can only occur when the

a long time in the soil, the chemical reactions can reach equilibrium, and thus CWP is 

supply limited. Sklar et al. (2016) introduce a weathering function (W) which depends on 

CWP and the fraction of soluble minerals (FSM), and express the supply-limited values of 

W as WSL where:

According to equation 2, WSL is maximum when Fsm~ 1 and no chemical weathering 

occurs when Fsm~ 0- However, depending on the rate of erosion, three different scenarios 

of chemical weathering can occur. These scenarios are divided by two threshold values 

used in the following equation:

Here, E represents local erosion rate and the exponent (p is set to 2/3 to capture the non­

linear dependence of residence time of particles in soil. ESK represents the threshold 

dividing supply-limited from kinetically limited weathering, and Eku represents the 

threshold dividing kinetically limited chemical weathering from the case where fresh 

rock is supplied to the channel (i.e. no chemical weathering). When erosion rates are 

negligible, the chemical weathering processes have the most time to weather down the 

minerals and CWP is only limited by the supply of minerals ( E < ESK). But as erosion 

rates increase, and become larger than Esk> (Eku > E > Esk), the particles spend less time 

in the soil and are less exposed to the chemical weathering processes; thus the CWP 

becomes kinetically limited. Finally, when erosion rates are high (E > Eku)> the residence 

time is low enough that the chemical weathering becomes negligible (figure 2). This is 

because the sediment residence time and its interaction with water (Burke et al., 2007;

residence time for particles is long and the erosion rate is very low. As the particles spend

WSL = Fsm .CWP (2)

(3)



5

Dixon et al., 2009; Riebe et al., 2001; Schmidt, 2009). The longer the mineral or rock 

particle is in contact with water, the higher the likelihood of chemical weathering, which 

yield finer SSD (Phillips et al., 2008).

After establishing the link between climatic factors and weathering Sklar et al., 

(2016) used the following transformation function to estimate the size distribution 

supplied to a given channel (Dc) based on measured initial size distribution (D0):

Dc = DZn  * D ^~w) Dmin = 10-3mm (4)

where W ranges between 0 (no weathering) to 1 (complete weathering). Dmin represents 

the minimum particle size that would be considered bedload. Here, I mainly focus on 

particle sizes above 10-3 mm, as anything below that can be considered dissolved load. 

River incision require saltating bedload, and dissolved load has negligible impact on 

bedrock incision, unless the bedrock is dominated by soluble rocks such as carbonates, 

which our study locations lack. Sklar et al. (2016) assumes that chemical weathering only 

has an impact on hillslopes, while physical weathering only affects the initial size 

distribution governed by initial bedrock conditions, such as bedrock spacing which 

determines the maximum initial sizes that are possible (figure 3).

Using the transformation function (eqn. 4) for varying CWP fractions, I was able 

to produce a range of SSDs supplied to the channel, as shown on figure 4. After applying 

this equation to each size class in the distribution, the mass fraction in each size class gets 

transformed to the new sizes. Depending on the strength of CWP, the new sizes should 

have smaller mean and median. In theory, the size distribution observed in the field, 

compared to the initial size distribution data, should follow a straight line in the power 

function plot similar to figure 4. However, as will be discussed later in the results section, 

this was not always the case.
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2.2 Multiple Regression: Sediment Size Empirical Model

A second approach to predicting hillslope sediment size is to use field data to build an 

empirical prediction relationship using multiple regression. This is done by constructing a 

log-linear or power law best fit model for predicting the median SSD (Dso) for a given 

study location. This fitting equation can be expressed as a log-linear plot:

Log 1 o(05o) = intercept + aX1 + bX2 + cX3 ------1- nXn (5)

or can be expressed as power function:

DSQ = K *X1a *X2b *X3C* ...* X nn K = 10 intercept (6 )

Here, the symbols (X1,X2, —,Xn) represent different topographical or climatic variables 

and lower case letters (a, b, c , ..., n) represent the variable’s statistical coefficients 

derived from the multiple regression solution. Thus if local topographical and climatic 

variables are known, using these equations, local Dso can be predicted. While this 

empirical fit model only represents the central tendency, the median, of the size 

distributions, it is possible to use the same fit model for quantiles other than D50.

Previous studies in each location point toward different variables as the main control in 

SSD. So by producing an empirical fit model, I can test previous findings and see if there 

is any additional statistical support for those claims.

2.3 Fractal Size Distribution Model

The third model used here is the fractal model. What sets the fractal model apart from the 

other two methods is that, it is used to predict the initial size distribution rather than the 

size distribution that is supplied to the channel. I use bedrock fracture spacing as a 

possible control on initial size distribution and assume this relationship follows a linear 

power law function (Roy et al., 2016). If the bedrock fracture spacing has a fractal
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distribution, then the fractal model should be able to predict initial SSD. The cumulative 

fractal distribution can be written as:

N(>D) > kD Df (7)

where N is the number of particles; D is the diameter of particles, DF is the fractal 

dimension and K is a pre-factor which represents the value of N when D = 1mm. Using 

this model, it should be possible to predict a full range of the initial sizes distribution 

using a small sub-sample. This relationship has been used in models investigated by 

Egholm et al., 2013 and Roy et al., 2016. This is very useful for extrapolating data for a 

large region using few samples.

3. Study Locations

I focus on three regions: two located in the Sierra Nevada Mountains of California, and 

one on in the Kohala Peninsula of the big island of Hawaii. I chose the locations because 

of previous research where enough data was available for me to be able to conduct my 

research. I chose the Kohala peninsula particularly because of the difference in lithology 

compared with the other two sites; where all California sites are composed of mainly 

granodiorite while Hawaii is made up of mainly basalt. This way I could investigate the 

impact of varying rock rigidity as one of the controls on evolution of SSD.

3.1.0 Inyo Creek

The first study site is located just southeast of Mt. Whitney on the east facing side of the 

southern Sierra Nevada mountains (figure 5). Inyo Creek is a relatively small watershed 

with surface area of 3.2 Km2, but fairly steep relief of little more than 2 km. This 

particular site was selected by number of previous studies (Riebe et al., 2015; Sklar et al., 

2016; Stock et al., 2006; Hirt, 2007), and thus there is detailed data available on SSD and
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the lithology of this watershed. The creek begins in the steep bedrock cliffs of the 

highlands and ends in piedmont leaving behind channeled alluvium.

3.1.1 Geomorphology of Inyo Creek

Inyo Creek has a dry climate, as it is located on the rain shadow side of the southern 

Sierra Nevada. As a result, even with the high relief of the Inyo Creek the precipitation 

difference throughout the span of the creek is not very different, ranging from 473 to 326 

mm annually. Inyo Creek’s bedrock is entirely made up of plutonic granodiorite, formed 

sometimes between 88 to 83 Ma (Hirt, 2007). The rigidity of the bedrock throughout the 

catchment is consistent enough to assume uniform lithology for predicting the SSD. The 

ridges surrounding Inyo Creek are steep. Unlike the Mount Whitney watershed located 

just to the north, there is no evidence for past glaciation in Inyo Creek (Stock et al., 

2006).

3.1.2 Data collection at Inyo Creek

The data for Inyo Creek were taken from the work of Jennifer Genetti and Shirin Leclere 

for their Master’s theses (figure 6). The findings from their work are part of the Sklar et 

al., 2016 paper which proposes a method for predicting SSD supplied from hillslopes to 

channels. The data sites were randomly selected within the watershed, specifically areas 

that were accessible, not in the creek, or near the ridges. The data samples are 

combination of point count measurements and bulk sampling. Ultimately, 19 locations 

were selected, but one location had to be discarded as it was too close to the creek. The 

location ranges in elevation from 2212 to 2875 m and range in slope from 23.8 to 47.3 

degrees.
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3.2.0 Feather River

The second study site is mostly within the watershed boundaries of Bald Rock Creek, one 

of the Feather River’s tributaries. The Bald Rock Creek watershed is about 10 km east of 

Lake Oroville at the middle fork of the Feather River (figure 7). However, the sampling 

is not limited only to the Bald Rock Creek watershed. There are 3 point-count 

measurement available at a landslide outcrop nearby. These point counts were collected 

to investigate a possible initial size distribution and source of coarse sediment supplied to 

the river. This location was chosen because it was part of the Attal et al,. 2015 study and 

thus there is comprehensive SSD data available online for me to use in this research.

3.2.1 Geomorphology of Feather River

This region of Feather River is moister and more vegetated than Inyo creek. Feather is 

also much less elevated than Inyo Creek and due to the small relief of our study sites, the 

temperature and precipitation difference between the sites are small. However, overall the 

geomorphic processes that control SSD should be very similar. Feather River is located in 

the northern parts of Sierra Nevada and this region is dominated with metamorphic 

basements. However, Bald Rock Creek is mostly composed of Mesozoic plutonic 

intrusion of granodiorite and tonalite over the metamorphic basement (Attal et al., 2015). 

Therefore, rock rigidity at this location should be similar to the granodiorite at Inyo 

Creek.

3.2.2 Data collection at Feather River

The data for Feather River was taken from supplementary materials available online as 

part of Attal et al., 2015 paper (figure 8). The data for this site was collected in two 

regions. One on the landslide outcrop region and other within the watershed boundary of 

Bald Rock Creek. The 9 sites within the watershed were selected based on their 

morphological differences. Three morphological regions were identified as bases for
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sampling location, including: relict topography above the break in slope (POMD), in the 

transition zone where the hillslopes have not completely adjusted to the base-level fall 

(FTA), and below the break in slope (BRC and BRB) (figure 9). The landslide samples 

were taken from 3 different locations on the talus using a point count measurement. The 

location ranges in elevation from 637 to 787m and range in slope from 12.2 to 46.9 

degrees.

3.3.0 Kohala Peninsula

The final study site is located on the Kohala Peninsula in big island of Hawaii. The sites 

were not chosen within any particular watershed. Most of the sites are on the south facing 

slope of the mountain, while one site is on the north facing slope (Figure 10). Although, 

this location was also chosen because of available data, the climate variation between the 

two sides of the peninsula made this location unique for studying the effects of climate on 

sediment evolution. Unfortunately, the SSD data for this location was limited to only 7 

sites. Also, there are no point counts of fracture spacing, or mineral crystal, or landslide 

particles sizes for me to use as a reference for initial size distribution.

3.3.1 Geomorphology of Kohala Peninsula

Kohala Peninsula is very interesting to study due to a significant climatic differences 

between the two sides of the Peninsula, divided by a mountain ridge. Prevailing winds 

coming from Northeast, brings moisture to the North facing side of the Kohala. As a 

result, the north facing side is covered with lush rainforest and the south facing side is 

basically a desert. Lithology of the region is entirely made out of extrusive igneous basalt 

left behind from geologically recent (0.7Ma) volcanic eruptions (Wolfe & Morris, 1996), 

which distinguishes Kohala from the other two study locations.
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3.3.2 Data collection at Kohala Peninsula

Much like the other locations, Kohala was chosen because of previous studies at this 

location (Marshall & Sklar, 2012) (Chadwick et al., 2003). The data used for Hawaii 

originates from the 7 pedons selected in Kohala as part of Marshall and Sklar, 2012 study 

on data mining for sediment size distribution. Pedons are 1 m 2 in surface area of soil pit 

that contains all soil horizons all the way to regolith. By averaging all horizons’ 

distribution, I was able to produce a unified SSD for each of the 7 sites (figure 11). For 

my research I only needed the averages of the horizons to be consistent with other study 

locations. However, the lithology of this region makes it difficult to collection data that 

represents local initial size distribution. Hawaii is dominated by extrusive igneous basalt, 

with varying consistency and age. The extrusive nature of the rock would produce very 

different bedrock, one that has different fracture pattern than intrusive rocks of Sierra 

Nevada and it would have tiny mineral crystals embedded in the rock. The consistency of 

the bedrock can also vary widely from place to place due to chaotic nature of volcanic 

eruptions.

4. Methods

In order to test predictions of hillslope SSD, there are number of variables that needs to 

be considered. Before any analysis can be made, measurements of the size distribution 

need to be collected from a number of locations along a hillslope transect, for example 

from the ridge to the valley bottom. However, collecting this data is a significant 

operation as numerous pits need to be dug or many point counts need to be taken in 

difficult topographical settings. I decided to use existing data from previous studies for 

locations where the size distribution would meet the minimum requirements for my 

predictive models. These requirements include sediments size distribution samples with 

exact coordinates, available climate data (needed for calculating chemical weathering 

potential estimates), available lithological data, and fine resolution digital elevation
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model (DEM) needed for producing a raster map of slope gradient, aspect, and solar 

radiation.

4.1.0 GIS Maps

Much of the spatial data needed for calculating CWP and the empirical fit models were 

produced using GIS raster maps. I first isolated the regions where the field measurement 

sites are located using the coordinates available from previous research and created 

attribute maps for those sites. These maps included: slope gradient, aspect, solar 

radiation, average annual precipitation, and average annual temperature. Using these 

rasters maps, I was able to extract point measurement associated with each specific site 

and finally construct a table with all the attributes necessary for sediment size prediction 

models.

4.1.1 Slope Gradient, Aspect and Solar Radiation

I downloaded 10 m resolution DEM rasters from the United States Geological Survey 

(USGS) for each of my study locations. Using standard ArcGIS Spatial Analyst 

functions, I was able to derive surface attributes such as slope gradient, aspect, and the 

net solar radiation received for each individual site. I chose these particular attributes 

because previous studies have suggested that slope and aspect are significant 

topographical controls on SSD (Langston et al., 2015; Leclere, 2017; Olyphant et al., 

2016) (figure 12); where coarser grains are more associated with steeper gradients and 

low solar radiation, (north facing aspect) and finer grains are more associated with gentle 

gradient and high solar radiation (south facing aspect). However, using raw aspect alone 

would not give the most accurate representation of solar influence on weathering and the 

resulting SSD. The solar insolation doesn’t necessarily peak when aspect is in one of the 

cardinal directions (N, S, E, W) and therefore the aspect needs to be normalized to better 

represent the effect solar radiation. I decided to use an ordination technique proposed by
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Leclere, 2017 for normalizing the aspect in such a way that it is most correlated to net 

solar radiation.

4.1.2 Temperature and Precipitation

For the CWP (equation 1) and weathering (equation 3) part of the transformation function 

(equation 4), I needed mean annual temperature and precipitation, as well as global 

maximum values for each. For Kohala peninsula, I was able to use 100 m resolution 

raster data provided from Hawaii’s official state website (Hawaii.gov) that was accurate 

enough for me to be able to get detailed temperature and precipitation estimates for each 

of the 7 sites. However, for Inyo Creek and Feather River, there was no local data 

available and I only able use free data available from University of Oregon Climate 

Group PRISM (PRISM, 2016). PRISM is a large spatial scale climatic estimate, with 

4km spatial resolution. Each individual pixel was larger than the entirety of my study 

sites in California. For Inyo Creek, this data was extrapolated based on two pixels that 

encompassed the watershed at 2000 m and 4000 m elevations. However, for Feather 

River individual sites were clustered in two separate locations, cluster one (POMD sites) 

and cluster two (BRC and FTA sites). Each cluster was located in a different pixel with 4 

km resolution, therefore I just used the values for the individual pixels. There was no 

need to extrapolate the data because the sites are within 100 meters of each other. The 

mean annual temperature variation used for Inyo Creek, Feather River, and Kohala 

Peninsula are: (—1 to 10 °C, 14.2 to 15.4 °C, 12.9 to 19.2 °C) respectively. The mean 

annual precipitation variations are: (325.7 to 472.5 mm, 1567.5 to 1576.4 mm, 226.9 to 

3193.6 mm) respectively (tables 2 to 4).

4.2.0 Parameters for CWP and multiple regression models

In order to come up with an accurate empirical model for predictive SSD, I wanted to 

consider as many attributes as possible while doing the multiple regression analysis. I had
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access to aspect, solar radiation, precipitation, temperature, elevation, and D50. However, 

aspect and solar radiation are correlated with another and precipitation and temperature 

are proxies of elevation in all locations, as elevation is the main determining factor for 

those attributes. So I needed a different attribute to focus on and weathering is most likely 

the main control on the evolution of sediments. Therefore, I decide to calculate erosion 

rates and weathering for all the sites to use in my multiple regression model. Using Sklar 

et al. 2016 equations combined with GIS data available for topographic and climatic 

attributes, it is now possible to estimate site specific erosion rate and weathering.

4.2.1 Erosion Rate

One of the most important factors controlling the supply of sediment is the erosion rate. 

By quantifying the erosion rate, one can estimate the SSD available for the weathering 

process to be applied to. Here, the erosion rate is dependent on elevation as a best-fit 

exponential equation, established by Riebe at al. (2015) as part of their Inyo Creek study. 

This equation is written as:

^rz ~z m ax\
E = 0.22e ( az ' (8)

where Z represents the elevation in meters above sea level, Zmax the maximum elevation, 

and AZ as maximum change in elevation for all the sites. With erosion rate now 

calculated, I was able to calculate weathering for each site.

4.2.2 Weathering

To calculate weathering using the erosion rates, the equation (3) was used. I needed to 

parameterize the values for precipitation, temperature, and number of other constants for 

each specific site. For CWP the following values were used: R = 8.3 J/Kmol for the 

universal ideal gas constant, exponent b = 0.5, and the activation energy Ea was given a 

value of 60 kJ/mol for granitic rock in the Sierra (Riebe 2004; West et al., 2005), or 42
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kJ/mol for Kohala Peninsula (Chadwick, 2003). The temperature and precipitation values 

are extrapolated from PRISM data as mentioned before, where the resolution of the raster 

was not high enough to make individual measurements for each site. The temperature and 

precipitation are dependent on elevation for Feather River and Inyo Creek. However, for 

Kohala Peninsula there was a much more detailed, high resolution raster, available from 

the State Government’s website which I used as a source.

4.3.0 Regression

For the second model, I constructed a predictive model for SSD based on statistical 

analysis of different attributes and tested those attributes for their level of statistical 

significance. After which, I derived a number of empirical fits, for each of the study sites, 

using the most significant topographical and climatic attributes. This was done to predict 

the median sediment size (Dso) tailored for each of the study sites. Depending on the 

sediment size of interest, i.e. (Z)30, D50, D84, etc ...) this predictive model can be adjusted 

to predict a particular size. However, I was only interested in Dso here, so I only focused 

on that. All the statistical analysis carried out in this research was done using JMP 

statistical analysis software.

4.3.1 Normalizing attributes

Before constructing the fit models, I normalize all of my attributes to eliminate the units 

of measurement and unit conversion problems for my data. This process enables me to be 

able to easily compare data from different attributes and be consistent in doing the 

regression analysis. I used two common methods of normalizing data: 0.05 to 0.95 range 

normalization which is a modified version of 0 to 1 range normalization, and the Z-score 

method of normalization. The first method is as follows:

Attr ibutenorm = 0.05 +
x max x min

(9)
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The reason for choosing 0.05 to 0.95 range is to be as close to 0 to 1, without using 0 as 

the minimum value. I log transform my data for empirical best-fit models, therefore the 

presence of 0 would cause mathematical problems as log function approaches negative 

infinity while closing on zero, and thus is not defined. The second method for 

normalization was the standard z-score, which is as follows:

Here, fj. represents the mean and a represents the standard deviation for the sample data 

set. I needed to produce Zscore normalized data sets to be able to compare and contrast 

my attributes and run z-test, while investigating the best predictive empirical fit model.

The normalization discussed previously were applied to slope gradient, 

precipitation, temperature, erosion, and weathering. However, the effect of aspect on SSD 

does not vary linearly. That is because it is dependent on the net solar radiation received 

at each individual location. Therefore, I decided to rotate the aspect for each site based on 

the best correlation of aspect to solar radiation I could get testing all angles from 10 to 

360 degrees. After determining the most appropriate rotation, the aspects were rotated 

using the following equation:

O (10)

Aspectnorm — cos(jc-r)+l
2 01)

where x is the local aspect in degrees and r is the rotation reflecting the strongest solar 

insolation effect.

4.3.2 Multiple Regression

The primary purpose for running a multiple regression analysis is to find which attributes 

correlate most closely to output Dso and construct an empirical formula for predicting 

D50 based on any location’s attributes. Here, I first tested the correlation of every single
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attribute to D50 and built a R-squared and statistical coefficient data set which is needed 

for the empirical fit model. After which, by the process of elimination, I isolated the top 

three most correlated attributes as the main candidates for explaining variables. I also 

recorded the y-intercept for the multiple regression fit of the top three attributes. Using all 

these values extracted from JMP, I was able to produce three different empirical fit 

equations for three different study locations I had.

4.4 Fractal Model

The last model for predicting SSD in my study sites, was done using bedrock fracture 

spacing and surface point counts data in order to investigate the relationship between 

fractal patterns and their size distribution collected in the field. Here I used equation (7) 

to test whether the particle size distributions have a fractal distribution. If they do, the 

cumulative size distribution plot should be a straight line in log-log space. I also 

investigate the best fit model by excluding the some of the coarse or fine tails of the 

model to investigate if the model is more representative of the coarse or finer sizes. I was 

only able to apply the fractal model to Inyo Creek as this study location was the only one 

with comprehensive bedrock fracture spacing data available.

4.5 Size Distribution extrapolation

The size distribution data for each my study locations was available in cumulative 

distribution function (CDF) format. Here, I am also interested in the probability density 

function (PDF). I also isolated few key percentiles, (D10, D30, Dso, D70, D90), to be able to 

represent a full size distribution without tediously calculating CWP and weathering for 

the full extent of my data set. However, the size distribution provided did not have these 

specific percentiles that I was looking for, therefore I needed to interpolate to produce 

uniform percentiles for all the sites. The interpolation formula is as follows:
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<Px =  V ta w  +  C U ,k ' * Um) V x  -  P lo w ) Dx =  (12)
r high r low

Here, Px represents the percentile of interest; ipiow represents the nearest low sediment 

size in Wentworth Phi scale while iphigh represents the nearest high sediment size in Phi 

scale to the percentile of interest; and Phigh and Plow represent the nearest low and high 

percentiles to the percentile of interest. Phi scale is a common scale for measuring and 

categorizing grain sizes. Dx represents the size of sediment at the percentile of interest. 

Using this interpolation formula, I was able to get the five main percentiles and produce 

transformation plots for CWP model. The CWP transformation model was produced to 

compare the initial size distribution to final size distribution at these percentiles in a log- 

log plot of a power function and see if it agrees with the theory.

5. Results

The results are divided into three separate sections based on the three predictive models, 

as they are applied to individual study locations. However, as previously mentioned, the 

fractal model could only be applied to Inyo Creek because of the lack of necessary data 

for the other two locations. The results are organized to first test the Sklar et al. (2016) 

theory for predicting the SSD. To do this, I first needed to see if the observed 

distributions follow the same patterns as expected. After finding some support for CWP 

model, I used the CWP equation (eqn 1) to estimate degree of weathering for each of the 

sites. I then tested this weathering parameter to see if it is indeed an explanatory variable 

for the measured size distributions. This was done by performing multiple regression 

analysis, combining weathering with other attributes available such as aspect, slope, 

precipitation, temperature, and erosion rate. Finally, I explored the fractal model using 

the distribution of bedrock fracture spacing and surface point counts to see if their 

distribution follows a consistent fractal pattern.
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5.1.0 CWP Predictive Model

Sklar et al., 2016 proposed a model for predicting the size distribution that is supplied 

from hillslopes to channels. Assuming that the initial size distribution provided by the 

underlying bedrock is known, one can predict the final size distribution based on the 

strength of chemical weathering (0 < CWP < 1). It should also be possible to use the 

strength of CWP to estimate the initial size distribution using measured particle size 

distributions from the field. Also, the last part of this section investigates the sources for 

the initial sizes. The initial sediment size could be created by bedrock fractures or at a 

micro-scale by the crystal structure within the lithology. The fraction or percentage of 

contribution of these two to the initial distribution might be dependent on environmental 

factors such as elevation or temperature or precipitation. However, the necessary data to 

perform this analysis was limited only to Inyo Creek.

5.1.1 Inyo Creek

Inyo Creek was the most interesting study location because of the data available. Here, 

the data is very much tailored for what is needed for the CWP model and thus the Inyo 

Creek’s is the most comprehensive of the three study locations. Inyo Creek has the most 

sites (18 sites), with the widest elevation difference (2212 m to 2875 m), as well as 

measurements of bedrock fracture spacing, and mineral crystal sizes for estimating 

possible initial size distributions.

I first averaged the distribution for bedrock fracture spacing throughout the study 

location, to use as my initial size distribution. Using the CWP predictive model, I was 

able to plot the inferred initial size distribution data collected at Inyo Creek, represented 

by bedrock fracture spacing point counts, against the SSD of all 18 sites to see if their 

graph follows a pattern similar to what is expected by Sklar et al., 2016. However, the 

plotted distributions did not perform exactly as expected. The power function in the log-
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log space provided by the model did not follow a linear path and started to curve up at the 

higher percentiles (figure 13). According to the CWP model, the final distributions of 

sediment supplied to the channel is represented with a straight line, deviating from the 

middle one-to-one line, in the log-log space, (refer to figure 4). If the line is curved and 

the distribution drop down much faster than the model predict, which means the model is 

under-estimating the size reduction of lower percentiles, D70 and below. This deviation 

can be caused by number possibilities. First is that the CWP model is not a good 

predictive model for finer sediment sizes and perhaps there is physical weathering 

processes at work which is being ignored. Second is that the initial size distribution 

provided by only bedrock fracture spacing is not the best representation of the actual 

input into the hillslope weathering environment. Perhaps the deviation is caused by a 

combination of both possibilities. Assuming the CWP model is accurate, I moved on to 

investigate the input of initial size distribution.

One of the main findings of Genetti, 2017 was that, at Inyo Creek, the bedrock 

fracture spacing distribution does not vary systematically with elevation. This finding 

was surprising because the median sediment size of individual sites clearly changes with 

elevation. Higher elevations tend to have coarser median sizes and lower ones have 

smaller median size. If the initial size distribution is controlled by the distribution of 

bedrock fracture spacing alone, then, without the influence of weathering, the median 

size should not change with elevation. Therefore, it is possible that bedrock fracture 

spacing is only one contributor to initial size distribution and not the sole contributor to 

the system. If this is so, then there should be an observable trend in initial size 

distribution that change with respect to elevation. In the next step, I decided to look for 

such trend and apply the new initial size distribution to my CWP model for Inyo Creek.

One of the concepts discussed by Sklar et al., 2016 is that chemical weathering of 

bedrock will release mineral size fragments, while physical weathering alone pre-existing
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fractures will produce larger fragments. In areas where chemical weathering is more 

dominant, the mineral crystals would be more pervasive as opposed to physical 

weathering dominated regions at the peak or ridges. So I needed to account for this 

variation by investigating the percent contribution of bedrock fracture spacing to local 

initial size distribution at each of the 18 individual sites and look for any trends with 

change in elevation, if there are any.

Inyo Creek was the only site with detailed mineral crystal size distribution 

available, where the landscape is dominated by granodiorite rock with relatively large, up 

to 5 cm, mineral crystals (Hirt, 2007). I simplified the fraction of mineral crystal 

contribution to initial size distribution as ‘crystal fraction’.. I calculated a series of new 

initial size distributions for Inyo Creek with varying crystal fractions to produce a plot of 

all possible initial size distributions for each of the 18 sites (figure 14). Because of the 

large difference in scale of the bedrock fracture spacing and mineral crystal size, the new 

initial size distribution is bi-modal. This bi-modal distribution is created with weighted 

summation of the two distribution, where the weight of mineral fraction ranges from 0 to 

0.8. Using these new initial size distributions, I was now able to plot each one of the 18 

sites against varying crystal fractions from 10% to 80% contribution produced by the 

weighted sums. My goal was to isolate the plot of crystal fraction that most resembles the 

expected CWP model prediction (figure 15). This process was done based on two main 

criteria. First, the resulting plots that crossed the one-to-one line at the middle of the 

model space were immediately disqualified. This is because that would suggest that parts 

of final size distribution, after it has been weathered, are larger than they were in the 

initial distribution, which is generally not possible; with exception of flocculation of fine 

particles. From the remaining plots, I chose the one that was closest to the expected CWP 

model prediction for the site.
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After associating all sites with a particular initial size distribution, I plotted all the 

crystal fractions against elevation in order to see if there are any observable trends. The 

analysis suggested that the initial size distribution input is much more complex than 

thought before. The crystal fraction contribution to the initial size distribution varies 

between 70% at lower elevations and 10% at higher elevation (figure 16). This trend 

seems to be small but nevertheless significant which indicates bedrock fracture spacing 

contribution increases with an increase in elevation, while crystal fraction contribution 

decreases with an increase in elevation. After accounting for bedrock fracture spacing 

contribution to initial sizes, I produced new sets of initial size distribution plots each 

individual site to see if accounting for crystal fractions did fix the CWP model (figure 

17). The CWP model improved significantly where both higher and lower percentiles 

where near the expected CWP line. However, the median size, D50, was much smaller in 

field observations than predicted by the model, thus the model fails to predict D50 

accurately.

Before I concluded my analysis for Inyo Creek, I used the CWP model on all of 

the 18 individual sites to calculate a CWP derived initial size distribution for each. These 

new initial size distributions were derived by multiplying individual percentile of 

observed size distribution with CWP fraction to estimate their initial sizes before they 

were exposed to chemical weathering and lost some of their mass. After CWP derived 

initial distributions were produced, I averaged the initial size distribution for all the sites 

to produce a unified CWP derived initial size distribution to representing the initials for 

the entire watershed (figure 18). I created this new model output to first plot against 

observed size distribution and analysis the CWP model from a different perspective. But 

also, to compare the output with the output produced by crystal fraction plot, to see the 

deviation of the model, so I can build model a accuracy profile. Overall, the plot of CWP 

derived initial size distribution and observed size distributions did match the expected
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pattern, where the power lines associated with each site were linear in the log-log space 

and with in the a reasonable CWP range. Most sites did get finer by the amount expected, 

with minor deviations at high and low percentiles.

5.1.2 Feather River

For the Feather River location, the analysis followed closely with what I did for Inyo 

Creek. However, unlike Inyo Creek, here I did not have fracture spacing or mineral 

crystal sizes to use as possible proxies for the initial size distribution. Instead, Attal et al. 

(2015) reported a number of landslide point counts within the study location which I used 

to represent the initial size distribution. I assumed the landslide debris would be the best 

representative of the size of the material supplied to the surface from below, before 

erosion, weathering, and biological processes produced the soil as we observe today.

The sample sites in Feather River cluster in three main regions which are closer to 

each other than the sites at Inyo Creek. The sampling sites chosen by Attal et al., (2015) 

were clustered to take advantage of the morphology of Feather River’s tributary basins, 

which can be divided into three sections. Due to an accelerated base-level lowering rate 

from canyon cutting on the main-stem, a knickpoint has developed in this region of 

Feather River in response (Hurst et al., 2012). The knickpoint is propagating upstream, 

dividing the hillslopes into the three sections: relict topography above the knickpoint, a 

hillslope transition zone, and a steepened landscape downstream of the knickpoint (refer 

to figure 9). The POMD sites are located in the relict topography where erosion rates are 

relatively low, while FTA sites are located in hillslope transition zone with moderately 

higher erosion rates, and finally BRC, BRB, and LD are located in steepened landscape 

where erosion rates are much higher than other sites (Attal et al., 2015).

Assuming the landslide data (LD sites) are the best available representation of the 

initial size distribution, I decided to average the individual sizes for the each of the five
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percentiles (D10, D30, D50 , D10, Dg0) to collapse the three landslides into one distribution. 

Using this distribution, I plotted all 8 sites in log-log space to replicate the CWP model 

and see if the data follow the expected power trends (figure 19). As shown in figure 19, 

the most of the observed data fall below the expected CWP line with exception of higher 

percentiles (D70, D90). Therefore, the CWP model is only able to predict the coarser sizes 

in this region. This means the model may be missing some aspect of the weathering 

process that makes smaller particles more susceptible to size reduction in this 

environment.

Similar to my analysis of the Inyo Creek’s data, I used the CWP calculation to 

estimate the initial size distribution for each Feather River site, and averaged all sites to 

again produce a single CWP derived initial size distribution. The measured soil data and 

calculated initial average initial size distribution are plotted in figure 20. With the 

exception of few minor deviations, the plot approximately follows what is expected. 

Individual sites have linear power fits associated with them and they are within the 

chemical weathering window expected. However, similar to Inyo Creek, some of the sites 

do cross the one-to-one line which should not be occurring. Here, the only discrepancy is 

where the BRB8-9h’s 10 percentile crossed this line. As mentioned previously, crossing 

the one-to-one line to the top part of the plot would mean the final distribution is larger 

than the initial, which is not possible. However, all other sites followed the expected 

CWP trends closely.

5.1.3 Kohala Peninsula

My third study location, Kohala Peninsula in the big Island of Hawaii, had the least 

amount of data available. There were only 7 sites with measured sediment size. The SSDs 

were more in-depth than the other two study locations, as each site had detailed 

distributions representing different soil horizons. However, for the purpose of this 

research I only needed the average size distribution for the whole sample, which I used.
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Also, as mentioned before, there is no data available for initial size distribution at Kohala, 

and the challenging lithology makes it very difficult to come up with such data.

Moreover, Kohala’s data was different than the other two study locations, as one of its 

sites, the site H7, is located on the other side of the ridge on the windward side of the 

mountain, while the other 6 sites are located on the leeward side of the mountain. This 

caused significant differences in precipitation received in H7 compared the rest of the 

sites.

With limited data available, I was only able to use that data and climatic attributes 

to calculate CWP for each of the 7 sites and estimate the initial size distribution input. 

Similar to my analysis of the other two study locations, I used the CWP calculation to 

estimate the initial size distribution for each the 7 Kohala sites. Much like the other study 

locations, Kohala’s CWP derived plot did mimic what was expected from CWP model, 

but not as well as the other two study locations. As shown in figure 21, individual sites 

have linear power fits associated with them and they are within the chemical weathering 

window. However, the spread of the power line within that window is much wider than 

the other two locations. The CWP calculated is dependent on the climatic variables such 

as precipitation and temperature. There is a large difference in precipitation between the 

sites in Kohala, which is the main cause for this disparity. Also, similar to other locations, 

some of the sites do cross the one-to-one line which again should not be occurring. They 

are located in the lower percentiles of the few of the sites, which seems to be a recurring 

pattern in all the study locations. However, the data points are still very close to the one- 

to-one line and the variation can be caused by the natural noise in the model.

Overall, the Kohala results were not as promising as the other two study locations. 

Looking at the position of individual percentiles in the model space, some of the sites 

(H4, H5, H6) would be better represented with a curve, as their higher percentiles are 

located much higher on the plot than expected. Here, the model is underestimating size
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reduction of Dso for higher elevations, and overestimating size reduction of D50 for lower 

elevations. Regardless, there is still a statistically significant agreement between the 

measured particle size distributions and the patterns predicted by the CWP model for the 

drier, lower elevation sites.

5.2.0 Multiple Regression Analysis

In the second model I attempted to find the most correlated explanatory variables for the 

D50 for each of the three study locations. By process of systematic search and elimination 

I isolated the top three attributes that were statistically significant. Finally using the three 

candidates I constructed an empirical fit model for each study locations to be able to 

predict D50 depending on values of the given variables (attributes). My attributes are 

comprised of series of topographical, climatic, and calculated attributes that included: 

aspect, slope, elevation, temperature, precipitation, erosion rate, and the weathering 

function given in equation 3. Previous studies for each study location suggested different 

attributes as the main controls on SSD. Therefore, by deriving site-specific empirical fit 

models, I can test the previous findings and possibly provide additional statistical backing 

for those claims.

5.2.1 Inyo Creek

Starting with Inyo Creek, I began my analysis by running individual regression on 

different attributes combined with D50. This way, I got a sense of which attributes are 

most correlated with the D50 and thus I could value those attributes more while doing my 

multiple regression. The multiple regression analysis was done using stepwise regression, 

backward elimination technique; where starting with all candidates, the variables are 

eliminated based on a given model fit criteria until the best fit is achieved. I ranked each 

potential explanatory variable in descending order of their level of significance in 

explaining variation in D50, and then eliminated variables from lowest level of
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significance until I am left with only variables significant at the 95% confidence level. 

This process proved more challenging than anticipated. Some attributes that had 

otherwise lower level of significance and R2 while running individually, were actually 

very well correlated when combined with other attributes. This posed a problem, because 

if two attributes are well correlated to one another, they can inflate each others level of 

significance.

I decided to use Pearson’s R multivariable correlation to find attributes that are 

co-linear with one another. These variables should not be included together in a multiple 

regression model. For Inyo Creek, given that precipitation and temperature were derived 

from elevation, the elevation P-value was inflated when combined with precipitation and 

temperature (figure 22). Precipitation and temperature should not be selected together as 

well. After addressing this issue, I was ready for the process of elimination and 

eventually narrowed the result to aspect, slope, and weathering. This is a bit surprising as 

Sklar et al., 2016 believed elevation is probably is the main control on D50. However, 

Leclere, 2016 suggested that aspect is probably is an additional control on D50. Aspect 

not only was significant, but the most significant attribute in controlling the Dso (figure 

23). After extracting the y-intercept and individual coefficients, I was then able to use 

equation (6), to derive the empirical fit model for Inyo Creek:

D50 = 0.00003 * W ~192 * S 2A1 * A0 28 (13)

The multiple regression model explains Dso variation in term of weathering function (W), 

hillslope gradient (S), and local aspect (A), with with P-value of <0.0001 and R2 of 0.86.

5.2.2 Feather River

Moving on to the second site, I began my analysis by again ranking the attributes based 

on their level of significant in correlation to D50.1 made sure not to include elevation,
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precipitation, and temperature at the same time again and proceeded to isolated the top 

three candidates. Interestingly, the top three most correlated attributes here are identical 

to Inyo Creek and their level of significance is also of the same order. Once again aspect, 

slope, and weathering came out on top with aspect being the most significant of the three. 

For this location however, Attal et al., 2015, suggested that slope is the main control on 

D50 (figure 24). Given that slope is one of the three candidates, the Feather River results 

do seem to agree with Attal et al., 2015.

I must add that aspect and weathering for Feather River were calculated 

differently than Inyo Creek. The morphological evolution of Feather River is more 

complex than Inyo creek. Therefore, the same erosion rate calculations cannot be used for 

Feather River. I used the cosmogenic radionuclide-derived erosion rates provided by 

Attal et al., 2015. With erosion rates provided, I was able calculate weathering for each 

site, which is needed for the empirical fit model. Also the aspect for Feather River was 

rotated differently than Inyo Creek. Aspect was normalized by 80 degrees of rotation as 

opposed to 110 degrees. After extracting the y-intercept and individual coefficients, I was 

able to use equation (5), to derive the empirical fit model for the Feather River study 

area:

Log10(D50) = -6 .0 8  + 10.49,4 + 0.845 + 0.72W  (14)

The multiple regression model explains Log10(D50) variation in term of weathering 

function (W), hillslope gradient (S), and local aspect (A), with P-value of 0.0002 and R2 

of 0.99. Unlike Inyo Creek, Feather’s River’s best fit model was based of equation (5) 

because the attributes used for Feather River’s were log transformed, and thus had an 

exponential relationship rather than a power relationship.
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5.2.3 Kohala Peninsula

Lastly, similar to previous study locations, for the Kohala data analysis I began with 

individual regression analysis on all attributes, and ranked them based on their level of 

significance. However, other than slope, none of the attributes came out to be significant. 

After performing stepwise regression and an extensive analysis of the outputs, I noticed 

that site H3, located in the middle of the elevation transect, is a possible outlier. For this 

result, I did not include H3 in the analysis, because I determined that it can be excluded 

as an outlier, using Cook’s D technique. After removing H3, slope, aspect, and 

precipitation were all significant explanatory variables. The R2 value for aspect was 

0.0015, meaning that there remains 99.85% of the variability in D50 that is not explained 

by the empirical model, which is an extremely poor correlation.

Marshall and Sklar, 2012 argued that precipitation is the main control on D50 

here (figure 25). Given that precipitation was one of the three top candidates for this 

location, I believe the model is on the right track. Note that unlike Inyo Creek and 

Feather River, the temperature and precipitation data are not derived from PRISM. 

Therefore, I would not run into multicollinearity issues with elevation here. The aspect 

for Kohala was rotated differently from Inyo Cree, but similar to Feather River. Aspect 

was normalized by 80 degrees of rotation and was only near significant with P-value of 

0.056. After extracting the y-intercept and individual coefficients, the most statistically 

significant model is a power function (eqn 6), to derive the empirical fit model for 

Kohala:

£>5o = 0.0017 * P '1'39 * S-513 * A373 (15)

The multiple regression model explains Dso variation in term of precipitation (P), 

hillslope gradient (S), and local aspect (A), with P-value of 0.016 and R2 of 0.99.
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5.3.0 Fractal Model

Because of a lack of data for bedrock fracture spacing and point count data for particle 

size distribution for Feather River and Kohala, I was only able to apply this model to the 

Inyo Creek data. It is thought that bedrock fractures propagate with a fractal pattern (Roy 

et al., 2016). Here I try to find patterns in the distribution of bedrock fracture spacing and 

fracture length to see if there is any relationship that can be used for prediction of fracture 

spacing’s distribution. In theory, if bedrock fractures propagate with a fractal pattern, 

there should be a linear power relationship for the cumulative distribution of fracture 

spacing in log-log space. By organizing the bedrock fracture spacing data points from 

biggest to smallest, in a fractal fashion (Fracture > L), I was able to plot the bedrock 

fracture spacing against fractal organization in a log-log space (figure 26). However, I 

was unable to produce a power linear relationship as needed for this model to work. 

Instead, fractal model plot is skewed toward the smaller fracture sizes, which means the 

model’s prediction is poor for smaller spacing lengths.

After fractal model failed to predict the pattern of bedrock fracture spacing, I 

applied the model to the surface point counts data for individual sites. Here I wanted to 

test this model on the point counts and see if the fractal model is able to predict their 

distribution. A good predictive model would produce a linear best fit plot in the log-log 

space. However, again the data points are scattered with a curve, where the data bends 

down at medium to smaller particle sizes. Observing this trend, I thought perhaps the 

model is only representative of larger fracture spacing, and thus by excluding smaller 

sizes, I tried to produce a better fit. While this exclusion seems arbitrary, as long as I am 

consistent with what data are being excluded I may be able to make a partial predictive 

model for the larger particle sizes. I decided to exclude all point counts below 2.75 cm in 

length and test the fit model on individual sites instead. However, after testing this model 

individually to all surface point counts of each site, I discovered that the curve of scatter



31

plot for each site changes drastically. Some sites have a curve that is more skewed toward 

the finer lengths and some were skewed toward coarser lengths (figure 27). That means 

that by excluding sizes below 2.75 cm, I do not necessary get a good fit model for most 

of my individual samples.

After many exclusions of data points from both coarser and finer sides of the 

distribution, it was clear that this model is not very good and cannot reliably predict the 

distribution of either bedrock fracture spacing or surface point counts. It is likely that 

they do not propagate fractally and other erosional factors are the dominant control on 

their distribution. Another possible explanation is that fractal distribution may only be 

explained with a multifractal model, with one tailored to coarser lengths and one tailored 

to finer lengths (Perfect, 1997).

6. Discussion

For discussion of results, I first focus on the three predictive models and then discuss 

what is needed for a more comprehensive future study applying some of these models. 

The CWP model and the regression analysis look promising as both models manage to 

predict parts of the sediment size distributions for two out of the three sites. However 

there are number of physical processes that the models do not account for. I believe there 

is much more to be achieved with more data, as many of the problems encountered in this 

research could be caused by the small size of the data sets available. Finally, I discuss the 

potential of using the CWP and the empirical fit model to improve existing landscape 

evolution models by proposing a framework for explicitly modeling sediment size 

produced on hillslopes supplied to the channel. For the landscape evolution model I will 

use LandLab, a python toolkit for modeling earth surface processes, as an example of 

simple and user friendly modeling software (Hobley et al., 2017).
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6.1 Predictive Models

It is important to note that the CWP is a simple reference model for comparing 

observation of field data with a mathematically derived function to better understand the 

impact of chemical weathering on SSD. It is a simplistic generalization of all chemical 

weathering processes that does not distinguish between chemical reaction rates especially 

when dealing with multiple minerals within the same distribution. Moreover, CWP model 

may over look some physical process that can impact the SSD evolution over time.

The disparity between the observation and predictions could be caused by a 

number of processes that impact the rate of chemical weathering. For example, the rate of 

chemical weathering can change depending on the size of individual grains. There is a 

distinct concave-up pattern that occurs in both the Inyo Creek and Feather River CWP 

models comparing observed with assumed initial sizes. This concave pattern maybe 

caused by a relatively abrupt change in weathering rate, located around particle size of 10 

mm for Inyo Creek and 0.5 mm for Feather River, that produced two separate power 

linear lines rather than one. Moreover, the disaggregation of mineral crystals by reactions 

such as hydration can also cause minerals to change, for example feldspar to clay, and 

thus the chemical weathering rates can change. Therefore, it is possible to improve model 

accuracy by incorporating different weathering reactions and rates for different particle 

sizes, and by accounting for varying amount of soluble minerals depending on type of 

minerals and disaggregation patterns.

Another possible source of variability is the inconsistency of the location of 

individual sample sites. Ideally, each site would be at the same distance to the channel at 

any given elevation. While the data from Inyo Creek were collected this way, the data 

sets from Feather River and Kohala were not collected with this in mind. However, even 

if all data sets were to be collected at same distance to the channel, there are number of 

other factors that need to be considered. Depending on topographical attributes such as
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slope and aspect and the velocity of the grain based on their size, the residence time for 

individual particles may differ. With difference in residence time, particles that are 

located in the same elevation would have a different chemical weathering potential.

Regardless, the CWP model was still able to approximate the variation in particle 

size distribution for two out of the three study locations. However, it failed to predict the 

median size (Z)50) for Inyo Creek and smaller sizes for Feather River. The similarity 

between the Inyo Creek and Feather River results in prediction of coarse grain sizes 

indicates that the model may be able to reliably predict D70 and D90 in landscape similar 

to that of the Sierra Nevada provided that the right data is available. A noticeable 

difference between the Feather River and Inyo Creek is the way plots of individual sites 

are ordered in the log-log space of CWP model. Looking at the plot of Inyo Creek’s plot, 

the size distribution predicted by CWP model seems to be organized in such a way that 

chemical weathering increases with decrease in elevation. This is due to the fact that 

generally erosion rates decrease with elevation, and particles spend more time in soil, and 

this more time in the chemical weathering regime. So it makes sense that with higher 

elevation, the sediments supplied to the channel would be more closely resemble their 

initial sizes. Unlike in Inyo Creek, the Feather River erosion rates increase as elevation 

decreases. That is because the higher elevations are still in the relict topography with low 

erosion rates and low elevations, while the topography near the river main stem is 

dominated by steepened slopes. As a result of this morphological dynamic at Feather 

River, the relationship between D50 and elevation is flipped compared to Inyo Creek. So 

here, it is expected that at higher elevation the size distributions are more shifted toward 

finer sizes as they are experiencing higher CWP; this is exactly what was observed in 

figure 19.

The only location where model results are inconclusive is Kohala peninsula of 

Hawaii, in part because no data were available to independently constrain the input size
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distribution. Other limitations for the Kohala analysis include the small number of 

sampling locations (7), and the basalt bedrock, which may erode differently from the 

granodiorite that underlies the two Sierra Nevada sites. Future studies with more 

comprehensive data are needed before we can make a conclusive decision about the CWP 

model’s applicability in wide range of landscapes. For now, the applicability of the CWP 

model on wide range of landscape with differing lithology is inconclusive.

Multiple-regression analysis shows that aspect was statistically significant in 

explaining particle size variation at all three study sites. This suggests that the solar 

radiation has a larger impact on chemical weathering potential than previously 

recognized. Future research is needed to explore the role of aspect in influencing rates of 

chemical weathering and particle size reduction on hillslopes. Slope and the weathering 

function (eqn. 3) were also consistently significant explanatory variables, with the 

exception of Hawaii, where weathering was not significant. This finding suggests that 

using the three variables mentioned, it is possible predict Dso in different landscapes by 

constructing an empirical fit model. However, a field campaign to the region of interest is 

still required to collect the point count data necessary to be able to produce the CWP or 

the empirical fit model.

The bi-modal distribution of the initial size at Inyo Creek contributed by bedrock 

fracture spacing and mineral crystal, suggests that bi-modal initial size distributions may 

be common at other locations as well. Depending on the relative intensities of chemical 

and physical weathering, the contributions of individual mineral crystals and bedrock 

fractures producing the initial size distribution can vary. For accurately representing 

initial size distribution in future studies, this variation in fraction of crystal and fracture 

needs to be investigated further for possible predictable trends.
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6.2 Future Study

Overall, this work highlights the need for additional field data to advance 

development of models for predicting SSDs on hillslopes. Data are needed for both the 

hillslope SSD and possible sources of initial size distribution produced from bedrock.

The only landscapes where the fit models successfully predicted D50 were located in the 

Sierra Nevada of California, and have similar lithology. Although the geomorphology of 

Inyo Creek and Feather River are different, the weathering is highly dependent on the 

activation energy of the more soluble minerals. In order to fully test the capability of the 

CWP model, there needs to be an additional study with similar data types and conditions 

as Inyo Creek, but with a different underlying bedrock lithology.

To test for the effects of aspect, future studies need to consider the effect of solar 

radiation by choosing clusters of sites that have wide variation in solar radiation received. 

This way the data will be tailored to test aspect as a control on Dso while also comparing 

the SSD among site clusters.

6.3 Landscape Evolution Model Framework

Landscape evolution models are useful tools for simulating and predicting 

geomorphic processes far into both the past and the future. However, the accuracy of 

their predictions depends greatly on the parameters that describe the physical process 

involved in landscape dynamics, particularly erosion and weathering. There are many 

numerical models available today (Tucker et al., 2001; Coulthard et al., 2002; Slingerland 

et al., 2008) that encompass a wide variety of earth science disciplines such as river and 

glacial geomorphology, hydrology, meteorology, and tectonics (CSDMS). The most 

advanced landscape evolution models combine aspects from all of these disciplines. It is 

important to know the model frameworks for hillslope sediment size proposed here are
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only a segment of the broader picture. By considering evolution of the SSD supplied by 

hillslopes to channels, one can improve an existing model’s predictive accuracy.

Stream channel incision into bedrock is the main mechanism of valley evolution. 

The relationship between channel incision into bedrock and the sediments supplied by 

surrounding hillslopes is well established (e.g. Sklar & Dietrich. 2004). Given that 

sediments provide streams with tools for river-bed abrasion, their size distribution and the 

amount supplied by hillslopes to channels influences the rate of bedrock incision and 

longitudinal profile development of the river. In order to accurately predict channel 

incision, we must understand the factors controlling grain size distribution supplied to the 

channel by the surrounding hillslopes. Using this knowledge, modelers can account for 

SSD supplied from surrounding hillslope to the channel.

Numerical landscape evolution models available today, such as LandLab (Hobley 

et al., 2017), are pixel based. The landscape is divided into many pixels representing a 

fixed area of land with a set initial elevation (Tucker et al., 2001). As different 

geomorphic processes erode and modify this computer generated landscape, the pixels 

either gain or lose elevation. Gain in elevation can come from tectonic uplift while 

erosion is washing away their top layers and as a result they lose elevation. As the pixels 

of higher elevation lose sediments, those sediments move to the pixels directly 

downslope of them, until it reaches the valley bottom where the main channel is located; 

in which case the sediments are washed away out of the system. While this way of 

computation may seem complex to some, in reality there are only few simple processes 

that govern all the pixels’ interactions.

Conventional models only have a fixed size distribution, and do not consider the 

evolution of the size distribution for individual pixels (figure 28). That means, the 

sediments near the stream channel will have the same distribution as they did near the 

ridges. If the conventional model was based on a real landscape, each pixel would be
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represented by the average distribution observed in the field. This representation of 

sediment supplied to the channel is clearly not accurate, and therefore the channel 

incision rates are most likely not realistic. Here I proposed that, using the empirical fit 

model combined with CWP model, one can estimate the size distribution of individual 

pixels, and predict their evolution as they approach the stream channel. This estimation 

can be constructed based on only few real world samples.

If all necessary climatic and geomorphic parameters are known and the model 

space is already set to represent a real landscape, the numerical model should be able to 

calculate erosion rates and weathering for each pixel. The dynamic parameters would 

control pixel evolution more accurately than previous models. Not only would this model 

have a more realistic pixel SSD, but their size distribution would evolve over time to best 

represent the topography at every evolutionary step. More realistic sediment supplied to 

the channel would produce a more realistic channel incision into bedrock and in turn 

more realistic landscape evolution.

7. Conclusion

In conclusion, the models investigate here supported the hypothesis that hillslope 

sediment size distributions can be predicted using either the chemical weathering 

potential model or an empirical fit model derived from multiple regression analysis of 

significant attributes. By comparing field measurements with model-derived estimates, I 

was able to test both models applied to a given landscape. The CWP model and the 

empirical fit model together managed to predict Dso, D70, D90 accurately, assuming the 

initial size distribution estimates are accurate as well, while prediction for lower 

percentiles were poor. This disparity between model results and observations is possibly 

caused by model simplicity that is not fully representing all physical processes involved. 

Because of a lack of sufficient data, I was unable to test the models for applicability in a 

variety of landscape lithologies.
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For the best estimate of initial size distribution for each location, I used bi- 

modally distributed initial sizes with varying contributions from bedrock fracture spacing 

and mineral crystal sizes for Inyo Creek. I discovered not only that initial size distribution 

is bi-modal, but the percent contribution from each variable changes with elevation. The 

higher elevations have larger contribution from bedrock fracture spacing, and lower 

elevations have more crystal mineral contribution to the input. This input data was 

unavailable for the other two study locations, with only landslide point counts available 

in Feather River which I incorporate to represent initial size distribution. Kohala did not 

have any data on the initial distributions and thus I was only able to plot the sampling 

data against CWP derived initial size distribution.

I investigated the fractal distribution of Inyo Creek’s point counts and bedrock 

fracture spacing. Assuming the distribution of point count data points represents 

sediments produced from fractures that propagate fractally, then their distribution should 

be fractal as well. However, plotting both data sets in log-log space against possible 

fractal distribution did not produce any the expected power law pattern. I concluded that 

the fractal model cannot predict the size distribution of both bedrock fracture spacing and 

surface point counts at Inyo Creek, because either fractures do not propagate fractally or 

the fractal model cannot explain the full extent of the size distribution with one power fit 

function.
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Tables

Factors Initial Size Distribution Chemical Weathering Physical Weathering

Inherited Clast Size 
Distribution

Mineral Solubility Differential Heat Stress

Mineral Grain 
Size Distribution

Climate: Temperature, 
Precipitation,....

Segregation Ice Growth

Bedrock Fracture 
Spacing

Supply of Fresh Mineral Surfaces 
By Physical Erosion

Bioturbation

Rock Fracture 
Toughness

Rock Fall

P(Do) = f (Lithology, Tectonics) f (Lithology, Climate, Tectonics) f (Lithology, Life, Topography, 
Climate, Tectonics)

Table 1. Controls on hillslope sediment size distribution and evolution.

Sites Aspect (deg) Slope (deg) Precip (mm) Temp (K) Elev (m) Erosion Weather D50 (mm)
P2875 108.4 35.7 472.5 272.2 2875 0.230 0.063 13.617
P2862 65.3 28.6 469.6 272.4 2862 0.224 0.065 11.481
P2804 7.6 39.0 456.8 273.3 2804 0.200 0.071 61.891
P2784 6.9 41.6 452.4 273.7 2784 0.192 0.073 40.693
P2676 308.7 45.8 428.5 275.5 2676 0.155 0.085 8.775
P2650 322.8 40.0 422.7 275.9 2650 0.147 0.088 9.375
P2637 33.3 29.2 419.8 276.1 2637 0.143 0.090 11.875
P2582 332.0 35.4 407.7 277.0 2582 0.128 0.097 8.739
P2549 337.5 47.3 400.3 277.6 2549 0.120 0.102 17.499
P2541 325.1 40.8 398.6 277.7 2541 0.118 0.103 8.478
P2447 111.6 31.7 377.8 279.3 2447 0.098 0.117 6.372
P2432 346.0 23.8 374.4 279.5 2432 0.095 0.119 3.420
P2412 94.1 36.9 370.0 279.8 2412 0.091 0.122 8.336
P2350 330.3 32.9 356.3 280.9 2350 0.081 0.132 3.813
P2312 323.6 45.4 349.0 281.4 2317 0.075 0.138 8.489
P2263 320.3 39.2 337.0 282.3 2263 0.068 0.147 1.860
P2230 104.4 25.8 329.7 282.9 2230 0.063 0.153 2.368
P2212 89.0 36.3 325.7 283.2 2212 0.061 0.157 6.266

Table 2. Attribute data for Inyo Creek.



Site ID Aspect (deg) Slope(deg) Precip (mm] Temp (K) Elev (m) Erosion Weathering D50 (mm)
POMD2 6.53 12.20 1576.43 287.31 787.18 0.06 0.2922 0.12
POMD4 6.90 15.09 1576.43 287.31 782.97 0.06 0.2922 0.11
POMD6 3.29 13.42 1576.43 287.31 783.41 0.06 0.2922 0.10

FTA1 353.79 25.90 1567.47 288.55 675.65 0.10 0.3225 0.34
FTA9 354.16 28.01 1567.47 288.55 674.58 0.10 0.3225 0.36
BRC3 347.34 46.91 1567.47 288.55 646.62 0.10 0.3225 0.47
BRCO 349.63 24.06 1567.47 288.55 677.06 0.10 0.3225 0.22

BRB8-9h 356.91 42.74 1567.47 288.55 637.45 0.10 0.3225 1.18

Table 3. Attribute data for Feather River

Sies Aspect (deg) Slope (deg) Precip (mm) Temp (K) Elev (m) Erosion Weathering D50 (mm)
H7 341.260 4.560 3193.600 286.110 1254.000 0.220 0.355 0.026
H6 178.630 3.930 1322.980 286.970 992.000 0.141 0.248 0.022
H5 214.750 4.910 1043.530 287.570 792.000 0.100 0.232 0.009
H4 256.120 6.540 721.820 288.670 674.000 0.082 0.207 0.014
H3 228.240 4.820 314.600 290.790 356.000 0.048 0.157 13.470
H2 233.860 2.200 246.660 291.960 185.000 0.036 0.149 9.525
HI 259.760 4.680 226.900 292.350 77.000 0.030 0.146 0.314

Table 4. Attribute data for Kohala Peninsula



Percentile P2875 P2862 P2804 P2784 P2676 P2650 P2637 P2582
10 1.954 0.624 14.166 2.783 1.051 1.057 1.163 1.080
30 5.837 5.586 28.361 15.057 2.993 3.062 4.802 3.327
50 13.617 11.481 61.891 40.693 8.775 9.375 11.875 8.739
70 96.363 38.023 233.154 66.427 77.210 118.027 30.288 15.693
90 342.563 193.753 455.233 183.783 316.635 281.497 319.691 342.534 n

Percentile P2549 P2541 P2447 P2432 P2412 P2350 P2312 P2263 P2230 P2212
10 1.578 3.386 0.935 0.850 1.507 0.859 1.195 0.737 0.761 0.997
30 7.755 7.158 2.032 1.980 5.141 1.631 2.894 1.268 1.405 2.439
50 17.499 8.478 6.372 3.420 8.336 3.813 8.489 1.860 2.368 6.266
70 34.157 11.315 17.687 73.273 146.670 35.036 110.496 3.346 4.601 10.732
90 329.786 28.496 401.235 371.791 719.764 127.531 296.623 77.997 9.383 691.751

Tables 5. Five percentiles (10, 30, 50, 70, 90) for Inyo Creek’s point count size distributions.



r-

Percentile P2875 P2862 P2804 P2784 P2676 P2650 P2637 P2582
10 2.188 0.643 18.893 3.263 1.151 1.162 1.293 1.202
30 7.086 6.784 40.036 20.359 3.633 3.754 6.193 4.204
50 17.595 14.719 93.132 59.833 11.844 12.888 16.836 12.317
70 143.827 53.337 391.082 101.791 129.180 210.375 47.352 23.632
90 561.386 307.157 806.579 306.855 608.965 548.515 639.324 731.018

*

\ 7

Percentile P2549 P2541 P2447 P2432 P2412 P2350 P2312 P2263 P2230 P2212
10 1.846 4.349 1.043 0.938 1.811 0.962 1.419 0.815 0.850 1.175
30 10.956 10.057 2.522 2.460 7.374 2.018 3.976 1.543 1.758 3.409
50 27.228 12.155 9.251 4.587 12.819 5.392 13.921 2.421 3.265 10.479
70 57.537 16.795 29.534 150.954 340.92 70.214 276.447 4.834 7.176 19.885
90 726.886 47.251 1027.933 961.589 2103.9 313.128 873.089 197.037 16.703 2832.842

Percentile Average stdev CV
10 2.4135

7.2965
17.9727

109.5500
717.0410

4.0955
9.1607

22.2284
117.3564
701.7137

1.6969
1.2555
1.2368
1.0713
0.9786

30
50
70
90

Tables 6. Five percentiles (10, 30, 50, 70, 90) for Inyo Creek’s CWP derived initial size distributions.



P ercen tile s POMD2 POMD4 POMD6 FTA1 FTA9 BRC3 BRCO B*B8~9h ID1 LD2 LD3
10 0.0048 0.0041 0.0039 0 .0134 0.0115 0.0108 0.0094 0.0424 0.35 0.6 0 .275
30 0 0 3 3 6 0.0292 0.0246 0 .1 0 8 8 0 .1000 0.1016 0.0744 0 .257 9.105 26.360 6.100
50 0.1221 0.1133 0.0963 0 .3 4 1 5 0 .3604 0.4671 0.2188 1.181 34.947 66.161 46 .406
70 0.4203 0.4470 0  8943 1.1204 1.5417 1.9265 1.1023 3.040 90.403 93.125 85.276
90 1.5797 1.6812 2 1935 2.5711 68.8440 | 7.7413 2.7491 11.778 168.098 145.782 154.838

Tables 7. Five percentiles (10, 30, 50, 70, 90) for Feather River’s sediment size distributions.

Percen tile s PCM 02 POM 04 POMD6 FTA1 FT AS BRC3 BRCO BRB8-9H LD1 ID2 LD3 Average stdev CV

10 0 .0069 0.0057 0.0054 0.0264 0  021 8 0.0202 0.0168 0,1126 1.6753 3.3169 1.2341 0 .0270 0.0355 1.3169
30 0.0749 0 .0630 0.0510 0.3687 0  3316 0.3385 0.2283 1.0873 104.132 400.543 62.677 0.3179 0 3 3 7 7 1.0623
50 0.3659 0.3339 0.2734 1.5590 1 6686 2.3137 0.8895 7.4454 572.58 1285.65 820.22 1.8562 2 3 7 7 0 1.2806
70 1.6698 1 8 0 1 0 4 2223 6.9701 10.422 13.800 6 8 2 8 3 24 527 1909 62 1982.76 1773.41 8.7802 7 5 8 7 6 0.8642
90 8.4927 9.1681 12.7108 19.8552 1251.16 79.651 21.603 135.170 4191.10 3498.94 3776.63 192.2266 430.2143 2.2381

Tables 8. Five percentiles (10, 30, 50, 70, 90) for Feather River’s CWP derived initial size distributions.



Percentile H7 H6 H5 H4 H3 H2 HI
10 0.0015 0.0014 0.0013 0.0013 0.0029 0.0034 0.0026
30 0.0058 0.0046 0.0021 0.0024 0.0322 0.0657 0.0166
50 0.0259819 0.0216000 0.0089633 0.0138191 13.4703842 9.5250000 0.3144703
70 0.0977 0.1176 0.0534 6.2822 32.0227 28.3700 24.2109
90 0.3918 2.0000 19.0500 40.9411 56.7814 64.1774 71.4351

Tables 9. Five percentiles (10, 30, 50,70, 90) for Kohala’s sediment size distributions.

Percentile H7 H6 HS H4 H3 H2 HI Average stdev CV
10 0.0019 0.0016 0.0014 0.0014 0.0036 0.0043 0.0030 0.0025 0.0012 0.4776
30 0.0175 0.0079 0.0027 0.0030 0.0621 0.1381 0.0271 0.0369 0.0492 1.3320
50 0.1977 0.0637 0.0179 0.0281 81.3861 48.4540 0.8534 18.7144 32.9663 1.7615
70 1.6971 0.6287 0.1867 66.7159 227.9142 175.1792 139.6548 87.4252 94.0640 1.0759
90 16.1720 28.9772 424.6628 721.4516 450.3775 458.0928 497.1982 370.9903 257.6789 0.6946

Tables 10. Five percentiles (10, 30, 50, 70, 90) for Kohala’s CWP derived initial size distributions.
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Figure 1. Geomorphic and climatic attributes such as precipitation, temperature, aspect, 
slope, elevation and lithology are controls on chemical weathering potential. The debris 
produced by bedrock disaggregation through bedrock fracturing and landslide are the 
input into the system, where rock particles get finer while exposed to the chemical 
weathering regime.
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Erosion Rate (E) (mm yr1)

Figure 2. Influence of erosion rate on weathering regime is divided into three different 
scenarios. First, when the erosion rates are low, weathering is limited by the supply of 
fresh minerals, and only depends on the chemical weathering potential (CWP) and 
fraction of soluble minerals (FSM). Second scenario is where erosion rates are 
intermediate and weathering is limited by the residence time of sediments particle in the 
chemical weathering regime. The final scenario is when erosion rates are so high that 
chemical weather has no time to operate and thus chemical weathering is negligible 
(Sklar et al., 2016).
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Figure 3. Modeling framework for the CWP model in a log-log space. In the model 
space, initial size distribution (D0) can be transformed into the size distribution that is 
supplied to the channel (Dc), using the transformation power equation (eq. 4). The plot is 
divided in half with a one-to-one line, representing when no size reduction has occurred 
W = 0. The maximum chemical weathering possible when W ~Fsm> where weathering 
gets supply limited. These two lines provide a maximum range for the CWP’s size 
transformation. Out side of the bounds of CWP, physical weathering is more dominant. 
The model parameter Dmin also represents the smallest relevant particle size for this 
research (Sklar et al., 2016)



53

Figure 4. CWP model for particle size transformations across a range of chemical 
weathering potential. The black curve on the upper horizontal axis represents the initial 
particle size distribution by mass and is assumed to be exponential. The colored curves 
on the right vertical axis are transformed size distributions for chemical weathering 
potential values that range from no weathering (0) to maximum weathering (1.0), where 
the fraction of soluble minerals is 0.6. The thin black lines are transformations of 
distribution mode (Sklar et al., 2016).
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Nevada

CaliforniaSlope (degrees)
□  0.07359- 10.53
□  10.54-19.13
□  19.14 - 25.9
□  25.91-31.74
□  31.75- 37.58
□  37.59 - 43.42
□  43.43-49.88
□  49.89 - 57.87
□  57.88 - 78.47

Figure 5. First study location (Inyo Creek). Positioned to the northeast facing side of 
Mount Whitney, it is part of the southern Sierra Nevada. Predominant lithology is 
granodiorite. Point count locations are represented by the letter P followed by site’s 
elevation from sea level.
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Figure 6. The cumulative particle size distributions of complete point counts for Inyo 
Creek is shown. The Complete point count distributions includes point count and bulk 
data. Colors represent a range of elevations from higher elevation (blue) to lower 
elevation (red) (Genetti, 2017).
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NevadaSlope (degrees)
■  0-7.444
■  7.445 - 13.65
■  13.66-19.23
□  19.24 - 24.81
□  24.82 - 30.4
□  30.41 - 35.98
■  35.99-41.87
■  41.88 - 49.94

Figure 7. Second study location (Feather River) is located mostly within the watershed 
boundary of one of Feather River’s tributaries called Bald Rock. Although, the landslide 
sediments (LD) are not within the watershed of Bald Rock. Feather River is located in 
northern Sierra Nevada, predominantly lithology is Tonalite and Granodiorite.
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Figure 8. Cumulative grain size distributions measured for the sources of sediment in 
Bald Rock basin. Line colors reflect the steepness of hillslope gradient (Sh) from blue 
(least steep) to black (the steepest). Note the log2 scale on the x axis (Attal et al., 2015).
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Knickpoint
propagating
upstream

Channel steepening in response 
to rapid drop in base-level

C- Steepened landscape: high relief, 
high mean hillslope gradient, 
high erosion rate.

A- Relict topography: low relief, low mean hillslope gradient, low erosion rate.

B- Hillslope transition zone: hillslope steepens in response 
to rapid river downcutting. leading to an increase 
in mean hillslope gradient.

Figure 9. Schematic illustrating of geomorphology of Bald Rock tributary adapted from 
(Hurst et al., 2012). As a result of local uplift and rapid drop in base level, a knickpoint 
has developed in Feather river that is propagating upstream along the channel. This 
condition has created three separate distinct topographies. The stars shown above 
represents samples from each of the three regions and samples from landslide debris 
nearby. The three regions identified as: (A) relict topography above the break in slope 
(POMD), (B) in the transition zone where the hillslopes have not completely adjusted to 
the base-level fall (FTA), and (C) below the break in slope (BRC and BRB) (Attal et al., 
2015).
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Slope (degrees)
■  0-1.93
■  1.931 - 5.791
■  5.792 - 10.3
□  10.31 - 16.41
□  16.42-25.1
□  25.11 - 35
■  35.08 - 45

Honolulu
KahintP

Figure 10. Third study location (Kohala Peninsula). Positioned in the northern part of big 
island of Hawaii. Sites are identified as (H#), while most sites are located in the south 
facing part of the Kohala mountain, the site H7 is located over the ridge on the north 
acing side of the mountain. Kohala’s climate changes dramatically from wet north facing 
side to arid, desert like, south. Predominant lithology is basalt.
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Figure 11. Cumulative grain size distributions measured for the sources of sediment in 
Kohala. The different shads of grey are organized based on amount of precipitation 
received, HI least to H7 most precipitation (Marshall & Sklar, 2012).
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Figure 12. Aspect’s effect on sediment size distribution. Cross section of valley in 
Arizona from previous study, indicating north-facing slopes have greater soil depth 
compared to south facing ones (Olyphant at al., 2016).
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Figure 13. Inyo Creek’s first CWP model for particle size transformations across a range 
of chemical weathering potential, using bedrock fracture spacing as the only input. Colors 
correspond to the range in elevation with red being the lowest and blue the highest. Gray 
line crossing the middle is the one-to-one line where no chemical weathering has 
occurred and the size distribution hasn’t changed.
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Figure 14. Percent contribution of mineral crystals by mass to the initial size distribution 
ranging from 0 to 80%. E.g. Crystal 0.8 represents 80% of initial size distribution is 
originated by mineral crystals and 20% by bedrock fracture spacing.
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Figure 15. Sample CWP model with varying crystal fractions. Each of the 18 sample 
sites, (site P2432 shown here), were plotted against all the possible crystal fractions (0 to 
80% range) in order to find the best fit model for the CWP in the given site. The thick 
black line is the expected size distribution given the local CWP. Grey line in the center is 
the one-to-one line, any distribution that crosses the gray line would imply the final 
distribution is larger than the initial, which is not possible.
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Figure 16. A plot of all the best percentage crystal fraction for all of Inyo Creek’s 
sampling sites. Crystal fractions show a trend with respect to elevation. Higher elevations 
seem to have lower percent of crystal fraction contribution to the initial size distribution. 
The redline represents the percentage of crystal fraction that produced to most linear 
distribution in the CWP model’s log-log space. The blue represents the maximum 
distribution that did not cross the one-to-one line in the CWP model’s log-log space.
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Figure 17. CWP model with the bi-modal initial distribution, represented with the best 
crystal fraction percentage for individual sample sites. Colors correspond to the range in 
elevation with red being the lowest and blue the highest. Gray line crossing the middle is 
the one-to-one line where no chemical weather has occurred and the size distribution 
hasn’t changed.
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Figure 18. Individual sample sites plotted against CWP derived initial size distribution. 
Two of the distributions from the high elevation are mostly above the one-to-one line.
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Figure 19. Feather River’s first CWP model for particle size transformations across a 
range of chemical weathering potential, using Landslide point counts (Dld ) as the input. 
Light gray line represents the one-to-one line and the dark gray line represents the the 
average CWP for the sites. (Notice the order of CWP lines are flipped compared to Inyo 
creek. Distributions from higher elevations (POMD2, POMD4, POMD6) are now at the 
bottom of the CWP space. That is because the erosion rates are higher for the lower 
elevation sample, opposite of Inyo Creek, due to their location. Lower elevation samples 
are located in regions with higher slope gradients and thus are experiencing higher 
erosion rates).
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Figure 20. Individual sample sites plotted against CWP derived initial size distribution 
for Feather River. The distributions are fitted with power lines for cooperation to CWP 
lines.
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Figure 21. Individual sample sites plotted against CWP derived initial size distribution 
for Kohala Peninsula. The distributions are fitted with power lines for cooperation to 
CWP lines.
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Log(Aspect) Log(Slope) Log(Erosion) Log(Weath) Log(Precip) Log(Temp)
Log(Aspect) 1.0000 0.0788 -0.4564 0.4677 -0.4379 0.4470
Log(Slope) 0.0788 1.0000 0.1398 -0.1329 0.1503 -0.1374
Log(Erosion) -0.4564 0.1398 1.0000 -0.9993 0.9986 -0.9986
Log(Weath) 0.4677 -0.1329 -0.9993 1.0000 -0.9960 0.9975
Log(Precip) -0.4379 0.1503 0.9986 -0.9960 1.0000 -0.9977
Log(Temp) 0.4470 -0.1374 -0.9986 0.9975 -0.9977 1.0000
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Figure 22. Pearson’s R multivariable correlation test ran on all 6 attributes. Temperature, 
precipitation, and erosion rate are all component of weathering equation (3).
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Source Rsquare Prob > F □efficient
Log(Norm.Aspect) 0.4623 0.002 0.28
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Source Log Worth P value
Log(Norm.Aspect) 1.547 0.02836
Log(Slope) 2.454 0.00352
Log(Temp)
Log(Precip)
Log(Erosion)
Log(Weathering) 3.673 0.00021
Rsquare 0.772232
Prob > F <.0001
Intercept -4.55

0.5 1 1.5
Log(D50) Predicted RMSE=0.1566 RSq=0.86 

PValue<.0001

D50 = 0.00003 Weathering  192 * Slope* *1 * Aspect,2.41 .0.28

Figure 23. Inyo Creek’s D50 plotted against elevation, shown as a possible control on 
D50 (top left). D50 varies significantly with many climatic and topographic variables, (top 
right). Multiple regression model explains D50 variation in terms of weathering function, 
hillslope gradient, and aspect (bottom table and plot).
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Source Log Worth P value
Norm. Aspect 2.511 0.00308
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Rsquare 0.989239
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Figure 24. Feather River’s D50 plot against slope, shown as a possible control on Dso 
(top left). Dso varies significantly with many climatic and topographic variables, (top 
right). Multiple regression model explains D50 variation in terms of weathering function, 
hillslope gradient, and aspect (bottom table and plot).
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Figure 25. Kohala Peninsula's Dso plot against precipitation, shown as a possible 
control on Z)50 (top left). D50 varies significantly with many climatic and topographic 
variables, (top right). Multiple regression model explains D50 variation in terms of 
precipitation, hillslope gradient, and aspect (bottom table and plot).
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Figure 26. Plot of Bedrock Fracture Spacing from Inyo Creek, applied in the fractal 
model. The distributions do not follow a linear power relationship. The red points are all 
the smaller fracture lengths that were excluded to make a better fit. Fit line for the entire 
data set is (green). Fit line for half of the small length excluded is (blue). Fit line for all of 
the point counts excluded that were smaller than 2.75 cm (orange).
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Figure 27. Plot of P2875 point counts from Inyo Creek’s data set applied in the fractal 
model. The distributions do not follow a linear power relationship. The red points are 
large particle sizes that were excluded to make a better fit. Fit line for the entire data set 
is (red). Fit line for half of the large sizes excluded is (green). Fit line for all of the point 
counts excluded that were larger than 2.6 cm (blue).
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Figure 28. Typical output of the forward landscape evolution model simulation using 
LandLab. Combining three-component driver implementing linear diffusion, flow 
routing, and stream power incision. Landscape evolution from A to D, in 180 loops (each 
representing 1000 years.


