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Nitrate (NO3-) is a regulated chemical that often comes from nonpoint sources (NPS) and 

threatens human health in concentrations above 10 mg/L as Nitrogen (N). To protect 

groundwater quality from NPS NO3- contamination, resource managers need to understand 

the source, transport, and attenuation factors that control NO3” in groundwater and have 

tools that predict its occurrence and extent at the aquifer scale. Groundwater vulnerability 

models and maps are promising tools that incorporate knowledge of controlling factors and 

can be used to make predictions of NO3- impacted groundwater. To improve the utility and 

accuracy of such tools, this research will quantify the sources and propagation o f errors in 

recently (2012) developed vulnerability models and maps for the Basin and Range (BR), 

Central Valley (CV), Coastal Lowlands (CL), and North Atlantic Coastal Plain (NACP) 

Principal Aquifers (PA) of the United States. The errors identified will be propagated 
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sulting uncertainty in model predictions will be illustrated.
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1. Introduction

Nonpoint-source (NPS) nitrate (NC>3_) contamination is the greatest contaminant of 

groundwater resources (Spalding and Exner, 1993; Corwin and Wagenet, 1996) and poses 

well-known human health and ecological risks (Fan and Steinberg, 1996; Galloway et al.,

2003). Groundwater-quality monitoring can be used to characterize the controls and spatial 

patterns of N03~in groundwater (Burow et al., 2010), but monitoring is impractical and 

cost-prohibitive across all scales consistent with management decisions.- Therefore, 

vulnerability models that predict NPS N03~ in groundwater at the watershed and regional 

scale are often used to help inform management or policy decisions (Gurdak, 2008). 

Groundwater vulnerability models include the concepts of intrinsic susceptibility, 

proximity and characteristics of sources of naturally occurring and anthropogenic 

contamination factors that affect contaminant transport from land surface to the 

groundwater, and the in situ geochemical conditions (Gurdak and Qi, 2012).

Many recent advances have been made in predictive models of NPS N03~ contam­

ination in groundwater (Gurdak, 2014). Yet, few modeling approaches have conceptual­

ized or quantified uncertainty that is inherent to predictions of groundwater vulnerability 

to NPS contamination (Loague 1991; Loague et al. 1996; Gurdak et al., 2007). If results of 

predictive groundwater vulnerability models are to carry any weight in resource decision
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making, the associated predictive uncertainty needs to be quantified (Gurdak et al., 2007; 

Gurdak, 2008). Quantifying the inherent error propagation that contributes to uncertainty 

of model predictions helps users address whether actual NPS contaminants exceed back­

ground concentrations or regulatory thresholds. A common approach to groundwater vul­

nerability modeling involves the coupling o f statistical models, such as multivariate logistic 

regression with Geographic Information Systems (GIS) (Nolan, 2001). This approach can 

be used to develop predictive models and maps of groundwater vulnerability to NPS NC>3~ 

contamination and to track error propagation and display the associated prediction uncer­

tainty of model results (Gurdak and Qi, 2006).

The prediction error, or uncertainty, o f the model results is a function of data error 

from GIS-based explanatory variables and model error of estimated logistic regression co­

efficients (Gurdak et al., 2007). GIS-based explanatory variables inherently introduce data 

error into logistic regression models because the GIS data are imperfect representations of 

reality. The source of error is generally a function of the accuracy and precision of the 

geospatial data (Mowrer and Congalton, 2000). Accuracy of geospatial data refers to the 

closeness o f represented measurements or computations to their "true" or accepted values, 

and precision refers to the level of measurement and exactness of descriptions reported in 

the geospatial data (Gottsegen et al., 1999). The logistic regression coefficients have in­

herent estimation error (van Horssen et al., 2002). Thus, the errors from the explanatory 

variables and the model coefficients can propagate through the model calculations and re­

sult in spatially variable prediction uncertainty (Gurdak et al., 2007; Gurdak et al., 2009).
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Groundwater vulnerability maps and estimates of prediction uncertainty allow users 

to make the best informed decisions regarding groundwater monitoring plans, best 

management practices (BMPs), or remediation strategies. For example, a vulnerability map 

may indicate that a certain area of an aquifer has a 60-80% probability of exceeding 

background concentrations of N03“. If such a map is used to implement land use BMPs, 

estimate of the prediction uncertainty can help inform the user about the reliability and 

effectiveness of the specific BMP type and location in meeting a particular management 

goal. Furthermore, groundwater vulnerability maps and uncertainty estimates provide users 

important information about steps to reduce prediction uncertainty in future iterations of 

the models, such as expanding a groundwater monitoring network or collecting more 

accurate explanatory data used in the model. Ultimately, groundwater vulnerability maps 

and uncertainty estimates can help prioritize limited funding and optimize planning, policy, 

and mitigation objectives.

Gurdak and Qi (2012) used logistic regression coupled with GIS to create groundwater 

vulnerability models and maps that predict the probability of detecting NPS N03“ above 

background concentrations in recently recharged groundwater of 13 Principal Aquifers (PAs) 

in the United States (U.S.). O f those 13 PAs, only the model of the High Plains aquifer 

(Figure 1) has quantified error propagation and prediction uncertainty associated with the 

probability maps (Gurdak and Qi, 2006). Therefore, the primary objective o f this thesis is to 

quantify error propagation and associated prediction uncertainty o f additional PA 

vulnerability models reported by Gurdak and Qi (2012), including models for the Basin and
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Range (BR), Central Valley (CV), Coastal Lowlands (CL), and North Atlantic Coastal Plain 

(NACP) aquifer systems (Figure 1). These four PAs were selected because they are all 

unconfined, alluvial aquifers, but are located across a range of climates and have explanatory 

variables typical of the 13 PA models (Gurdak and Qi, 2012). I hypothesize that the PA 

location (climate) and explanatory variables may have a significant effect on error 

propagation and the magnitude of prediction uncertainty in the NPS N03“ vulnerability 

models. Additionally, I hypothesize that the relative contribution of variance from the model 

and explanatory variables can be used to reduce prediction uncertainty in subsequent 

iterations o f the vulnerability models and inform best management practices.

2. Study Areas

The study area includes the CV, BR, CL, and NACP PAs (Table land Figure 1). 

These PA’s are all alluvial aquifers with unconfined surface hydrostratigraphic units that 

allow direct recharge from precipitation, irrigation, and other land-derived sources. These 

PAs were selected to represent a range of climate regimes; the CV has a Mediterranean 

climate, the BR a desert climate, the CL a humid subtropical temperate forest climate, and 

the NACP is a combination of continental humid temperate forest climate with a 

subtropical climate in the south and a continental climate in the north (Commission for 

Environmental Cooperation, 1997).
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2.1. Central Valley Principal Aquifer

The CV PA in California (Figure 1) is an elongate structural trough bounded by 

mountains on all sides with the exception of the delta region that drains into the San 

Francisco Bay. The aquifer resides in an erosional valley filled with sediments derived from 

the Sierra-Nevada and Coast Ranges (Faunt, 2009). The CV has two distinct aquifer 

regions; the Sacramento Valley in the north and the San Joaquin Valley in the south. The 

Sacramento Valley is primarily unconfined and ranges in depth up to 300 m (Faunt, 2009). 

The San Joaquin Valley has an uppermost unconfined unit and a lower confined/semi- 

confined unit (Williamson and others, 1989). The 30-60 m thick Cocoran Clay aquitard 

separates the unconfined and confined systems (Page and Bertoldi, 1983; Farrar and 

Bertoldi 1988).

2.2. Basin and Range

The BR PA covers a large area o f the Southwestern U.S., including most of Nevada, 

the eastern and southeastern desert regions o f California, west and southern Arizona, and 

western Utah (Figure 1). Generally, the BR consists of several internally draining basins 

with no outlet to the ocean, with the exception of the Colorado River that that terminates 

at the Gulf of California. Aquifers in the BR can be alluvial basin-fill, fractured volcanic, 

and/or fractured carbonate systems (Planert and Williams, 1995).
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2.3. Coastal Lowlands Aquifer System

The CL PA is located in the southern parts of Texas, Louisiana, Mississippi, and 

Alabama (Figure 1). The structural shape of the CL basin is a subsiding wedge that is thin 

on the northern margin and thickens towards the coast. The CL PA is comprised of 

sediments deposited by alluvial plain, deltaic, nearshore, and marine environments. The 

lithologic structure in any given area of the CL both laterally and vertically reflects past 

fluvial, lagoon, beach, or continental shelf and will have clay, silt and sand sedimentary 

profiles to reflect these environments (Ryder, 1996). The regressive and transgressive 

migration of the shoreline over time results in lithology that is complex, with stratigraphic 

contacts difficult to discern due to lateral facies change within units and the heterogeneous 

overlapping mixture of sand, silt, and clay, that is characteristic o f deltaic depositional 

environments (Ryder, 1996). The CL PA has five distinct permeable zones and two 

confining units. The CL aquifers have both confined and unconfined units. Because of the 

dipping stratigraphy, the thickness and number of hydrostrati graphic units varies across the 

CL (Ryder, 1996).

2.4. North Atlantic Coastal Plain

The NACP PA covers parts of North Carolina, Virginia, West Virginia, Maryland, 

Pennsylvania, Delaware, New Jersey and New York’s Long Island (Figure 1). It consists
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of six vertically stacked aquifer systems separated by four confining units that are 

underlined by metamorphic and igneous units (Trapp and Horn, 1997). The NACP 

sediments reflect past depositional regimes of the Atlantic passive margin, including fluvial, 

deltaic, and marine transgressive environments. Similar to the CL. the structure of the 

NACP is wedge shape that thins near the base of the Appalachians and thickens towards 

the Atlantic (Trapp and Horn, 1997). The undulating, arch and trough, topography of the 

basal rock results in the hydrostratigraphic units of varying thickness throughout the PA. 

The upper most aquifer is the Surficial Aquifer that consists primarily of unconsolidated 

gravelly sand of Quaternary age. A confining clay unit separates the Surficial Aquifer from 

is the underlying sandy Chesapeake aquifer, which is laterally continuous in most areas of 

the aquifer with the exception of the southern half of North Carolina and parts of Maryland 

adjacent to the Chesapeake Bay (Trapp and Horn, 1997). Several additional confined units 

underlie the Chesapeake Bay formation.

3. Methods

In order to achieve the primary objective of quantifying error propagation and 

prediction uncertainty associated with the N 0 3 “ logistic regression models (henceforth to 

be referred to as model); I used the following four-step approach:

1) Quantify the error associated with explanatory variables used as model inputs.

2) Quantify the error associated with the model regression coefficient.

3) Quantify error propagation using a stochastic method called Latin Hypercube 

Sampling (LHS).
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4) Develop uncertainty models that generate a distribution of NO:r prediction 

probabilities based on the propagation of error (step 3) associated with the 

explanatory variables (step 1) and regression coefficients (step 4).

The fundamental assumption of this approach is that the prediction uncertainty of the 

models is a function of the uncertainty in both the explanatory variables and regression 

coefficients that can be expressed as probability distribution functions (Gurdak et al., 2007). 

The following sections detail each of the four steps in my approach.

3.1. Explanatory Variable Error

To quantify the error associated with the explanatory variables, I first conducted a 

literature search to consolidate research on the accuracy of the 10 explanatory variables 

used in the models (dissolved oxygen, soil organic matter, hydric soil, irrigated land, 

farm fertilizer, seasonally high water table, soil clay, crops, anoxic redox, and well 

depth). Table 2 shows each of the explanatory variables used in the PA-specific vulnera­

bility models, background concentration of N03~ for each PA, the model equation, and 

the model calibration and validation statistics. I used the results of the literature search to 

better understand the cause of error associated with the explanatory variables and to as­

sign a reasonable error for each explanatory variable in the models. Table 2 summarizes 

the error values assigned to each of the 10 explanatory variables, which is described in 

the following sections.
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3.1.1. Dissolved Oxygen

Dissolved oxygen (DO) concentrations in groundwater can vary spatially (laterally 

and with depth) and temporally within the saturated zone of an aquifer. DO concentrations 

in groundwater are often a function o f the organic carbon concentration in the aquifer, 

proximity to recharge zones, basin geology, stratigraphy, and basin geomorphology (Rose 

and Long, 1988). In addition to information from the literature search, I analyzed the DO 

spatial trends with ESRI's Geostatistical Analyst - Trend Analysis tool (Esria, 2012) to gain 

insight into the controls on DO variability in each PA (Figures 2-21). Among the 87 

explanatory variables tested by Gurdak and Qi (2012), DO was statistically significant in 

more PAs models than any other explanatory variable, which indicates the widespread 

importance of DO in controlling groundwater vulnerability to NO3' .

Before assigning error values to DO, I evaluated the trend plots to determine 

patterns of spatial variability in the DO concentrations (Figures 2-5). The trend plots 

indicate that in most PAs, DO concentrations are greater in recharge or higher elevation 

areas and lower at the terminus or mid-basin. For the purpose of this research, I assumed 

that the spatial distribution of DO concentrations has been relatively stable during the 

period of groundwater sampling (1992-2008) (Gurdak and Qi, 2012).

To quantify the error associated with the distribution of DO across each of the four 

PAs, I used the Empirical Bayesian Kriging (EBK) interpolation method (ESRI's Geosta­

tistical Analyst, 2012). A prerequisite for any kriging method is the presence o f spatial
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dependency or spatial autocorrelation (Esrib, 2012). Spatial autocorrelation refers to a sta­

tistical relationship between the data value and distance and direction (Esrib, 2012). Spatial 

autocorrelation of the DO datasets was observed in the 3D Analysis Trend Plots (Figures 

6-12) and the empirical semivariograms in all four PAs. Of the four PA’s, the CV has the 

strongest relative autocorrelation and the BR the weakest. NACL and CL DO datasets are 

both moderately correlated.

I used the EBK interpolation method because it minimizes variogram modeling 

uncertainty through the automated quantification of key variogram parameters and 

variogram error (Krivoruchko, 2012). The EBK process works by generating an initial 

variogram with its standard prediction error and using this error to generate a second 

semivariogram (Krivoruchko, 2012). The result o f this second semivariogram is assigned 

a weight (Baye's rule) that accounts for the probability of a semivariogram to give true 

positive results (Krivoruchko, 2012). Through an iterative process successive variograms 

are generated with the end result being a range of semivariograms and accompanied by a 

range values for nugget, slope, and power (Krivoruchko, 2012).

An additional benefit o f the EBK method is that the variogram fitting process is 

automated and performed iteratively using a range of variograms to achieve a best-fit 

model. I assume that the maps resulting from the EBK interpolation are good approxima­

tions of reality to the extent that the a priori assumptions are true. Additionally, I assume 

that the EBK generated prediction and standard error DO maps are built using datasets
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that are representative of the behavior of DO concentrations throughout the aquifer. I also 

assume that DO concentrations do not vary by much overtime.

The prediction and standard error EBK maps are shown in Figures 14-20. The 

maps show five ranges of standard error across the aquifer from least error to greatest er­

ror. For purposes of the uncertainty modeling (described in section 3.2 Quantifying Un­

certainty Using Latin Hypercube Sampling) the 2nd to lowest and 2nd to highest values 

were selected to represent maximum and minimum DO values. The highest and lowest 

values were omitted because they represent extreme tails of the distribution and the goal 

is to assign uncertainty model error based on error values that are reasonable to apply 

across a majority of a PA. Minimum and maximum DO error values used to inform the 

uncertainty model can be found in Figures 13-20 and Table 3.

3.1.2. Soil Organic Matter

The explanatory variable soil organic matter (SOM) used in the N03- logistic re­

gression models was extracted from the State Soil Geographic (STATSGO) dataset. 

STATSGO is a national soil database that aggregates regional soil types and was created 

by the U.S. Department of Agriculture’s (USDA) Natural Resource Conservation Service 

(NRCS) for public, private, and academic use (USDA, 1994). A complementary database 

to STATSGO is SSURGO, which is a soils database with a higher resolution of data cov­

erage, is also maintained by the USDA’s NCRCS. SSURGO is primarily designed for de­

cision making at the farm/ranch, township, parish, and county level (USDA, 1994),
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whereas STATSGO is more appropriate for the regional scale consistent with the four 

PAs of this study. SSURGO was primarily compiled from field surveys and aerial photo 

interpretation, whereas STATSGO is a generalization of SSURGO data that is paired 

with Land Remote Sensing Satellite (LANDSAT) images and other data sources that pro­

vide information on topography, geology, vegetation, and climate (USDA, 1994). 

STATSGO maps were designed for exploring regional soil characteristics at the basin, 

state, or multistate level (USDA, 1994).

Despite SSURGO’s higher resolution, STATSGO has been more popular among 

researchers as an input for soil organic matter (SOM) because STATSGO requires less pre­

processing compared to SSURGO. Currently (2014), SSURGO is of limited use except at 

landscape scales due to the fragmentation of the data (Zhong and Xu, 2011). While 

STATSGO is easier to use, SSURGO is the more accurate database when field data is 

compared to the two databases (Zhong and Xu, 2011). The accuracy of STATSGO SOM 

data is questionable in many areas compared to SSURGO due to the omission of SOM 

values (represented as “null”) and the use of zero as a valid value for SOM and depths 

below the surface. Both STATSGO and SSURGO contain a minimum and maximum 

value to represent SOM. Typically, researchers average the minimum and maximum values 

to obtain a percentage that is representative of SOM vertically and horizontally over an 

area (Zhong and Xu, 2011; Amichev and Glabraith, 2003; Homann et al. (1998)).

Null values and SOM fields reported as zero can result in an inaccurate representa­

tive SOM estimate for an area of interest. For example, Amichev and Glabraith (2003)
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investigated the accuracy of STATSGO SOM values for Maine and Minnesota and re­

vealed that the SOM maximum and minimum fields for Maine contained zero values in 

24% and 54% of the records, respectively. For Minnesota, the maximum and minimum 

zero values comprised 0.2% and 0.4% of the STATSGO dataset, respectively (Amichev 

and Glabraith, 2003). Zhong and Xu (2011) investigated the rate of SOM null values in 

STATSGO for Louisiana and found that 75% (261 of 347) of the map units had null values 

for SOM categories.

SSURGO should not be used validate the accuracy of STATSGO (Zhou and Xu 

(2011). Zhou and XU (2011) tested SSURGO’s viability as a SOM validation tool by 

comparing actual field measurements of SOM in Louisiana soils (Brupbacher et al. 1973). 

Field measurements and SSURGO SOM values were well correlated (n=86, R2=0.635) 

(Zhou and Xu, 2011), however field measurements and STATSGO SOM values were not 

well correlated (n=336, R2=0.013) (Zhou and Xu, 2011). SSURGO’s positive correlation 

with field data indicates the dataset better represents the quantity of SOM in nature 

compared to STATSGO.. Additionally, Zhou and Xu (2011) compared the 86 SSURGO 

and STATSGO map units without missing values and found that the agreement between 

STATSGO and SSURGO SOM values decreases with depth. When all 336 Louisiana 

SSURGO and STATSGO map units were compared, Zhong and Xu (2011) found that 

STATSGO underestimated SOM by 9% at the 20 cm level and 36% at depths of 100 cm or 

more.
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The tendency of STATSGO to consistently underestimate SOM when compared to 

SSURGO was also observed by Davidson and Lefebvre (1993) who found that STATSGO 

underestimated SOC by 13% for areas in Maine when compared to SSURGO data. 

Homann et al. (1998) compared the 1994 NRCS soil dataset, comprised of published and 

unpublished soil surveys, to STATSGO SOM values for Western Oregon. Homann et al. 

(1998) found that Western Oregon NRCS pedons at the 20 cm level show an SOM average 

o f 68 t ha-1 whereas STATSGO averages 51 t ha-1 for the region, a 25% difference.

To estimate the error associated with the STATSGO SOM for the 4 PAs, I compiled 

all previously described error values in Table 4 All studies report that STATSGO 

underestimates the true value, with errors ranging from -4.7 to -36% and average -18.5%, 

rounded to -20%. Therefore, I used -20% to represent SOM error in the subsequent 

uncertainty modeling for all 4 PAs.

3.1.3. HydricSoil

The USD A defines hydric soils as soils that have undergone saturation or flooding 

for a time sufficient to allow for the development of anaerobic conditions that favor the 

growth and regeneration of hydrophytic vegetation (USDA, 1985). Accurately identifying 

the extent and location of hydric soils is important because the anerobic, organic rich hydric 

zones can promote denitrification and reduced N03“ concentrations in groundwater. Hydric 

soils are frequently characterized by a localized high water table.
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Rosenblatt et al, (1996) tested the accuracy of SSURGO and STATSGO datasets to 

represent riparian areas with hydric soils. To compare field data and SSURGO for hydric 

soil coverage, Rosenblatt et al, (1996) randomly selected 100 streams in the Rhode Island 

Pawcatuck Watershed for groundtruthing. At each location, area samples were taken along 

a 30-m transect perpendicular to the steams. The data collected from these transects were 

compared to SSURGO maps. SSURGO correctly classified 73% of the 100 stream sites as 

having hydric soils.

Rosenblatt et al, (1996) additionally defined hydric soils as areas that occupy an 

area greater than 10 m in width and the absence of groundwater seeps, as seeps indicate a 

compromised anaerobic environment. SSURGO map results estimated that 37.2% of the 

hydric soil within 15 m (one half of the 30 m transect) o f a stream is hydric and therefore 

capable of reducing NO3' to N2(g). A STATSGO map of the same area only showed 2% of 

soil near steams has denitrification potential.

For purposes of assigning error to the STATSGO field representing hydric soil, I 

assume that SSURGO is a relatively accurate proxy for field measurements. Based on the 

findings o f Rosenblatt et al, (1996), I assume that STATSGO underestimates SSURGO by 

37.2% thus yielding an error of 37% in the 4 PAs.
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3.1.4. Irrigated Land

Irrigated and non-irrigated lands explanatory variable data was derived from an 

irrigated lands map of the U.S. created by Pervez and Brown (2010) using 2002 Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite imagery and the USDA 2002 

Census of Agriculture (COA) county-level irrigated acreage estimates (Pervez and 

Brown, 2010). To create the MODIS Irrigated Agriculture (MIrAD-US) map, peak 

Normalized Difference Vegetation Index (NDVI) was identified for different 

crops. Available moisture in the form of precipitation or supplied water has been found to 

increases the NDVI in many types of vegetation (Kawabata et al., 2001; Wulder et al.,

2004). Thus, irrigated crops tend to have higher peak NDVI values than non-irrigated crops 

(Ji and Peters, 2003; Wang et al., 2003). The COA’s reported irrigated lands acreage acts 

as a constraint on the amount of peak NDVI cells to be designated as irrigated lands during 

the MIrAD-US map creation (Pervez and Brown, 2010). Visual comparison of the final 

map with satellite imagery was also used to adjust MIrAD-US accuracy in representing 

irrigated land coverage (Pervez and Brown, 2010). The final MIrAD-US map product 

consists o f a 250-m cell national map, or land mask, depicting irrigated and non-irrigated 

areas (Pervez and Brown, 2010).

Pervez and Brown (2010) calculated two types of error data associated with 

MIrAD-US; agreement between COA irrigated acreage and MIrAD-US, and agreement 

between MIrAD and two regional validation datasets. Generally, Pervez and Brown (2010) 

found good agreement (92%) between COA data and the MIrAD results for western and
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mid-western states. There was less agreement (75%) between MIrAD-US and the COA in 

the eastern U.S., which was attributed to humid climate vegetation dynamics, small county 

size (a resolution processing issue), and a smaller quantity of irrigated acreage compared 

to the West (Pervez and Brown, 2010).

Validation of irrigated and non-irrigated map results (Pervez and Brown, 2010) 

was done by comparing the Mir AD mapped imagery with California Department of Water 

Resources (CA DWR) agricultural surveys (CA DWR, 2000-2004) and the University of 

North Dakota (UND) Great Plains field survey cataloging irrigated versus non-irrigated 

lands (Seelan and Kurz, 2006). A map validation was not conducted for the East Coast 

because of the lack of a comparable field survey dataset.

The California DWR and MirAD-US, UND and Mir AD validation compares 

agricultural maps to Mir AD to see how well MirAD-US matches that have been 

groundtruthed. The California DWR and MirAD-US comparison error matrix shows a 

user’s accuracy of 86% for irrigated lands (Pervez and Brown, 2010). The user’s accuracy 

refers to the probability that a pixel labeled as irrigated land on the map is accurately 

identified if further groundtruthing were to take place. In other words, if an irrigated lands 

pixel were selected and visited in the field there is an 86% probability that the pixel has 

been properly classified. The MirAD-US and the UND error matrix revealed a user's 

accuracy of 75% irrigated lands explanatory variable although Pervez and Brown (2010) 

suggest that the lower accuracy associated with this dataset is likely a function the smaller 

number of pixels compared.
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Irrigated lands are only an explanatory variable for the BR PA (Table 2) (Gurdak 

and Qi, 2012). To obtain an error value for the irrigated lands variable in the BR uncertainty 

model. I used the average (11%) (Table 4) of the previously described Western U.S. (8%) 

and the California DWR studies (14%).

3.1.5. Farm Fertilizer

The Association of American Plant Food Control (AAPFCO) and the USDA have 

national datasets that track the application of nitrogen rich fertilizer to agricultural and 

other lands. AAPFCO operates at the University of Kentucky and is the central repository 

for all state data on farm and non-farm fertilizer sales. Reports on state fertilizer sales are 

published annually. The USDA tracks data on fertilizer use and fertilizer sales through 

COA census tracking once every five years. COA fertilizer data is available at the county 

level.

Unlike other explanatory variables that are based on direct estimates, the applica­

tion of fertilizer is estimated indirectly by tracking state fertilizer sales or from the USDA 

COA. There are a number o f errors associated with both the AAPFCO and COA tracking 

methods. When states report sales to AAPFCO, approximately half o f the states report 

separate their reporting of fertilizer sales to farm and non-farm entities and the other half 

don’t separate and report all sales data as a sum without a categorical breakdown indicating 

sales to farms. The non-standardization in state reporting requirements introduces errors
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insofar as it is unknown for half the states the amount of fertilizer than can be attributed to 

farm operations (Gaither et al., 2004).

AAPFCO reporting states collect data from county level estimates and aggregate 

them at the state level. Therefore, fertilizer sales may not necessarily reflect the actual lo­

cation of the fertilizer application. Additionally, not all counties report complete infor­

mation on an annual basis. In instances where a state submits incomplete data, the AAP­

FCO will use sales data from the previous year and any monthly state sales data that is 

available (Gaither et al., 2004). The AAPFCO has not published any error estimates for the 

annual “Commercial Fertilizer” report.

Another source of farm fertilizer data is the COA. Every five years the USDA que­

ries farms that have over $ 1,000 in sales to report several categories of information, includ­

ing fertilizer sales. For each COA year, the USDA allocates AAPFCO data by county. The 

AAPFCO reports sales in tons by the chemical composition of the fertilizer type (i.e. N, 

P2O5, K2O). The COA assumes that all fertilizer sold in a year is applied in that same year 

(USDA, 2004).

Ruddy et al. (2006) created U.S maps depicting annual nutrient (farm and non­

farm) by region. Nitrogen inputs from fertilizer and manure were allocated to appropriate 

1992 Enhanced National Land Cover Data classes within each county (Ruddy et al., 2006). 

The following is a summary o f fertilizer application by PA (Ruddy et al., 2006):

• Central Valley - For most areas in the Central Valley, 6,000-8,000 kilograms or 

greater than 8,000 kilograms of fertilizer is applied per square mile.
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• Basin and Range - With the exception of parts of Southern Arizona and the 

Coachella Valley/ Salton Sea Trough, the Basin and Range has relative low ferti­

lizer application rates. In southern Arizona and the Coachella Valley/ Salton Sea 

Trough, the application rates exceed 8,000-kg per square mile annually.

• Coastal Lowlands - The fertilizer application rates vary considerably by county. 

Application rates vary between 2,000-8,000 kg per square mile annually.

• North Atlantic Coastal Plain - The fertilizer application rates are high at 6,000-

8,000 kg per square mile or greater applied annually.

Since there are no published values quantifying the error associated with the farm fer­

tilizer dataset, I assume that 20% (Table 4) is a reasonable error percentage to inform the 

uncertainty models.

3.1.6. Seasonally High Water Table

Seasonally high water table (HWT) is defined as a water table that is within lm  of 

land surface (USDA, 1985). In the STATSGO dataset, HWT is reported as a value in feet 

representative of the depth of water below land surface. Often the same value will be 

repeated for different areas of the PA. There are no reported error values for HWT. 

Therefore, I assume a relatively low error o f 5% (Table 3) because HWT is informed by 

observation than measurement. An area either has a HWT or it does not.
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3.1.7. Soil Clay

Bricklemyer et. al (2007) compared STATSGO soil clay % in soil to field data 

collected at five tillage and no tillage farm sites throughout the Great Plains. The purpose 

of fielding checking STATSGO data was to test how well STATSGO performed as an 

input dataset for the Century Model, a model that measures changes to soil carbon. Brick­

lemyer et al., (2007) found that STATSGO under-reported clay % at the five sites by 28%. 

This underreporting of soil clay was only identified for the farm sites. Other environments, 

including non-farm sites were not included as part of the study.

Some other researchers have attempted to identify a relationship between the pres­

ence of soil clay and organic carbon as a way for predicting the presence of soil clay. The 

research to date is not conclusive in demonstrating that such a relationship exists. For ex­

ample, Davidson (1995) found that organic carbon is positively correlated with clay con­

tent in parts o f Kansas, but organic carbon is not correlated with clay in Montana. Rasmus­

sen (2006) looked at the correlation between soil clay and organic carbon by biome in the 

desert environments of Arizona and found that soil clay and organic carbon were positively 

correlated for all desert biomes studied, with some biomes having a higher carbon and clay 

content correlation than others.

Given the lack of consistent results in correlating clay with organic matter, I assume 

20% (Table 4) as a reasonable error value for clay % in soil as input to the uncertainty 

models. While Bricklemeyer et al. (2007) does quantify the error for soil clay in 

STATSGO, the focus on farm sites raised questions about the applicability of this error
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quantification across PA’s. Farm site soils are disturbed areas, especially tillage sites. In 

their study, Bricklemeyer et al. (2007) did not control for the fact that these farm sites may 

have higher clay content due to cultivation practices.

3.1.8. Crops

Crop cover data used in the logistic regression models is from the 2001 National 

Land Cover Dataset 2001 (NLCD) (Gurdak and Qi, 2012). NLCD 2001 is a 16-class land 

cover classification scheme, sometimes referred to as Anderson Level 1 (Anderson, 1976) 

that has been applied consistently across the U.S. at a 30-m resolution. NLCD 2001 relies 

on the analysis LANDSAT imagery for land-use classification (Homer et al., 2007). Wick­

ham et al., (2001) analyzed the classification of Anderson Level 1 accuracy and found an 

overall user’s accuracy of 85% for Level I categories. Nationwide the Cropland user’s ac­

curacy was found to be 82% (Wickham et al., 2001).

Maxwell and Janus (2008) compared the accuracy of 2001 NLCD cultivated 

cropland Anderson class to 2002 USDA Census data for the upper mid-western U.S. NLCD 

crop coverage estimates for the entire study area were 1.8% less than CO A estimates. 

While the percent difference between the region values and the NLCD was relatively small 

at 1.8%, the percent difference at the state level varied considerably. NCLD state-by-state 

variability was much more pronounced. Of the 14 states in the comparison, the percent 

difference variability for the NLCD classification of cropland ranged from -37% to 18%.
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Areas with 5.0% or more difference between the NLCD and USDA Census values 

of crop cover share several characteristics. In counties where a cropland area is less than 

20% there is less agreement between NLCD and USDA. The presence of grassland tended 

to obscure crops resulting in NLCD cropland overestimates. Forest dominated landscapes 

could cause either the under or over estimation of crops. Areas where irrigation is not used 

for crops are also prone to error especially given the NDVI similarity to grasses and pas­

ture. Regions with small size farms are also more prone to the NDVI reporting error.

For purposes o f modeling uncertainty, I assume a 20% error for crop % (Table 4) 

based on the Wickham et al., (2001) study that reported a user’s accuracy of 82% (18% 

error) for U.S. cropland. The 20% error likely capture factors that cause misrepresentation 

of the crop category, including proximity to forested land, pastures, and grasslands, humid 

climate where crops are not irrigated, and small farm areas.

3.1.9. Anoxic Redox

In the logistic regression models (Gurdak and Qi, 2012), the anoxic redox (reduc- 

tion-oxidation) explanatory variable is represented as a binary value (1 or 0) and based on 

a redox classification system created by McMahon and Chapelle (2008). The redox classi­

fication system is based on concentrations of DO, NO3', manganese, iron, sulfate, and sul­

fide, and generally categorizes anoxic conditions as water with DO less than 0.5 mg/L 

(McMahon and Chapelle, 2008). McMahon and Chapelle’s (2008) method assumes that
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denitrification predominantly occurs below DO concentrations of 0.5 mg/L, but acknowl­

edges exceptions to the rule, such as studies reporting denitrification in water with DO 

concentration as high as 2 mg/L (Bohlke et al. 2002, 2007; McMahon et al. 2004).

Since anoxic redox is a binary explanatory variable, I assumed that all reported 

values are accurate and assigned no error value to the explanatory variable (Table 4). If 

error were to be quantified for this variable it would need to be done within the assumptions 

of the redox classification system (McMahon and Chapelle, 2008). Knowledge of the mi­

croorganisms that catalyze redox processes would also be useful in fully quantifying the 

error associated with the McMahon and Chapelle (2008) method.

3.1.10. Well Depth

The explanatory variable well depth is assumed to have little or no error associated 

with the NAQWA and NWIS value used as input to the logic regression models (Gurdak 

and Qi, 2012). Groundwater Technical Procedures of the U.S. Geological Survey (Cun- 

nignham and Schalk, 2011) require the use of calibrated steel tape to measure well depth. 

Measurements o f well depth are to be repeated several times until a consistent measurement 

is obtained. The well depth calculation accounts for the length of the steel weight at the 

end of the tape and a measuring point correction. Therefore, I assume a 5% error for well 

depth (Table 4) that includes the possibility of misreporting values due to human error.
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3.2. Model Coefficient Errors

Following methods outlined by Gurdak et al. (2007), I used the Wald 95% confi­

dence intervals to define a conservative range of errors for the logistic regression model 

intercept (Table 5). The Wald 95% confidence interval was calculated using the maximum 

likelihood estimate and the standard error estimate of the logistic regression model coeffi­

cients (Hosmer and Lemeshow 2000).

3.3. Quantify Error Propagation with Latin Hypercube Sampling

A modified form of the Monte Carlo sampling method, called Latin Hypercube 

Sampling (LHS) was used to quantify error propagation within the uncertainty models 

(described in section 3.4) that I built using @RISK software (Palisade Corp., 2014). 

Monte Carlo is a stochastic method that works by the repeated sampling of probability 

distributions associated with the input variables and creates a robust output probability 

distribution. Monte Carlo methods have a wide application, including generating predic­

tion uncertainty that is associates with logistic regression models (Gurdak et al., 2007) of 

groundwater vulnerability to NPS NO3' for the CV, BR, CL, and NACP PAs. As previ­

ously described in Gurdak and Qi (2012), the PA logistic regression models (Helsel and 

Hirsch, 1992) takes the general form of:

g{bQ+bx)



31

where P -  the probability of NO3' background exceedence, e = base of the natural loga­

rithm, bQ = the model coefficient (i.e. logistic regression constant) and bx = is the vector

of slope coefficients and explanatory variables (i.e. explanatory variable constant).

The general Monte Carlo method for generating prediction uncertainty associated 

with the logistic regression model (Equation 1) is expressed as the following (McKay et 

al., 1979):

P(x) = All(x),A /2(x )A Jx ),...,A in(x) (2)

where P  is the probability output of all values that are assigned an error and probability 

distribution, ^ (n(x)is the value at for each data location x (i.e. a monitoring or pumping

well) for each PA, where i differentiates the inputs. The following illustrates Monte Carlo 

applied to the logistic regression model:.

A „+ { A , * A , , ,  ( J  ) M  * 2  * A i 2 (■X  )]+■■••+{■K  ( x  )]

PA(x) = ^  ̂ ia+f/,l.All(x)Mf’2"A,2(x)]+ .+ib„>A, rl<x)] (3)

where PA{x)=  the probability of a PA to exceed background concentrations of NO3' at a 

particular well location based on input A/n(x) selected from the uncertainty probability

distributions. Specifically, equation 3 represents the repeated sampling of the error distri­

bution of the model coefficients (bo and b\.n) and the explanatory variables (A : n{x)) to 

create an output probability distribution PA(x).
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The application of Monte Carlo requires the user to select a sampling strategy for 

obtaining values from the probability distributions. There are three options for sampling, 

random, stratified and Latin Hypercube Sampling (LHS) (Helton and Davis, 2003). Ran­

dom sampling relies on algorithms to repeatedly random sample the input probability dis­

tribution intervals a specified number of iterations. The greater the number of iterations, 

the more accurate the output distribution. The advantage of random sampling is that it is 

relatively straightforward to execute. The disadvantages are that random sampling is com­

putationally intensive and not good at representing lower probability outcomes associated 

with the distribution. Stratified sampling allows the probability distribution to be broken 

into parts (or quantiles of the distribution), so that random sampling is performed within 

each part or quantile. The advantage of the stratified technique is that it allows a user to 

subdivide the distribution to ensure distribution intervals of interest are defined and assign 

weights to sections of the distribution of interest. The disadvantage of this method is that 

it is burdensome to set up especially if the analysis has many input variables. This method 

also requires knowledge of the right way to approach stratification, knowledge that the user 

might not have.

LHS is a blend of random and stratification sampling methodologies that works by 

dividing the probability distribution into nonoverlapping intervals of equal probability. In 

other words, LHS divides the distribution into equal parts and samples from each part ran­

domly. For example say you have probability distributions for explanatory variables DO
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and SOM. Each variable has it’s own range and assigned distribution (i.e. normal and Ex­

treme Value Minimum). LHS samples by dividing the cumulative distribution function 

(CDF) into intervals o f equal probability. The CDF is a graphical product that describes 

the probability that a real-valued random variable X with a given probability distribu­

tion will be found at a value less than or equal to x. For each sampling interval LHS pairs 

the randomly selected number in that interval with another randomly selected number in 

that same interval of the paired variable. For example LHS would divide the distributions 

o f DO and SOM into intervals of equal probability. From each interval, for instance the 

first interval, LHS would select random numbers for the first interval of DO and SOM and 

use this pair o f randomly selected numbers to inform the NO3' probability output.

3.4. Development of Uncertainty Models

The PA-specific uncertainty models follow the general form of equation 3 .1 cre­

ated the uncertainty models using the @Risk software and LHS sampling of error distri­

bution for the PA-specific explanatory variables and model coefficients (Table 2). Each 

PA explanatory variable was assigned an error distribution as a percentage except for 

DO. Since the error for DO was found by using ArcGIS Geostatistical Analyst EBK 

function, DO error is defined as +/- some value in mg/L. To reflect the minimum and 

maximum uncertainty associated with DO, each PA where DO was an explanatory varia­

ble was run twice, once with the selected minimum EBK value as the error value and 

once with the selected maximum EBK value. Therefore the CV, BR, and CL have two
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uncertainty models each with DO error represent minimum and maximum uncertainty 

across the aquifer in each model.

The errors for each explanatory variable and model coefficient were assigned nor­

mal distributions with the exception of SOM and hydric soils. The literature shows that 

both of these variables are under-represented in STATSGO. To capture the underrepresen­

tation of the variables, an Extreme Value Minimum distribution ( right skew) was assigned 

to better represent the fact that actual estimates of the data are more likely to be higher than 

the reported estimate in the dataset.

For each PA, I created four separate uncertainty models to evaluate the contribution 

of different error components on the overall model prediction uncertainty of a particular 

well having NPS N03'that exceeds background concentrations. The first uncertainty model 

follows the form of equation 1 and does not include LHS calculations of error propagation. 

The second uncertainty model follows the form of equation 3 and uses 1,000 iterations of 

LHS on the error distributions of each explanatory variable and model coefficient. From 

PA(x) output distribution (equation 3), I selected the predicted probabilities for the 5th, 25th, 

50th, 75th, and 95th percentiles. The third uncertainty model is identical to second model, 

except LHS is done on the errors of the explanatory variables and not on the model coeffi­

cients. The fourth uncertainty model is the opposite of the third model where LHS is done 

on the errors of the model coefficients and not on the explanatory variables.
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These four different uncertainty calculations provide a framework to evaluate the 

sensitivity of prediction uncertainty to error contributions from explanatory variables ver­

sus error contributions from the model coefficients. I used the relative variance contribu­

tion (RVC) (van Horssen, 2002; Gurdak et al., 2007) to evaluate the relative error contri­

bution to the overall prediction uncertainty. The RVC due to the regression coefficients is 

defined as:

R V C  100% (4)

where R VCr is a measure of the relative variance contribution due to the model coefficient 

only, or2(P) is the variance of the predicted probability calculation (equation 3) due to er­

rors from the model coefficients only (i.e., the fourth uncertainty model calculation de­

scribed above), and o f  is the total variance, o f  Is the sum of the variance when both

model intercept and explanatory error are accounted for in the logistic regression equation 

(i.e., the second uncertainty model calculation described above). The RVC due to the ex­

planatory variables:

R VC =  ̂xl 00% (5)
o,2(P)

where R VCe is a measure of the relative variance contribution due to the explanatory var­

iables only, and ae2(P) is the variance of the predicted probability calculation (equation 3)
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due to errors from the explanatory variables only (i.e., the third uncertainty model calcula­

tion described above). If the ratio of RVCXo RVCe is greater than one, then errors associ­

ated with the model coefficients contributed the most to prediction uncertainty. If the ratio 

is less than one, then the errors associated with the explanatory variables contributed the 

most to prediction uncertainty.

4.0 Results

4.1 Output Probability Distributions

Following the identification of input and model error, along with the assignment of 

the best statistical distribution to use to describe the error (i.e. normal, or extreme value 

minimum), a 1000 iteration LHS simulation is run on a PA model to propagate error from 

model inputs to a probability output (Equation 3). The resulting probability output is not 

a single value, but a range of possible probability values indicating the likelihood of NPS 

NO3' exceeding background concentrations in a given well. With this probability output 

the following things can be evaluated; 1) the magnitude of uncertainty (low, moderate, 

high), 2) where the highest uncertainty is concentrated (at higher or lower probabilities),

3) whether the logistic regression maps depicting the probabilities of nitrate exceeding or 

background are reliable after error is accounted for (low prediction uncertainty, high pre­

diction uncertainty, moderate prediction uncertainty), 4) what explanatory variables the
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logistic regression models are the most sensitive to, 5) where the model uncertainty is 

coming from (i.e. the regression or explanatory variables), and 6) what steps should be 

taken to improve model performance.

To evaluate a PAs magnitude of uncertainty and where error is concentrated the 

5th, 25th, 50th, 75th, and 95th probability outputs were plotted and evaluated for each PA 

(Figures 22-28). For each PA the 50th percentile output represents the assumption of no 

input errors in all cases where the input variables are normally distributed. For input vari­

ables such as SOM and Hydric soils that have right skewed Extreme Value Minimum 

(EVM) distributions, the 50th percentile represents the assumption of no errors if the me­

dian of the EVM distribution is assumed to be representative o f the true value of the vari­

able.

The relative spread of the output probability distributions in Figures 22-28 is an 

indicator of the magnitude of uncertainty for each PA model. Models where the percen­

tile output lines that are closer together have less uncertainty, whereas models with a 

large separation of the percentile lines have more uncertainty. The skew of the percentile 

plots also reveals where the most uncertainty is to be found above and below the 50th per­

centile output distribution. A pattern of right skewed distributions reveals that there is 

more prediction uncertainty at higher probabilities (where P > 50% ), whereas a pattern 

of left skewed distributions reveals more prediction uncertainty at lower probabilities ( 

where is P < 50%).
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The CV uncertainty outputs models have the largest spread of the percentile out­

puts when compared to the other PA uncertainty outputs . A comparison of the two CV 

uncertainty models with varying DO error shows no difference in the spread or magni­

tude of uncertainty (Figures 24 and 25. Both model percentile outputs follow a similar 

shape and pattern. The lack of difference between the two CV model percentile output 

charts suggests that two DO errors used to define the variable uncertainty do not affect 

model output in a meaningful way. In other words, the uncertainty model outcomes are 

almost the same whether the DO error is 1.75 mg/L or 2.70 mg/L.

The output probability distributions for the CV models are characterized as step 

functions when sorted in ascending order of the 50th percentile (Figures 24 and 25). The 

relatively high percentiles (75% and 95%) of the output distribution converge quickly on 

a predicted probability of 1, while the relatively low percentiles (5 and 25%) converge 

quickly on a predicted probability of 0, but jump to a predicted probability of 1 near the 

tail o f the distribution (Figures 24 and 25). A histogram of the 50th percentile probability 

distribution reveals a bimodal distribution where the output tends to cluster around 0 and 

1 (Figure 29). The 50th percentile distribution has a median predicted probability of 88%, 

which indicates that the model is skews to positive. The median and the right skew of the 

of the percentile plots affirm that the greatest prediction uncertainty is to be found in 

probability values above 50%.

Interestingly the 50th percentile distribution is relatively linear in the CV models 

(Figures 24 and 25). The linearity of the 50th percentile distribution indicates that the
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model is sensitive to incremental changes (i.e. increases and decreases) in the value of in­

put explanatory variables, therefor any change to the original values o f DO, farm ferti­

lizer (20% error), soil clay (20% error), and a seasonally high water table (5%) can lead 

to a very high or low probability prediction regarding the presence o f N03‘ above 4 mg/L.

The percentile output distributions from the BR models (Figures 22 and 23) are 

similar to the output distributions from CL models (Figures 26 and 27), except that the 

CL models have a slightly larger output distribution and thus greater model uncertainty 

than the BR models. The output distributions for the two BR DO error models ((Figures 

22 and 23) are nearly identical and indicate that like the CV model, the BR logistic re­

gression model is not as sensitive to the DO error inputs. At the highest and lowest proba­

bility values (close to 0 and 1) the output distributions from both BR uncertainty models 

have relatively less spread. The greatest spread, thus greatest uncertainty is found at the 

mid-ranged predicted probabilities (Figures 22 and 23). The skew of the percentile out­

puts is to the right indicating greater uncertainty at probabilities greater than 50%.

Similar to the BR, and CV outcomes, a comparison of CL DO percentile output 

graphs reveal that the DO uncertainty models, do not result in visually different percentile 

output probability distributions graphs (Figures 26 and 27). Similar to BR, the CL per­

centile outputs are closely spaced showing that predictions are more certain at lower 

probability predictions than higher, but quickly diverge at higher probabilities indicating 

increased uncertainty at higher probabilities. Similar to the BR and CV, the CL models 

skew to the right indicating higher uncertainty at probabilities above 50%.
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Key explanatory variables for the CL prediction models are DO, hydric soil (37% 

error), and crops (20% error). Like the BR, explanatory variable error that is greater than 

the actual input value on the positive side increases the uncertainty of prediction. The po­

tential increased presence of crops results in an increased nitrate load. The presence or 

absence o f the attenuation factors like hydric soil, which is anoxic and organic rich, also 

impacts where nitrate is found, as hydric areas are places where denitrification occurs.

DO is another attenuation factor that also influences whether nitrate persists in the aqui­

fer. Higher DO values in the aquifer increase the probability the accumulation of N03~s 

in groundwater.

The North Atlantic Coastal Plain has the least uncertainty of all the models (Fig­

ure 28). All percentile distributions converge to 1 following the same pattern. The NACP 

model is an example of a logistic regression model that is ready for use by decision mak­

ers, as the model is able to robustly predict where nitrate exceeds background. This state­

ment is based on the fact that the R2 for the calibration and validation models is 0.893 and 

0.803 respectively (Gurdak and Qi, 2012). The R2 results coupled with the percentile out­

put probability distribution graph shows that this model is a useful tool capable of pre­

dicting the presence or absence of nitrate above background in the aquifer.
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4.2 90th Percentile Prediction Interval Maps

To investigate the spatial variability of uncertainty surrounding groundwater vul­

nerability predictions, the 90th percentile prediction interval was calculated at each aqui­

fer well location. Map results of the 90th percentile prediction interval are show in Figures 

33-39. The 90th prediction captures the difference between the high end and the low end 

of the uncertainty output distribution with the low end represented by the 5th percentile 

output, and the high end represented by the 95th percentile output If  the difference be­

tween the 5th and 95th percentile outputs is above 67% then the uncertainty is very high. If 

the difference between the 5h and 95th is between 34-66% the uncertainty is moderate, 

below 34% the uncertainty low. The prediction interval helps users identify where uncer­

tainty in model predictions is greatest. To understand the utility of prediction interval 

maps, they must be paired with the logistic regression maps that predict where N0 3 " ex­

ceeds background concentrations (Figures 30-32) (Gurdak and Qi, 2012). Maps where 

the majority of the wells have a low prediction interval indicate a model with low uncer­

tainty. In other words, if  the difference between the values at the tails of the uncertainty 

output distribution is low then the logistic regression model prediction can be considered 

robust even when uncertainty is accounted for.

A comparison of probability predictions in the BR (Figure 30) to the 90th percen­

tile prediction interval maps with varying DO error (Figures 33 and 34) reveals a high de­

gree of uncertainty for the logistic regression model predictions. With the exception of 

the Salton Sea Trough, the logistic regression models predict there is a low probability
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for nitrate to exceed the background concentration of 1 mg/L. When uncertainty is fac­

tored into the BR regression model, the model is shown to be moderately to highly uncer­

tain with many 90th percentile prediction interval wells falling into probability prediction 

interval above 30% (Figures 33 and 34). Again uncertainty surrounding explanatory var­

iable inputs of irrigated lands, DO, and SOM influence whether nitrate is found in the 

aquifer. An increase in any of these variables influences the persistence and presence of 

N 0 3- in groundwater. With respect to the differences between the two uncertainty models 

where DO is varied, the observed difference is minimal. The BR prediction interval 

maps are nearly identical with the exception o f a handful o f wells between the two maps. 

Both models are the same in that they clearly show an overall trend of high predictive un­

certainty for many wells in the aquifer.

The comparison of the logistic regression CV N03' exceedence probability pre­

diction map (Figure 30) to the 90th percentile prediction interval maps (Figures 35 and 

36) shows there is moderate to high uncertainty regarding logistic regression predictions 

across the PA. There are a few wells (green dots) with a low uncertainty scattered about 

the PA in similar locations to the uncertain wells (orange dots). A plot of wells by high, 

moderate, and low 90th percentile prediction intervals reveals that many of the low uncer­

tainty wells share the common property of being relatively deep . Depth is a physical in­

hibitor to the migration of nitrate. (Appendix A)

The explanatory variables soil clay and DO are important controls on the denitrifi­

cation process. The presence of clay in the soil lends itself to anaerobic aquifer conditions
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as clay can create localized confined conditions in aquifer. The chemistry of clay with 

Fe2+ available as an electron donor can also play a role in the reduction of NO3' (Emsten,

1996). Overall uncertainty regarding the reliability of data on CV model source (fertilizer 

inputs), and attenuation explanatory variables (DO and soil clay) influences whether ni­

trate is found in the aquifer. As Figures 24 and 25 show, the CV model is very sensitive 

to any variation of these variables as inputs.

A comparison of the CL logistic regression N03" exceedence probability predic­

tion map (Figure 31) to the 90th percentile prediction interval maps (Figures 37 and 38) 

shows moderate to high prediction uncertainty. Similar to the CV and BR, different DO 

error values did not change the uncertainty outcomes of the two 90th percentile prediction 

uncertainty maps (Figures 37 and 38). The logistic regression model mostly predicts a 

low probability (P< 40 %, Figure 31) of nitrate exceeding background in this aquifer. In 

order for there to be more certainty regarding predictions the uncertainty of DO variabil­

ity and presence of hydric soil (37% error) should be better quantified. To minimize un­

certainty for CL NO3' predictions map users should accurately identify the extent of hy­

dric soils and variability of DO in the aquifer.

A comparison of the logistic regression NACP model to the 90th percentile predic­

tion probability prediction map (Figure 32) to the 90th percentile prediction map (Figure 

39) shows that the uncertainty o f the model predictions is low. The results from the 90th 

percentile prediction map is consistent with the percentile probability distribution output
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figure (Figure 28) indicating a robust model capable of giving good predictions despite 

the inclusion of model and explanatory variable uncertainty.

4.3 Relative Variance Contribution

For all uncertainty models except the NACP, the RVCr is greater than the RVCe 

(Figure 40). For the NACP, the explanatory variable error is a greater contributor to un­

certainty. Using the Wilcoxon rank-sum test, the difference between RVCr and RVCe was 

significant for all aquifers (p< 0.001). When pairs of RVCr and RVCe values for the PA 

DO error models were compared, no significant difference between the means of the DO 

error model pairs (p< 0.001) was found (Figure 37).

A relative variance outcome where the regression error is found to be more influ­

ential than the explanatory variable error indicates the need for an expansion of the moni­

toring well network. The larger RVCr value reveals that more wells are needed in areas of 

high uncertainty to more adequately capture the spatial variability of nitrate concentra­

tions in recently recharged groundwater. Therefore, an expansion of the set o f monitoring 

wells in areas of greatest uncertainty (Figures 33-38) would be useful in reducing regres­

sion model uncertainty for the BR, CV, and CL

The NACP relative variance for explanatory variables is greater than regression 

variance. To improve the predictive capabilities of this aquifer the focus should be on the 

quality and accuracy of the data supplied as inputs for the logistic regression. For exam­

ple NACP explanatory variable farm fertilizer has an uncertainty of 20%. To improve the
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predictive capability o f the logistic regression model the accuracy of fertilizer input data 

should be verified.

5.0 Discussion
The three PAs where DO is an explanatory variable of interest offer a best and 

worse case insight into the probability NO3- exceeding background. In each of the aqui­

fers the true variability of DO is unknown. In order understand how DO variability im­

pacts the regression models two LHS uncertainty models were created to test model un­

certainty with lower and higher DO error. The results show that the CV, BR, and CL out­

put is not very sensitive to the changes in DO error. To improve the utility of the models 

the well networks should be expanded to include more wells so the models predictive 

abilities can be improved. LHS can also test the logistic regression models sensitivity to 

error. The NACP probability output graph and 90th percentile prediction interval map 

demonstrates this model is the least sensitive to the error propagation.

Accounting for uncertainty in model outcomes allows water resource managers to 

plan according a more conservative level of acceptable risk. Quantifying uncertainty al­

lows for better resource allocation in that it allows for the prioritization of where to focus 

on nitrate mitigation efforts. For example in areas with a heavy dependency on domestic 

wells for drinking water, regulators can work on ensuring DO that the variability of DO is 

known. Areas with organic rich soils should be delineated and identified for better predic­

tive outcomes.
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This methods used in this research quantify the error associated with explanatory 

variables. Future research that takes this uncertainty data to improve upon the models 

predicative abilities should consider the error associated with the explanatory variable as 

part of the selection criteria for variables to be included in the logistic regression. An ex­

planatory variable deemed statistically significant during multivariate logistic regression 

analysis may not be a desirable explanatory variable for the final vulnerability model if 

the inherent error is exceptionally large compared to other statistically significant varia­

bles. The outcome of such a consideration may be logistic regression models with differ­

ent explanatory variables.

With respect to the question of uncertainty compared to what or how does one 

factor uncertainty into decision making I suggest the decision maker use the following 

approach. Identify the highest priority areas of vulnerability. Evaluate the initial predic­

tions of the logistic regression model. If the logistic regression model suggests that the 

probability o f exceeding the threshold value is above 70% and the uncertainty model’s 

90th percentile prediction interval uncertainty is in excess of 60% then the decision maker 

should not use the logistic regression prediction and proceed with collecting more data 

about the area to get a better understanding of the actual vulnerability of the study area. If 

the logistic regression model predictions of vulnerability are less that 70% and the 90th 

percentile prediction interval uncertainty is less than 60% then I would recommend that 

the decision maker use the logistic regression model as a planning tool keeping in mind
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that more wells and/or more accurate datasets are needed to improve predictive capabili­

ties.

6.0 Conclusion

An efficient way to quantify uncertainty, of predictive models is to apply LHS tech­

niques to the error associated with model inputs. LHS is a cost effective, easy to implement 

method that can be used to improve the predictive capabilities designed to detect a 

groundwater parameter above a certain threshold. An advantage of the LHS technique as 

described in this paper is that \  gives the modeler flexibility to constrain explanatory error 

based on researched best guesses, and to assign a proper distribution to all inputs to er­

rors. At minimum an LHS uncertainty assessment can assist with defining the "best case” 

and “worse case” probable scenarios for contamination, and identify actions that need to 

be taken to improve model performance.

The vulnerability and uncertainty maps presented in this research are designed to 

help resource decision makers prioritize areas for ground water quality monitoring or im­

plement alternative management practices that mitigates human exposure and the release 

o f NO3' into groundwater. The appropriate scale to use these maps is 1:250,000, or the 

scale of the USDA’s STATSGO dataset. The intent of these maps is to provide regulators 

and resource managers a tool to evaluate vulnerability at regional scales. Other field in­

vestigative methods should be used to determine the specific sources o f NO3'contamina­

tion.
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TABLES

Table 1: Principle Aquifers study area for which uncertainty models are created, and se­
lected aquifer properties summarizing geology, annual precipitation, and the percentages of 
acres that are irrigated within the aquifer.

Principal Aquifer General Lithology Precipitation 
(inches per 
year)*

Estimated Percent Irrigated 
Acres by Regionf

Basin and Range Internally draining 
basins comprised of 
alluvium, fractured 
volcanics or 
fractured carbonate.

5 -4 0

Great Basin: 7-12% 

Upper Colorado: 4-6% 

Lower Colorado: 4 %

Central Valley Alluvial trough 
basin

5-25

13%

Coastal Lowlands Wedge shaped 
marine and deltaic 
deposits. Lithology 
not well defined.

35-70 Texas: 4% 

Louisiana: 13%

North Atlantic 
Coastal Plain

Wedge shaped 
marine and deltaic 
deposits. Well 
defined lithology; 
aquitards and 
aquifers easily 
identified.

35-60

North NACP: 4% 

Southern NACP: 4-6%

*National Atlas, 2013

fRuddy et al., 2006
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Table 2: Table showing principal aquifer background nitrate concentrations, 
logistic regression model intercepts, and explanatory variable coefficients, 
calibration and validation R2.

Principal
Aquifer

Back­
ground
Nitrate
(mg/L)

Explanatory
Variables
(units)

Model Intercepts and 
Explanatory Variable 
(Coefficients)

Calib­
ration
R2

Valida­
tion R2

Basin and 
Range

1 DO (mg/L) 
Irr (%) 
SOM (%)

Model Intercept (-2.566) 
DO (0.5616)
Irr (0.0238)
SOM (-1.7997)

0.762 0.664

Central
Valley

4 DO (mg/L) 
Fert (kg/km2) 
SC (%)
HWT (m)

Model Intercept (-13.6456) 
DO (0.4405)
Fert (0.000258)
SC (-0.0858)
HWT(7.0443)

0.839 0.485

Coastal
Lowlands

0.061 DO (mg/L) 
Hy (%) 
Crop (%)

Model Intercept (-0.9184) 
DO (0.2829)
Hy (0.0305)
Crop (0.0167)

0.757 0.164

North
Atlantic
Coastal
Plain

0.5 Anox (1- 
Yes,0- No) 
HWT (m)
WD (m)
Fert (kg/km2)

Model Intercept (1.3175) 
Anox (0.176)
HWT (2.7658)
WD (0.0738)
Fert (0.000159)

0.893 0.803

Acronym Explanation: A n o x -  anoxic redox; DO-dissolved oxygen; C ro p  -  Crops; Fe rt -  fertilizer;

HW T -  seasonally high water table; Hy -  hydric soil I r r -  irrigated lands; S C  -  soil clay; SO M - soil organic 
matter; WD -  well depth
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Table 3: Logistic regression models for the Central Valley, Basin and Range, Coastal 
Lowlands, North Atlantic Coastal Plain aquifers.

Principal Logistic Regression Model

Aquifer

BR
' i

-2 .566-(0.5616*D 0  )-(0 .0238*/>t } - ( - l . 7997*50A/)

P = j  _j_ e -2.566-(0i616*DO>K0.0238*5-rH-l-7997*SO.V)

CV

-13.6456-(C.44{)5*D0M0.000258*/o-t>K-C.C858*SC>-(7.044.3»Jifrr)

P ~ |  _|_ g -1 3 .6456*-(0.4405*DC? HO .00025S*/ert >-(-0.0 85 8*5C> (̂ 7.0443*HWT )

CL
-0.9184-(0.2829*D£?>-(0.03C5*£{v)-(0.0167*C>-qp)

P ~
j  _|_ ^-0.9184-(0.2829*DO)-(0.0305*Hv H0.0167*Crop)

NACP

1.317S-(0 .0176*AnoxH.2 .765i*HWTMO.O73S*rD M 0 000159*/ert)c
J _j_ g 1.3175-(O.C176*-i»tarH2.7653*HrrH0.073S*JrDH:0.000159*>-rt
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Table 4: Table of error values for logistic regression explanatory variables by 
principal aquifer used to quantify uncertainty in @RISK. Principal aquifers are 
listed across the top and explanatory variables are listed vertically on the left. The 
statistical distribution applied to the dataset in @RISK is listed in the far right 
column.

Principal Aquifer CV Error BR Error C L  Error NACP Error @Risk
Distribution

Dissolved oxygen 1.75 2.07 1.07 Normal
min (mg/L)
Dissolved oxygen 2.70 2.45 1.97 Normal
max (mg/L)
Soil Organic 20% Extreme Value
Matter (%) Minimum
Hydric (%) 37% Extreme Value 

Minimum
Irrigated lands (%) 11% Normal
Farm Fertilizer (%) 20% 20% Normal
Crops (%) 20% Normal
Seasonally High 
Water Table ( % )

5% 5% Normal

Anoxic redox ( % ) 0% Normal
Soil Clay ( % ) 20% Normal
Well Depth (%) 5% Normal
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Table 5: Sources o f data for soil organic matter error. A summary of published 
literature that has quantified the error associated with SOM values in the 
STATSGO dataset. Published values were averaged to derive an error value for use 
in the uncertainty models. Average error associated with STATSGO is 
approximately -20%.

Location of SOM Source STATSGO Error (- represents 
underestimation)

Louisiana- SOM at 20 cm Zhong and Xu, (2011) -9%

Louisiana- SOM at 100 cm Zhong and Xu, (2011) -36%

Louisiana- Soil organic 
carbon densities at 30 cm

Zhong and Xu, (2011) -4.7%

Louisiana- Soil organic 
carbon densities

Zhong and Xu, (2011) -23%

Maine SOM Davidson and Lefebvre 
(1993)

-13%

Western Oregon SOM Homann et al. (1998) -25%

Average Error: -18.5% 
(Rounded to -20% for use in 
the uncertainty models)
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Table 6: Table of logistic regression model intercepts with Wald 95% confidence 
limits, used to define the principal aquifer intercept error and distribution in the 
uncertainty models.

Principal Aquifer Model in­
tercept

Wald 95% Confidence limits

estimate lower upper

Basin Range -2.566 -4.5033 -0.6287

Central Valley -13.6456 -25.844 -1.4472

Coastal Lowlands -0.9184 -2.5473 0.7105

NACP -1.3175 -2.7349 0.0998
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FIGURES

EXPLANATION
mm Basin and Range aquifer 

Central Valley aquifer 
Coastal Lowlands aquifer system 
High Plains aquifer
Northern Atlantic Coastal Plain aquifer

Figure 1: Location of Principal Aquifers where uncertainty models were 
created that quantify the uncertainty associated with (Gurdak and Qi, 
2012) logistic regression models that predict the probability of NO3' 
exceeding background concentrations. Aquifers where uncertainty models 
were created are (from west to east) the Central Valley, Basin and Range, 
Coastal Lowlands, and the North Atlantic Coastal Plain.



60

Figure 2: Basin and Range dissolved oxygen well locations symbolized in five 
concentration ranges in units of mg/L.



Figure 3: Central Valley dissolved oxygen well locations symbolized, in 
five concentration ranges in units of mg/L.
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Figure 4: Coastal Lowlands dissolved oxygen well locations, symbolized in five con­
centration ranges in units of mg/L.
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Figure 5. North Atlantic Coastal Plain dissolved oxygen well locations, 
symbolized in five concentration ranges in units of mg/L.
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Figure 6: Basin and Range dissolved oxygen (DO) 3D east-west cross 
section showing major trends in DO concentrations over the entire 
aquifer. This view shows the trend across an east-west transect of the 
aquifer. The blue curve shows that dissolved oxygen concentrations are 
generally higher on the east and west side of the basins adjacent to 
recharge areas of the Great Salt Lake Basin and Sierra-Nevada/White 
Mountains respectively.

§ \  ,* ■ i- r
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Figure 7: Basin and Range dissolved oxygen (DO) 3D north- 
south cross-section showing major trends in DO 
concentrations over the entire aquifer. This view shows the 
trend across a north-south transect of the aquifer. The green 
line shows dissolved oxygen concentrations are generally 
higher in the north, where precipitation is higher, and lower 
in the south, where precipitation is lower.
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Figure 8. Central Valley dissolved oxygen (DO) 3D northwest- 
southeast cross section, showing major trends in DO 
concentrations over the entire aquifer. This view shows the trend 
from southeast to northwest looking east from the Coast Range 
Mountains .The green line in the figure represents concentrations 
trends perpendicular to the view. DO concentrations in this 
direction are generally higher in the center of the basin and lower 
at the periphery.
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Figure 9: Central Valley dissolved oxygen (DO) 3D northwest- 
southeast cross section showing major trends in DO 
concentrations over the entire aquifer. The view shows the trend 
from northwest to southeast looking west from the Sierra-Nevada 
Mountains. The blue line in the figure represents concentrations 
trends perpendicular to the view. DO concentrations in this 
direction are generally higher in the center of the basin and lower 
at the periphery, although the trend shows that DO concentrations 
on the northwest end of the basin are higher than the southern end 
of the basin.
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Figure 10: Coastal Lowlands 
dissolved oxygen trends 3D 
north-south cross section 
showing major trends in DO 
concentrations over the entire 
aquifer. The view shows the 
trend from east to west. The 
blue line shows that DO con­
centrations in the east o f the 
aquifer are higher than in the 
west. This likely due to the 
influence of the Mississippi 
River in the eastern parts of 
the aquifer.
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Figure 11: Coastal Lowlands dissolved oxygen trends 3D 
north-south cross section showing major trends in DO 
concentrations over the entire aquifer. The view shows 
the trend from north to south. The green line shows that 
DO concentrations in the north of the aquifer are higher 
than in the south. This likely due to conditions along the 
coast that result in an anoxic groundwater environment.
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Figure 12: North Atlantic Coastal Plain dissolved oxygen 
trends 3D northeast-southwest cross section, view looking 
east from the Appalachian Mountains, showing major 
trends in DO concentrations over the entire aquifer. The 
blue line shows DO concentrations perpendicular to the 
view. DO concentrations are higher in the northwest 
recharge area.
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Figure 13: North Atlantic Coastal Plain dissolved oxygen 
(DO) 3D northeast-southwest cross section showing major 
trends in DO concentrations over the entire aquifer looking 
west from the Atlantic. The green line shows DO concentra­
tions perpendicular to the view. This line reveals concentra­
tions are higher in the northeastern part of the aquifer close 
to the area of higher precipitation and recharge.
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Figure 14: Basin and Range empirical Bayesian Kriging dissolved oxygen pre­
diction map depicting DO estimates throughout the Basin and Range aquifer. 
Predictions are based on the dataset used to inform the logistic regression 
models.
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Figure 15: Basin and Range empirical Bayesian Kriging dissolved 
oxygen standard Error map depicting the error associated with the 
Basin and Range predictive map (Figure 14). DO estimates 
throughout the Basin and Range aquifer. The second to highest 
(2.45 mg/L) and second to lowest error values (2.07 mg/L) were 
used to define the distribution of outcomes in the uncertainty
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Figure 16: Central Valley (CV) empirical Bayesian Kriging 
dissolved oxygen (DO) prediction map depicting DO estimates 
throughout the CV aquifer. Predictions are based on the dataset 
used to inform the logistic regression models.
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Central Valley EBK DO Standard Error Map
Central Valley 
Standard Error Map 
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Figure 17: Central Valley (CV) empirical Bayesian Kriging 
dissolved oxygen (DO) standard error map depicting the 
error associated with the CV predictive map (Figure 16). 
DO estimates throughout the CV aquifer. The second to 
highest (2.70 mg/L) and second to lowest error values (1.75 
mg/L) were used to define the uncertainty models.
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Figure 18. Coastal Lowlands (CL) empirical Bayesian Kriging 
dissolved oxygen (DO) prediction map depicting DO estimates 
throughout the CL aquifer. Predictions are based on the dataset 
used to inform the logistic regression models.
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Figure 19: Coastal Lowlands (CL) empirical Bayesian 
Kriging dissolved oxygen (DO) Standard Error Map 
depicting the error associated with the CL predictive map 
(Figure 18). The second to highest (1.97 mg/L) and second 
to lowest DO error values (1.07 mg/L) were used to define 
the uncertainty models.
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North Atlantic Coastal Plain EBK DO Prediction Map

Figure 20: North Atlantic 
Coastal Plain (NACL) empiri­
cal Bayesian Kriging dissolved 
oxygen prediction map depict­
ing DO estimates throughout 
the NACL aquifer. Predictions 
are based on the dataset used to 
inform the logistic regression 
models.
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North Atlantic Coastal Plain EBK DO Standard Error Map

Figure 21: North Atlantic Coastal 
Plain (NACP) empirical Bayesian 
Kriging dissolved oxygen (DO) 
standard error map depicting the er­
ror associated with the NACL pre­
dictive map (Figure 20). DO was 
not a significant explanatory varia­
ble used to inform the model so
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standard error was not needed.
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Percentiles of Output 
Probability Distribution

0 10 20 30 40 50 60 70 80 90 100

Calibration ans Validation W ells(ns97) for BR Model with DO error of 2.07 mg/L 
(sorted in asending order of 50th percentile  of output probability distribution)

Figure 22: Percentile output probability distribution plots for 5th, 25th, 50th, 75th, 95th 
percentiles of the uncertainty model for the Basin and Range with dissolved oxygen error 
of 2.07 mg/L.
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1.2

Percentiles of Output 
Probability Distribution 

BR Model with DO Error of 2.45 mg/L

0 10 20 30 40 50 50 70 80 90 100

Calibration and Validation Wells (n=97)for BR Model with DO Error of 2.45 mg/L 
(sorted in asending order of 50th percentile of output probability distribution)

Figure 23: Percentile output probability distribution plots for 5th, 25th, 50th, 75th, 
95th percentiles of the uncertainty model for the Basin and Range with dissolved 
oxygen error of 2.45 mg/
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Calibration and Vaildation W ells (n= 149) for the CV  Model with DO Error of 1.75 m g l  
(sorted in asending order of 50th percentile o f output probability distribution)

Figure 24: Percentile output probability distribution plots for 5th, 25th, 50th, 75th,

95th percentiles of the uncertainty model for the Central Valley with dissolved 
oxygen error of 1.75 mg/L.
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Percentiles of Output Probability Distribution 
CV  with DO Error of 2.70 mg/L

Calibration and Validation W ells (n»149)for C V  Model with DO Error of 2.70 mg/L 
(sorted in asending order of 50th percentile  of output probability distribution

Figure 25: Percentile output probability distribution plots for 5th, 25th, 50th, 75th, 
95th percentiles of the uncertainty model for the Central Valley with dissolved 
oxygen error of 2.70 mg/L.
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Figure 26: Percentile output probability distribution plots for 5th, 25th, 50th, 75th, 
95th percentiles of the uncertainty model for the Coastal Lowlands with dissolved 
oxygen error of 1.07 mg/L.
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Calibration and Validation Wells (n=91 ) for CL Model With a DO Error of 1.97 mg/L 
(sorted in asending order of 50th percentile of output probability distribution)

Figure 27: Percentile output probability distribution plots for 5th, 25th, 50th, 75th, 
95th percentiles of the uncertainty model for the Coastal Lowlands with dissolved 
oxygen error o f 1.97 mg/L.
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Figure 28: Percentile output probability distribution plots for 5th, 25th, 50th, 75th, 
95th percentiles of the uncertainty model for the North Atlantic Coastal Plain.
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Figure 30: Central Valley and Basin and Range principal 
aquifer logistic regression prediction maps from Gurdak and 
Qi (2012) showingt he percent probability of nitrate 
concentrations being greater than background.
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Figure 31: Coastal Lowland a logistic regression prediction map from 
Gurdak and Qi (2012) showing the percent probability of nitrate concentra­
tions being greater than background.
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Figure 32: North Atlantic Coastal Plain logistic 
regression prediction map from Gurdak and Qi (2012) 
showing the percent probability of nitrate concentrations 
being greater than background.
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Figure 33: Basin and Range 90th percentile prediction interval map, with dis­
solved oxygen error of 2.07 mg/L, measuring the difference between the 5th and 
95th percentile probability predictions. The green dots represent good agree­
ment, yellow represents moderate agreement, and orange poor agreement be­
tween the original logistic regression model predictions and uncertainty model 
predictions.
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Figure 33: Basin and Range 90th percentile prediction interval map, with dis­
solved oxygen error of 2.45 mg/L, measuring the difference between the 5th and 
95th percentile probability predictions. The green dots represent good agreement, 
yellow represents moderate agreement, and orange poor agreement between the 
original logistic regression model predictions and uncertainty model predictions.
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Figure 35: Central Valley 90th percentile prediction interval map, with dis­
solved oxygen error of 1.75 mg/L, measuring the difference between the 5th and 
95th percentile probability predictions. The green dots represent good agreement, 
yellow represents moderate agreement, and orange poor agreement between the 
original logistic regression model predictions and uncertainty model predictions.
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Figure 36: Central Valley 90th percentile prediction interval map, with dis­
solved oxygen error of 2.70 mg/L, measuring the difference between the 5th 
and 95th percentile probability predictions. The green dots represent good 
agreement, yellow represents moderate agreement, and orange poor agree­
ment between the original logistic regression model predictions and uncer­
tainty model predictions.
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Figure 37: Coastal Lowlands 90th percentile prediction interval map, with dis­
solved oxygen error of 1.07 mg/L, measuring the difference between the 5th and 
95th percentile probability predictions. The green dots represent good agreement, 
yellow represents moderate agreement, and orange poor agreement between the 
original logistic regression model predictions and uncertainty model predictions.
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Figure 39: Coastal Lowlands 90th percentile prediction interval map, with 
dissolved oxygen error of 1.97 mg/L, measuring the difference between the 
5th and 95th percentile probability predictions. The green dots represent good 
agreement, yellow represents moderate agreement, and orange poor agree­
ment between the original logistic regression model predictions and uncer­
tainty model predictions.
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Figure 39: North Atlantic Coastal Plain 90th percentile measuring the 
difference between the 5th and 95th percentile probability predictions. 
The green dots represent good agreement, yellow represents moderate 
agreement, and orange poor agreement between the original logistic re­
gression model predictions and uncertainty model predictions.



Re
la

tiv
e 

V
an

an
ce

 
C

on
trf

cu
to

n 
('

Com parison o f  R elative Variance Contribution by Location

0 .50-

0 .48-

0 .46-

_  0 .44-sV"
0 .42- 

0.40 -  

0 .38- 

0 .36- 

0 .34- 

0 .32- 

0 .30- 

0 .28- 

0 .26-

0.24

RVC % vs. PA

J  L.

□

0
J  L J  L -J_______ L J   L.

I

J - JL.

— Maximum
| *  |75>h percentile
I*—— | Median 
I I *25th percentile

X

JL.

.O® o® 6* .o' oe y  cf ^  O® .O1 o*
o ' o ' o ' o ' o ' o ' A° A® c? ^y  v  v  V  v  *• \* N* k* V  y  V

O* ** &  ♦♦ Ov  0V ov  Ov  o4 '  O4 O4 O4

PA

Figure 40: Relative Variance Contribution (RVC) boxplots for each 
principal aquifer (PA) boxplot showing the value and distribution 
for the RVC for explanatory variables and model coefficients. The 
vertical axis is the RVC a decimal scaled so the maximum value is 
no more than 0.5 or 50%. The horizontal scale represents principal 
aquifers. The name of each PA is followed by an underscore and 
dissolved oxygen error value specific to that model. The second un­
derscore is followed by the acronym rvcr and rve. RVCr stands for 
relative variance contribution for the regression and RVCe stands 
for relative variance contribution for the explanatory variables. 
RVCr boxplots are blue and RVCe boxplots are pink.
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Central Valley 90th Percentile Prediction Interval vs. Well Depth

Figure 41: Graph of 90th percentile prediction interval categories 
(green=0-33, yellow=34-66, orange= 67-100) compared to well depth 
in the Central Valley aquifer. The vertical axis represents the 90th per­
centile prediction interval value and the horizontal axis represents well 
depth in feet. The graph suggests that there is more uncertainty in in 
shallower wells (see orange bars) compared to deeper wells (see green 
bars).


