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Nitrate (N 03~) is the most widespread non-point source (NPS) contaminant in groundwater. The 

California Coastal Basin (CCB) aquifers are vulnerable to contamination because of the heavy 

agricultural and industrial practices that contribute to NPS N 0 3~. Predicting the probability of 

non-point source (NPS) N 0 3” contamination in groundwater can be a valuable tool for managing 

water resources. Previous studies have identified important controls of N 0 3“ contamination and 

developed logistic regression models that have successfully predicted the probability of N 0 3 

exceeding background concentrations. However, there has not been a successfully calibrated 

model that represents the vulnerability in the CCB. My primary research objectives are to 

develop a model that better represents the vulnerability of groundwater in the CCB to NPS N 0 3 

contamination. I will identify important controls of N 0 3" contamination in different parts of the 

CCB. My findings will provide useful information for resource managers and policy makers 

when making decisions about California’s water resources.

I certify that the Abstract is a correct representation of the content of this thesis.
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1.0 Introduction

All groundwater resources are vulnerable to nonpoint source (NPS) 

contamination. Interest in predicting NPS contamination in groundwater has increased in 

recent years because of widespread detection of NPS contaminants and the implications 

for human and aquatic health and resource sustainability (Gurdak, 2008). Models that 

predict the vulnerability of groundwater to NPS contamination can provide an 

inexpensive tool to water-resource managers during policy decisions regarding 

groundwater protection, monitoring, and remediation strategies.

Along the California coast are more than 100 basins that comprise the California 

Coastal Basin (CCB) aquifers (Figure 1), which is one of 62 principal aquifers (PAs) in 

the U.S. PAs are regionally extensive aquifers and aquifer systems of national 

significance because of their high productivity and are critically important sources of 

potable water (Lapham et al., 2005). The CCB aquifers are important sources of water for 

drinking supplies, agriculture irrigation, and industry (California Department of Water 

Resources, 2003). In California, 43% of the population relies solely on domestic self­

supply (public) wells that generally receive no water treatment prior to use (California 

Department of Water Resources, 2003). The dominant land-use/land-cover (LULC) 

across the CCB is urban and agriculture, which are well-known source of NPS 

contaminants in groundwater.
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Nitrate (N0 3 _) is the most ubiquitous NPS contaminant of groundwater 

worldwide (Spalding et al., 1993). Intensive agricultural practices in California have 

contributed to chronic N0 3 - loading to groundwater due to the use of synthetically 

produced nitrogen fertilizers (Harter et al., 2012). Leaking septic tanks, sewage, and 

erosion of soils containing natural sources of NC>3_ also contribute to higher levels of 

N 0 3“ in groundwater (Focazio et al., 2002). Drinking water with elevated N0 3~ 

concentrations is potentially toxic for humans because the oxygen-carrying hemoglobin is 

converted into methemoglobin and inhibits the movement of oxygen through the body 

(California Department of Water Resources, 2003). Infants that consume water with high 

levels of NC>3_ can develop methemoglobinemia (blue baby syndrome) that can lead to 

brain damage or death (Fewtrell, 2004). In response to these potential negative health 

effects, the U.S. Environmental Protective Agency (USEPA) has set the maximum 

contaminant level (MCL) of safe drinking water at 10 mg/L NC>3_ as nitrogen (N) 

(USEPA, 2012).

Previous studies have used logistic regression models to predict the likelihood of 

N 0 3- contamination to the CCB aquifers by using explanatory variables that include 

spatial and soil characteristics (Gurdak and Qi, 2012; Nolan, 2002). Gurdak and Qi 

(2012) developed a model for the entire CCB system using explanatory variables that 

represent the source, transport, and attenuation (STA) factors of NPS NO3L, but the model 

had poor predictive ability and may have been over-fit to the calibration data.
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Although N 0 3" concentrations are highly variable in most groundwater systems, 

recently recharged groundwater is often the most vulnerable component of the flow 

system to NPS contamination (Gurdak and Qi, 2012). Recently recharged groundwater is 

defined here as recharge during the last 60 years, which coincides with widespread 

development of the CCB aquifer and expansion of urban and agricultural land use. The 

quality of most recently recharged groundwater has likely experienced human influence 

to some degree (Gurdak and Qi, 2012). Therefore, establishing a threshold based on NO3- 

concentration that distinguishes between natural and anthropogenic processes is useful 

when evaluating the effects of STA factors on NPS N 0 3 - contamination in groundwater. I 

use 2.0 mg/L (as N) as the threshold between background (natural) and anthropogenic 

processes, which is consistent with studies that report background NC>3_ concentrations of

2.0 to 2.3 mg/L beneath forest, rangeland, and pasture areas of the U.S. (Mueller and 

Helsel, 1996; Nolan and Hitt, 2003).

The primary research objective of this study is to create a better calibrated model 

of the CCB with improved predictive capability by determining scale-dependent controls 

on NPS N 0 3" contamination (defined here as concentrations greater than background) in 

the most vulnerable part of the groundwater flow system. The primary objective is 

motivated by my hypothesis that some STA factors that control NPS N 0 3 - contamination 

have scale-dependent relations at the sub-regional CCB aquifer scale. I also hypothesize 

that a larger and more representative compilation of well data will help develop better 

calibrated models with higher-degree of predictive ability. To test these hypotheses, I will
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develop univariate and multivariate logistic regression models for the northern CCB 

aquifers, central CCB aquifers, southern CCB aquifers, and for the entire CCB aquifer 

system. This study will provide fundamental information about the scale-dependent 

relations of STA factors in the CCB aquifer, which can be used by decision makers to 

develop better management strategies and policies that protect California’s groundwater 

resources from NPS NC>3_ contamination.

2.0 Study Area

The CCB is comprised of more than 100 basins located along the coast of 

California. Faulting and folding in the tectonically active area created mainly northwest 

trending structural troughs that parallel the coastline. The intermontane basins consist of 

unconsolidated and semi-consolidated marine sediment and sedimentary deposits. 

Temperatures in the coastal regions of California are moderated by the ocean and 

therefore the temperature range in a day only varies by about 20 degrees Fahrenheit. The 

CCB is classified as having a Mediterranean climate where winters are cool and summers 

are warm. Runoff and precipitation are directly related in the CCB. Although coastal 

areas in California receive moderate to abundant precipitation, the demand for water 

throughout the state has led to substantial network of canals, aqueducts, and reservoirs 

built to accommodate the transportation of water. For this study, the CCB was divided 

into three sub-regions (north, central, and south) that have different hydrogeologic 

characteristics, LULC, and groundwater-quality issues. The CCB was also evaluated as a 

whole system and therefore incorporates the characteristics of each of the sub-regions.



5

3.0 Methods

3.1 Well selection

The spatial distribution of the 132 wells used by Gurdak and Qi (2012) in their 

previous CCB vulnerability model was sparse in some sub-regions and dense in other 

sub-regions of the CCB aquifer (Figure 2). To improve the spatial distribution of wells 

that intercept recently recharged groundwater, I selected additional wells with NO3- 

concentration data from the USGS National Water Information System (NWIS) database. 

Similar to Gurdak and Qi (2012), I used tritium ( H) as the primary selection criterion for 

wells that intercept recently recharged groundwater. Before atmospheric testing of 

thermonuclear bombs began in the early 1950’s, the tritium content of precipitation 

across the U.S. was approximately 8  Tritium Units (TU) (Thatcher et al., 1962). Tritium 

is radioactive, with a half-life of 12.43 years. Therefore, groundwater that is derived 

completely from precipitation that fell before the early 1950’s atmospheric testing would 

contain less than 0.3 tritium units (TU) in 2014. Tritium values greater than 0.3 TU 

indicate that groundwater samples contain at least a portion of water that was recharged 

during the last 60 years and was used as selection criteria for wells that intercept recently 

recharged groundwater. If time-series groundwater-quality samples were collected at an 

individual well, the most recent sample was used in this study. This selection process 

removed variability caused by changes in NO3- concentrations over time.

After well selection, the number of wells in each sub-region of the CCB aquifer 

was randomly filtered using a geographic information system (GIS). The filtering
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removed neighboring wells from high-density spatial clusters to create a more uniform 

and consistent spatial density across each sub-region of the CCB aquifer. The filtering 

also eliminated double counting of GIS-based explanatory variables within a 500-m 

buffer radius around each well, and reduced the potential for spatial autocorrelation 

(Johnson and Belitz, 2009; Worrall and Kolpin, 2004).

The well selection and filtering steps resulted in 135 wells across the CCB 

aquifer, which includes 45 wells in each of the north, central, south sub-regions (Table 1). 

For purposes of developing logistic regression models in each CCB sub-region and for 

the entire CCB (as described below), two-thirds of the wells were randomly selected for 

model calibration and the remaining one-third for model validation (Table 1).

3.2 Groundwater-quality data

Concentrations of NO3- from the 135 wells ranged from 0.04 to 40.0 mg/L, with a 

median concentration of 1.45 mg/L (Table 1). Of the three sub-regions, the north CCB 

has the lowest NO3- concentrations (median, 0.20 mg/L and maximum 11.05 mg/L) 

(Table 1). The distribution of N0 3 - concentrations is somewhat similar in the central 

(median, 3.30 mg/L and maximum, 40 mg/L) and south (median, 2.19 mg/L and 

maximum, 34 mg/L) sub-regions (Table 1). Of the 135 selected wells, 57 wells have 

NO3- above the threshold of 2 mg/L (38 calibration wells [North = 7; Central =18; South 

= 13] and 19 validation wells [North = 2; Central = 7; South = 10]) (Figures 3-8).
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3.3 Compilation of explanatory variables in GIS

Following methods from Gurdak and Qi (2012), I applied a 500-m circular buffer 

around each of the 135 wells to extract GIS-based STA factors (Table 2) that were tested 

as explanatory variables in the logistic regression modeling. A 500-m circular buffer is 

commonly used to delineate land-use/land-cover (LULC) that potentially affects 

groundwater of concern (Eckhardt and Stackelberg, 1995; Nolan et al., 2002).

The GIS-based explanatory variables represent STA factors that may control NPS 

N 0 3“ levels above the relative background concentration (Gurdak and Qi, 2 0 1 2 ). Source 

variables represent NO3- loading (farm fertilizer, manure from confined animal feeding 

operations, land use/land cover including cultivated crops and irrigated cropland, 

atmospheric NO3” and total N, population density, and aqueous geochemical indicators 

in groundwater); transport variables represent NO3” mobilization in the soil, unsaturated 

zone, and saturated zone to the well (water inputs from precipitation and runoff, 

hydrologic and geochemical properties of soil and aquifer material, depth to the water 

table, depth to the well screen below the water table, recharge rates and selected 

management practices); and attenuation variables represent denitrification and/or dilution 

of N 03~ (Table 2). Reduction/oxidation (redox) conditions are an important control on 

groundwater vulnerability to N 0 3~ contamination (Gurdak and Qi, 2012). Dissolved 

oxygen (DO) is an important factor to consider in NO3” vulnerability assessments 

because under anoxic conditions, denitrification occurs. When oxygen levels are 

depleted, microorganisms prefer to use N0 3 -, a process in which N 0 3“ is reduced to
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nitrogen gas (N2), the more stable and less harmful form of nitrogen (McMahon and 

Chapelle, 2008). The presence of dissolved and particulate organic carbon is significant 

in the redox process as well because carbon is the most common electron donor available 

in groundwater systems (Thurman, 1985).

3.4 Logistic regression modeling

I developed logistic regression models using JMP® statistical software and the 

GIS-based explanatory variables (STA factors) to predict the vulnerability of 

groundwater to NPS NO3- above the background concentration (2 mg/L). Logistic 

regression has been widely used in groundwater vulnerability assessments because it 

predicts the probability of a binary response using a threshold that is meaningful for 

specific management problems (Gurdak, 2008). Logistic regression is applicable for 

non-parametric and dichotomous (binary) data, which often characterize environmental 

and groundwater-quality data. The response variable is established using a binary 

threshold, which is commonly set at a drinking-water standard, laboratory detection level, 

or relative background concentration (Nolan, 2002; Rupert, 1998; Tesoriero et al., 1997).

I used a number of statistical parameters that are calculated during logistic 

regression to help evaluate how well the overall model works, how important each of the 

explanatory variables are in the overall model, and if the form of the model appears to be 

correct (Menard, 2002). I also evaluated the predictive ability of the overall logistic 

regression model. I used the log-likelihood ratio (LLR) to measure the success and
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significance of the logistic regression model as a whole by comparing observed with 

predicted values (Hosmer and Lemeshow, 1989). The highest LLR indicates the most 

significant model, taking into account the degrees of freedom (number of explanatory 

variable) in the model. The p-values of the LLR indicate model significance of the model 

coefficients.

I used the partial likelihood ratio, percent correct (PC) responses, model 

sensitivity, and area under the ROC (Receiver Operating Characteristic) curve to evaluate 

the logistic regression model-fitting (Hosmer and Lemeshow, 1989; Menard, 2002). The 

partial likelihood ratio is similar to the LLR, but is evaluated to determine the sig­

nificance of adding one or more new variables to an existing multivariate logistic 

regression model (Helsel and Hirsch, 1992). A model with the addition of one new 

variable is more significant than the original model if the partial likelihood ratio is greater 

than the value of the chi-square distribution with degrees of freedom equal to one (Helsel 

and Hirsch, 1992). The partial likelihood ratio was used exclusively during the iterative 

processes of the multivariate logistic regression analysis to select the explanatory 

variables that produce the best fitting model. Because of the large number of iterations, 

partial likelihood ratios and corresponding preliminary multivariate models are not listed 

in this thesis. The overall rate of correct classification, or percent correct (PC) responses, 

is the number of observed exceedances predicted by the model as exceedances, plus the 

number of observed nonexceedances predicted as nonexceedances, divided by the 

combined number of observed exceedances and nonexceedances (Hosmer and
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Lemeshow, 1989). Sensitivity is defined as the number of observed exceedances 

predicted as exceedances divided by the total number of observed exceedances. Higher 

values of PC and sensitivity indicate better fitting models. The area under the ROC curve, 

represented by the c statistic, is a measure of the model’s ability to discriminate between 

groundwater samples with NC>3~ greater than or equal to the background concentration 

and those samples that do not. Hosmer and Lemeshow (1989) suggest that 0.7 less than c 

statistic less than 0 . 8  is acceptable discrimination.

I evaluated model calibration using the degree of correspondence between the 

predicted probabilities of NO3- exceeding the threshold and the actual NC>3~ concentra­

tions exceeding the threshold. The Hosmer-Lemeshow (HL) goodness-of-fit test statistic 

was used to evaluate the model calibration. The null hypothesis of the HL test is that the 

model fits the data; therefore, a higher HL p-value indicates a well-calibrated model 

(Hosmer and Lemeshow, 1989).

Because the explanatory variables were reported in different units, I standardized 

the coefficients after final model selection using the standardization technique outlined 

by Menard (2002). The advantage to standardized coefficients is that the relative impact 

and magnitude of effect of the explanatory variables can be directly compared.

Problems with the model may arise if strongly correlated explanatory variables 

are included in a multivariate logistic regression model (Hosmer and Lemeshow, 1989). 

Multicollinearity, or strong correlations between two or more explanatory variables, may 

inflate the variance of the parameter estimates and cause a lack of statistical significance
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of individual explanatory variables, even though the overall model may be strongly 

significant (Hosmer and Lemeshow, 1989). Incorrect conclusions about relations in the 

model may be drawn if multicollinearity is present because an unrealistic model 

coefficient sign or unstable slope coefficients may result (Hosmer and Lemeshow, 1989). 

To detect multicollinearity, Pearson correlation coefficients and multicollinearity 

diagnostic statistics were examined during model development and selection. A 

Pearson’s correlation coefficient greater than 0.7 indicates there is a strong correlation 

between two explanatory variables.

4.0 Results

4.1 Univariate relations between STA factors and NO3"

Univariate relations between NO3- concentration greater than or equal to 2 mg/L 

and explanatory variables were evaluated and are summarized in Table 3. The 

coefficients listed in Table 3 indicate the nature of the univariate relation; coefficient 

values greater than zero indicate positive relations, and coefficient values less than zero 

indicate inverse relations with NO3- greater than or equal to 2 mg/L. An alpha level of 0.2 

was chosen as the inclusion criteria for selecting explanatory variables into the 

multivariate analysis rather than the more traditional alpha level of 0.10. Hosmer and 

Lemeshow (1989) suggest that an alpha level of 0.10 has failed to identify variables 

known to be important during some multiple logistic regression analyses.

Results of the univariate analysis indicate that 15 explanatory variables are 

statistically significant in the north CCB aquifer (Table 3). The three significant source
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variables in the north CCB include farm fertilizer, atmospheric NO3”, and calcium 

concentration in groundwater. The significant source variables all had positive 

coefficients (Table 3), which indicates a positive relation between increases in N sources 

and increases in the probability of NC>3_ exceeding the relative background concentration. 

Of the nine significant transport variables in the north CCB, five have negative 

coefficients and four have positive coefficients (Table 3). The variables that have 

negative coefficients represent processes that impede transport and include recharge, 

precipitation, soil thickness, soil group B, and annual runoff. The variables that have 

positive coefficients represent processes that promote transport in the north CCB and 

include soil group D, upper soil erodibility, soil wind erodibility, and fresh surface water 

withdrawal. The significant attenuation variables include the positively correlated DO 

and temperature, as well as the negatively correlated tritium and manganese 

concentration in groundwater (Table 3).

Results of the univariate analysis indicate that 15 explanatory variables are 

statistically significant in the central CCB aquifer (Table 3). The significant source 

variables include the positively correlated open space (recreational vegetation, such as 

lawn grass), as well as the negatively correlated shrubs and wetland. Of the eight 

significant transport variables, soil slope, soil permeability, soil bulk density, and soil 

sand have positive coefficients, while soiKNo. 200 sieve, soil >No. 10 sieve, and soil 

loss tolerance factor have negative coefficients. The significant attenuation variables
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include the positively correlated DO, oxic redox, and tritium, as well as the negatively 

correlated iron concentration and manganese concentration.

Results of the univariate analysis indicate that 22 explanatory variables are 

statistically significant in the south CCB aquifer (Table 3). The significant source 

variables include medium intensity development, high intensity development, and 

atmospheric N0 3 ~, all of which have positive coefficients. Most of the 16 transport 

variables have positive coefficients, including soil group B, soil erodibility, upper soil 

erodibility, soil available water capacity, soil<No 4 sieve, soiKNo. 200 sieve, soiKNo.

10 sieve, and soil silt. Transport variables that have a negative coefficient are altitude, 

recharge, precipitation, soil group C, soil bulk density, soil sand, soil loss tolerance 

factor, and annual runoff. The significant attenuation variables include DO, seasonally 

high water table, and manganese concentration. DO has a direct relation to N0 3 - while 

the latter two are inversely related to NO3- .

Results of the univariate analysis indicate that 22 explanatory variables are 

statistically significant across the entire CCB aquifer (combined north, central, and south) 

(Table 3). The significant source variables include farm fertilizer and medium intensity 

development, which are positively related to N 0 3 ~ concentration, as well as shrubs, 

grassland, and crops, which are inversely related to NO3T Of the 13 significant transport 

variables, Hortonian overland flow, upper soil erodibility, soiKNo. 4 sieve, soiKNo. 10 

sieve, and fresh surface water withdrawal have positive coefficients. The remaining 

significant transport variables have negative coefficients and include altitude, recharge,
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precipitation, soil thickness, soil group C, soil loss tolerance factor, soil wind erodibility, 

and annual runoff. The significant attenuation variables are DO and temperature, which 

have positive coefficients, and iron concentration and manganese concentration, which 

have negative coefficients.

The univariate analysis helps distinguish the scale-dependent relations between 

some STA factors and NPS N0 3 ~ concentrations greater than background. Some 

variables were significant only at the sub-regional scale or were significant in multiple 

sub-regions. Of the source variables, only atmospheric N0 3 ~ was significant in 

multiplesub-regions (north and south) (Table 3). Transport variables that were significant 

in more than one sub-region include recharge, precipitation, soil group B, upper soil 

erodibility, soil bulk density, soil<No. 200 and 10 sieve, soil sand, soil loss tolerance 

factor, and annual runoff. Of these variables, all exhibited the same sign (- or +) among 

the sub-regions in which they were significant, except for soil group B, soil bulk density, 

soil<No. 200 and 10 sieve, and soil sand. From the attenuation variables, DO is 

significant in all four regions while manganese concentration is significant in every 

region except the central CCB.

Some variables were also significant at the sub-regional and regional scales. The 

significant variables in the entire CCB univariate models overlapped with 11 in the north, 

five in the central, and 12 in the south sub-regions (Table 3). The significant variables 

specific to just one sub-region are also significant in the entire CCB univariate modeling. 

The north CCB’s common variables with the entire CCB model are: farm fertilizer (S),
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soil thickness (T), soil wind erodibility (T), fresh surface water withdrawal (T), and 

temperature (A). The central CCB only had shrubs (S) and iron concentration (A) in 

common with the entire CCB model. The south CCB shared medium intensity 

development (S), altitude (T), soil group C (T), and soil No. 4 sieve (T) with the entire 

CCB univariate model. Interestingly, only grassland (S), and crops (S) are significant in 

only the regional scale (CCB only) models and not significant at the sub-regional scale.

4.2 Multivariate relations between ST A variables and NC>3_

Of the 78 explanatory variables, 41 were initially carried forward for multivariate 

analyses based on the alpha level of 0.2. However, all explanatory variables were 

evaluated later using the partial likelihood ratio during multivariate analyses. The 

variable selection for multivariate model development required too many iterative steps 

to list in this thesis. Details of the final multivariate logistic regression models are 

presented in Tables 4 and 5.

The log-likelihood p-value (<0.001) for the north CCB model indicates high 

statistical significance and the overall model fit was excellent (HL p-value = 0.944) 

(Table 4). Variables that comprised the best multivariate model for the north CCB are 

farm fertilizer (S), DO (A), and soil thickness (T) (Table 5). Farm fertilizer and DO have 

positive coefficients, representing a direct relation with the probability of N 0 3 - exceeding 

the background concentration, while soil thickness has an inverse relationship. Pearson
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correlation coefficient statistics indicate that each of the variables in the best north CCB 

multivariate model are not strongly correlated to each other.

The log-likelihood p-value (0.013) for the central CCB indicates good statistical 

significance, but the overall model fit was poor (HL p-value = 0.295) (Table 4). A best 

model for the central CCB was found that includes open space (S) and soil group D (T) 

(Table 4). The open space variables has a positive coefficients, representing a direct 

relation to NO3- concentration, but the soil group D has a negative coefficient and 

represents an inverse relation to NO3- concentration. Pearson correlation coefficient 

statistics indicate that the two variables are independent of one another. A second model 

was found for the central CCB that only included DO (A) as a significant variable (Table 

5). DO has a positive correlation to N0 3 - concentration in the central CCB. The log- 

likelihood p-value (p-value <0 .0 0 1 ) indicates high statistical significance and the overall 

model fit was excellent (HL p-value = 0.993) (Table 4).

Similar to the central CCB multivariate model, the log-likelihood p-value 

(<0.001) for the south CCB indicates high statistical significance in the model, but 

overall poor model fit (HL p-value = 0.375) (Table 4).The best south CCB multivariate 

model included low intensity development (S), crops (S), and DO (A) (Table 5). All of 

the variables in the best model have positive coefficients and are positively related to 

MTfconcentrations. Pearson correlation coefficient statistics of the variables in the 

southern region indicate that the variables in the model are not strongly correlated to each 

other.
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The log-likelihood p-value (<0.001) for the entire CCB indicates high statistical 

significance in the model and very good overall model fit (HL p-value = 0.759) (Table 4). 

The best multivariate model found for the entire CCB consists of DO (A), soil thickness 

(T), soil available water capacity (T), and farm fertilizer (S) (Table 5). Soil thickness has 

a negative coefficient in the model, therefore an increase in soil thickness decreases the 

probability of NO3' exceeding the threshold. Farm fertilizer, soil thickness, and soil 

available water capacity all have a positive correlation. Pearson correlation coefficient 

statistics indicate that each of the variables in the best multivariate model of the entire 

CCB are not strongly correlated to each other.

4.3 Validation of the multivariate models

The multivariate models (Tables 4 and 5) were validated to evaluate predictive 

ability of the probability of NO3’ greater than the background concentration at the 

validation wells. The explanatory variables that were determined to be the most 

significant in each of multivariate models (north CCB, central CCB, south CCB, and 

CCB) were used in the validation process. The probability of each validation exceeding 

the N 0 3~ threshold (2 mg/L) was calculated using logistic regression in JMP. (Table 6 ). 

Coefficients from the logistic regression models were used in the equation along with the 

explanatory variables’ values (Table 6 ).

The validation indicates poor predictive ability of the north CCB model (Table 7). 

Although each explanatory variable coefficient had the same signs (+/-) observed in the
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calibration models, the p-values were very high (Table 7). The overall model is poor 

(LLR p-value = 0.912).

Similarly, the validation indicates poor predictive ability of the central CCB 

model (Table 7). The explanatory variables had the same relation to NC>3_ concentration, 

but the p-values were very high (Table 7). The overall model is poor (LLR p-value = 

0.889). However, the validation indicates good predictive ability of the model B in the 

central CCB (Table 7). DO, the only parameter in the model, is statistically significant 

(p-value = <0.001). The overall validation model is significant (LLR p-value = <0.001) 

and the overall fit was excellent (HL = 0.997).

The validation indicates good predictive ability of the south CCB model (Table 

7). Each explanatory variable had the same relation to NO3- concentrations as was 

observed in the calibration model. The statistical significance of crops (S) and DO (A) 

was fairly good (p-value = 0.174 and 0.107, respectively). The overall south CCB 

validation model is significant (LLR p-value = <0.001) and the overall fit was excellent 

(HL = 0.926).

The validation indicates moderately good predictive ability of the CCB model 

(combined north, central, and south) (Table 7). The relation of each explanatory variable 

to N 03“ concentrations is the same as the relations observed in the calibration model.

Soil thickness (T) and DO (A) are statistically significant (p-value = 0.182 and 0.098, 

respectively). Farm fertilizer (S) and soil available water capacity (T), however, were not 

statistically significant. The overall model was not significant (LLR p-value = 0.295).
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5.0 Discussion

5.1 Univariate models

The central CCB model did not have one single expected NC>3~ source. In fact, the 

central model had very bad p-values for N sources that are expected to correlate to N 

concentrations. The N loading variables that were significant in the univariate modeling 

of the central CCB (shrubs, open space, and wetland) do not account for sources of NO3T 

1 1  out of 2 0  of the well sites that exceeded the relative NC>3_ background concentration 

had a zero percentage of farm fertilizer application, confined manure application, crops, 

and irrigated cropland.

Iron was only important in central CCB and the entire CCB. There may be some 

implication about how much a sub-region like the central CCB affects the overall model 

for the whole CCB.

A Pearson coefficient correlation analysis of the variables making up the best model 

of the central CCB revealed strong correlations between DO and 7 of the other 14 

significant univariate variables.

5.2 Multivariate models

The north CCB multivariate analysis resulted in explanatory variables that make 

conceptual sense. Farm fertilizer (S) and DO (A) are both positively correlated to NO3- 

concentration, therefore an increase in farm fertilizer or DO correlates to a higher 

concentration of NO3- . Farm fertilizer usually contains high amounts of N0 3 ~ so high
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amounts of fertilizer application should reflect high NC>3~ concentrations. Similarly, the 

presence of DO in a system impedes denitrification (McMahon and Chapelle, 2008) and 

thus N 0 3~ cannot reduce to the less harmful molecular nitrogen (N2). Soil thickness is 

inversely related to N0 3 ~ in the model, suggesting that an increase in soil thickness 

restricts the transportation of NO3- into groundwater. Overall, the explanatory variables 

and their relation to NO3- concentration are acceptable conceptually.

In model A of the central CCB, the percentage of open space (S) is positively 

related to N0 3 - concentrations (Table 5). A greater percentage of open space indicates 

greater concentrations of NO3T Open space refers to areas characterized by a mixture of 

constructed material and vegetation. The majority of the vegetation in these areas is lawn 

grass or vegetation planted for recreational purposes or erosion control. Fertilizer applied 

to lawns has been linked to NO3- contamination (source) so we expect to see a positive 

relation to NO3T Soil group D (T) is inversely correlated with NO3- . Thus, lower NCfC 

concentrations in the central CCB correlated to a higher percentage of soil group D. Soil 

group D is characterized as having very slow infiltration and transmission rates when 

thoroughly wet and thus acts to impede the transport of NC>3_ to the groundwater.

Model B of the central CCB only includes DO (A) as an explanatory variable 

(Table 5) and has an excellent model (Table 4). A positive correlation between NO3- and 

DO is well documented (McMahon and Chapelle, 2008) and therefore the significance of 

the variable in the model is to be expected. However, in the multivariate analysis, 

including other variables along with DO made the model unstable. It is probable that DO
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is the leading control in the sub-region and trumps other variables from showing any 

significance. However, it may also be possible that the proper variables to adequately 

describe NPS NCV contamination above the background in the central CCB were 

identified in the study. Many of the source variables in the central CCB have negative 

coefficients, inversely relating NO3- concentration to N0 3 - input. However, more than 

half of the calibration well sites were above the background concentration threshold and 

the sub-region contained the highest concentration of N 0 3 - recorded within the data set. 

According to the Groundwater Vulnerability Study (2010) of Santa Clara County, NO3- 

concentrations are beginning to decline in the Santa Clara valley of the central CCB sub- 

region (Todd Engineers, Kennedy/Jenks Consultants, 2010). The observed trend in land 

use (2001 to 2009) of the area includes a gradual shift from agricultural land to suburban 

housing and a decrease in the number of feedlots in the area. The NO3- concentrations 

observed in the central CCB may therefore be a reflection of past land use and so the data 

used to assess land use (collected in 2001) may not be representative of historical NO3- 

sources. It may also be probable that a 500-m buffer extraction is not sufficient to 

represent the contributing area for each well, however further investigation is needed to 

support this theory.

The variables in the best model for the south CCB include crops (S), low 

development (S), and DO (A) (Table 5). Crop is characterized by the area designated for 

production of annual crops. The area of crop production is directly related to N0 3 ~ 

concentrations, a reflection of the nitrogen input due to fertilizer application (crops and
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farm fertilizer have a high Pearson correlation in the south CCB). Low development is 

defined as an area with a mixture of constructed materials and vegetation with single 

family homes being common attributes. The direct relation between low development 

areas and NCfC concentration is likely due to leaking septic tanks from single family 

homes and (or) the application of lawn fertilizers. Similar to the other sub-regions’ 

multivariate models, DO is also positively correlated to NO3- concentration in the south 

CCB.

The CCB (north, central, and south) best model includes farm fertilizer (S), soil 

thickness (T), available water capacity (T), and DO (A) (Table 5). Farm fertilizer has a 

positive coefficient, representing a positive correlation to NO3- concentration. Farm 

fertilizer was an important explanatory variable in the north CCB as well, indicating that 

the significance of the STA factor is scale invariant (significant across sub-regional and 

regional scales). Crop production, an explanatory variable in the south CCB model, is 

highly correlated to farm fertilizer in the CCB data set. Therefore, farm fertilizer as an 

explanatory variable of the whole CCB system may also be representing crop production 

important in the south CCB. Soil thickness was only important in the north CCB and the 

entire CCB models. The north CCB and CCB models also share DO as an explanatory 

variable. The only variable that is specific to the CCB model is available water capacity. 

Available water capacity (AWC) has a positive coefficient in the model, thus an increase 

in AWC corresponds to an increase in N0 3 - concentration and likely represents increased 

transport of N0 3 _to the groundwater.



23

DO was significant in every best multivariate model, which is not surprising 

given the well-known relation between DO and NO3T Similar to findings by previous 

studies (Tesoriero et al., 1997; Nolan et al., 2002 and 2003; and Gurdak and Qi, 2006 and 

2012), DO is a major control on N 0 3 - concentrations. The presence of DO in the well 

samples of this study proved to be the most significant control on N 0 3 - concentrations in 

the CCB. Future groundwater vulnerability studies of the CCB should therefore consider 

DO as a major control on N0 3 - levels. Likewise, water management agencies should 

implement measuring DO during water quality sampling as a standard practice. During 

the collection of water quality data for this study, it was found that DO is not regularly 

collected during water sampling. Considering the importance of DO on denitrification 

and the relative inexpensive tools used to measure it, DO should be regularly monitored.

Although DO is the most important variable in the models, it should be noted that 

a major goal of studies such as these is to be able to predict N0 3 ~ concentrations where 

wells do not exist. However, DO can only be measured where a well is present. It may 

therefore be beneficial to conduct a study where DO concentrations are predicted first 

using logistic regression models, then apply the findings to NO3"" vulnerability models. 

Pearson correlations might also provide clues as to what non-geochemical variables are 

associated with DO concentrations.

Future multivariate models of the CCB should also take climate change into 

consideration. The vulnerability model I created for the CCB uses variables that were 

collected in the past, meaning my model is temporal. If the goal of a vulnerability model
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is to be able to predict nitrate concentrations by finding what variables control 

concentrations, climate change scenarios that can affect these variables need to be 

considered. Climate change can affect geochemical variables, and possibly land use 

practices. Increasing temperature and extreme weather events can have negative effects 

on crop production, decreasing yields. Increased temperatures due may also increase the 

demand for irrigation (Anderson et al. 2008), possibly further decreasing yields. The risk 

of decreasing yields may lead farmers to shift to more profitable (and less water- 

demanding) crops. If these crops require different amounts of nitrogen fertilizer, we may 

increase or decrease the vulnerability of nitrate contamination in the CCB.

The role of CO2 as a fertilizer should also be considered in NO3” groundwater 

vulnerability models. A global climate model created by Salmon-Monviola et al. (2013) 

resulted in an increase in denitrification when CO2 concentrations in soils were high. 

However, the denitrification process produces nitrous oxide (N2O), the fourth largest 

greenhouse gas contributing to climate change (EPA, 2010). Since N 2O is a greenhouse 

gas, the potential to further exacerbate climate change effects could occur, creating a 

positive feedback. Initially, an increase in denitrification could be seen as a benefit to 

increased CO2 in the atmosphere because the increase in denitrification implies that less 

N 03“ will leach into groundwater. However, solely focusing on denitrification can be 

misleading because the quantity of NO3- fertilizer application is increasing (Figure 9). 

Therefore, a groundwater vulnerability model of the CCB would benefit from
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incorporating the positive feedback associated with the deposition of CO2 in soil and its 

effects on climate change.

5.3 Validation Models

The validation model for the north CCB is poor. Because the north CCB and CCB 

(north, central, and south) models shared similar explanatory variables, it is likely that the 

explanatory variables are still significant in the north. A possible explanation for the 

poor statistical significance in the validation model is that only 2  of the 15 validation 

wells are above NCf’ threshold (2 mg/L). The imbalance in wells above and below the 

threshold does not support a robust model. The median NO3 ' concentration in the north 

of all the wells is 0.2 mg/L, relatively far from the 2 mg/L threshold set in the logistic 

regression modeling. A different threshold in the north should therefore be used in future 

models because the low concentrations in the north cannot have a normal distribution of 

data with the relatively high threshold set for the entire CCB.

The validation model for the central CCB (model A) is poor. The explanatory 

variables in the model, open space (S) and soil group D (T), are not intuitively correlated 

to N03-. Therefore, it is possible that the statistical significance of the variables 

observed in the calibration model A is just noise and does not necessarily represent the 

important controls in the system. Conversely, model B had very good statistical 

significance in the validation analysis. DO appears as an important explanatory variable 

in each of the models, so the probability of it being noise is not likely. The high
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correlation between DO and NO3- concentrations in the central CCB is evident; however, 

there may be other factors that control N03- in the sub-region. During the calibration 

analysis, the inclusion of other variables along with DO created an unstable model. It is 

probable that DO alone is very important, yet reasoning as to why it is the only 

explanatory variable in the model is still unclear.

The south CCB validation analysis had moderately good results. Crops (S) and DO 

(A), were both statistically significant (p-value <0.2). Although low intensity 

development (S) was not statistically significant, the overall model was excellent (LLR p- 

value = <0.001; HL = 0.926).

Overall, the validation models were poor. It is likely that there were not enough 

validation wells for each sub-region so the validation models were not robust. Also, the 

difference in N03- concentrations between sub-regions, most notably the north, could 

account for the poor validation models. However, the poor validation models should not 

be used to evaluate the goodness of the calibration models because they do not disprove 

that the significant variables found in the calibration models predict N03- concentrations 

in the CCB.

6.0 Conclusions

The variables identified as controlling factors on N03- concentrations in the CCB can 

help water management agencies identify areas of the aquifer that are vulnerable to N03- 

contamination. Different factors were important in different sub-regions of the CCB, 

therefore scale is shown to be very important in this study. A major finding is that factors



27

can be scale invariant. Land-use is scale dependent because of the difference in land 

management practices between the sub-regions. DO, farm fertilizer, and soil thickness 

are scale invariant because they are important factors both regionally and sub-regionally. 

DO is the most important controlling factor of this study and should be monitored on a 

regular basis so that future studies have a wider and more complete data set with which to 

work.
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TABLES

Table 1. Summary of nitrate (NO3 ) concentrations in wells used for calibration and 
validation of the logistic regression models.

North Central South CCB-All

Study area (km ) 4614 9552 12263 26429

NO3' threshold (mg/L) 2 2 2 2

Subset for model calibration
Number 30 30 30 90

Maximum 11.05 40 25.9 40
75 th percentile 1.64 5.79 6 . 8 8 4.78
50th percentile 0.25 3.34 1.64 1.09
25th percentile 0.04 0.16 0.09 0.06

Minimum 0.03 0.05 0.04 0.03
Subset for model validation

Number 15 15 15 45
Maximum 3.99 28.6 34 34

75 th percentile 1 . 0 2 5.80 5.63 3.92
50th percentile 0.19 3.11 2.67 1.71
25th percentile 0.04 0.08 1 . 6 6 0 . 1 1

Minimum 0.026 0.05 0.79 0.03
All data (calibration and validation)

Number 45 45 45 135
Maximum 11.05 40 34 40

75 th percentile 1.26 5.70 6 . 1 0 4.31
50th percentile 0 . 2 0 3.30 2.19 1.45
25th percentile 0.04 0.08 0.56 0.07

Minimum 0.026 0.05 0.04 0.03
[mg/L, milligrams per liter]



32

Table 2: Description of source, transport, and attenuation explanatory variables.

Explanatory
Variable Description Source

Nitrogen
Source
confined
manure

Average Nitrogen from confined animals in 500 m buffer (kg/krn^ of 
cropland) (average of 1982, 1987, 1992, and 1997) Ruddy et al., 2006

farm
fertilizer

Average Nitrogen application from farms in 500 m buffer (kg/km2 of 
cropland) (averaged from 1987-2006) Ruddy et al., 2006

open water Open water in 500 m buffer (%) LaMotte, 2008

open space Developed land cover (open space) in 500 m buffer (%) LaMotte, 2008
low intensity 
development Developed land cover (low intensity) in 500 m buffer (%) LaMotte, 2008
medium
intensity
development Developed land cover (medium intensity) in 500 m buffer (%) LaMotte, 2008
high intensity 
development Developed land cover (high intensity) in 500 m buffer (%) LaMotte, 2008

barren land Barren land (includes rock, sand, and clay) in 500 m buffer (%) LaMotte, 2008
deciduous
forest Deciduous forest in 500 m buffer (%) LaMotte, 2008
evergreen
forest Evergreen forest in 500 m buffer (%) LaMotte, 2008

mixed forest
Mixed forest (deciduous and evergreen are each less than 75 percent of 
cover) in 500 m buffer (%) LaMotte, 2008

shrubs Shrublands in 500 m buffer (%) LaMotte, 2008

grassland Grasslands/herbaceous in 500 m buffer (%) LaMotte, 2008

pasture Pasture/hay in 500 m buffer (%) LaMotte, 2008

crops
Cultivated crops in 500 m buffer (%) (Includes annual and perennial crops 
and actively tilled land) LaMotte, 2008

woody
wetland Woody wetlands in 500 m buffer (%) LaMotte, 2008

wetland Emergent herbaceous wetlands (%) LaMotte, 2008
atmospheric
NOT

Average atmospheric NO3' wet deposition in 500 m buffer (2005 to 2009) 
(kg/km2) Bingham, 2011

calcium
concentration Calcium concentration in groundwater (mg/L) NWIS & NAWQA
chloride
concentration Chloride concentration in groundwater (mg/L) NWIS & NAWQA
sodium
concentration Sodium concentration in groundwater (mg/L) NWIS & NAWQA

TDS Total dissolved solids (TDS) concentration in groundwater (mg/L) NWIS & NAWQA
atmospheric
N Average atmospheric nitrogen (N) deposition (1985 to 2001) (kg/yr) Ruddy et al., 2006
irrigated
cropland Irrigated lands in 500 m buffer (%) Pervez et al., 2010
population
density

Average population density in 500 m buffer (1990 U.S. Census) 
(people/km2) Nolan et al., 2006

Transport

altitude Altitude of well at land surface above mean sea level (m) NWIS & NAWQA

top of screen Depth of top of well screen below land surface (m) NWIS & NAWQA
bottom of 
screen Depth of bottom of well screen below land surface (m) NWIS & NAWQA



33

Explanatory
Variable Description Source

Transport
(cont’d)

water level
Depth to water below land surface measured at well during water quality 
sampling (m) NWIS & NAWQA

recharge Average groundwater recharge in 500 m buffer (mm/yr) Wolock, 2003
drainage
ditch Surface drainage, field ditch conservation practice in 500 m buffer (%) Nolan et al., 2006

soil slope Average soil surface slope in 500 m buffer (%) Nolan et al., 2006

precipitation Average annual precipitation (mm) PRISM, 2006

soil thickness Average soil thickness in 500 m buffer (cm) Wolock, 2003

soil group A
Hydrologic soil group A (low runoff potential and high infiltration rates) in 
500 m buffer (%) Wolock, 2003

soil group B Hydrologic soil group B (moderate infiltration rates) in 500 m buffer (%) Wolock, 2003

soil group C Hydrologic soil group C (low infiltration rates) in 500 m buffer (%) Wolock, 2003

soil group D
Hydrologic soil group D (high runoff potential and very low infiltration 
rates) in 500 m buffer (%) Wolock, 2003

soil group 
AD

Hydrologic soil group AD in 500 m buffer (%) (drained soil: A; undrained 
soil: D) Wolock, 2003

soil group 
BD

Hydrologic soil group BD in 500 m buffer (%) (drained soil: B; undrained 
soil: D) Wolock, 2003

soil group 
CD

Hydrologic soil group CD in 500 m buffer (%) (drained soil: C; undrained 
soil: D) Wolock, 2003

soil group 
AC

Hydrologic soil group AC in 500 m buffer (%) (drained soil: A; undrained 
soil: C) Wolock, 2003

soil group 
BC Hydrologic soil group BC in 500 m buffer (%) (drained soil: B; undrained) Wolock, 2003
soil
erodibility Average soil erodibility factor in 500 m buffer (K) Wolock, 2003
upper soil 
erodibility Average soil erodibility factor of upper soil layer in 500 m buffer (K) Wolock, 2003
soil
permeability Soil permeability (cm/hr) Wolock, 2003
soil available
water
capacity Soil available water capacity (cm/cm) Wolock, 2003
soil bulk 
density Average soil bulk density in 500 m buffer (g/cm3) Wolock, 2003
soil shrink- 
swell Average rating of soil shrink-swell potential in 500 m buffer Wolock, 2003
soiKNo. 4 
sieve

Average soil material less than 3 inches in size that pass through a No. 4 
sieve (5 mm) (% by weight) Wolock, 2003

soiKNo. 200 
sieve

Average soil material less than 3 inches in size that pass through a No. 200 
sieve (0.074 mm) (% by weight) Wolock, 2003

soiKNo. 10 
sieve

Average soil material less than 3 inches in size that pass through a No. 10 
sieve (2 mm) (% by weight) Wolock, 2003

soil silt Average silt texture in 500 m buffer (%) Wolock, 2003

soil sand Average sand texture in 500 m buffer (%) Wolock, 2003
soil loss 
tolerance 
factor Average soil loss tolerance factor value in 500 m buffer Wolock, 2003
soil wind 
erodibility Average soil wind erodibility factors in 500 m buffer Wolock, 2003
fresh surface
water
withdrawal Average fresh surface-water withdrawal in 500 m buffer (megaL/Day) Nolan et al., 2006

water input
Average ratio of the total area of irrigated land to precipitation in 500 m 
buffer (km2/cm) Nolan et al., 2006

irrigation
tailwater
recovery Average tailwater recovery conservation practice in 500 m buffer (km2) Nolan et al., 2006
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Explanatory
Variable Description Source

Attenuation
hydrologic
landscapes Average hydrologic landscape regions of the U.S. in 500 m buffer Nolan et al., 2006

annual runoff Average annual runoff in 500 m buffer (mm) Gebert et al., 1987
seasonally 
high water 
table

Average depth below land surface to the seasonally high water table in 500 
m buffer (m) Wolock, 2003

well depth Depth of well bottom below land surface (m) NWIS & NAWQA
dissolved 
oxygen (DO) Dissolved oxygen (mg/L) NWIS & NAWQA

oxic redox Oxic redox conditions (C>2>0.5 mg/L; Mn2+<0.05 mg/L; Fe2+<0.1 mg/L) McMahon et al., 2008

anoxic redox
anoxic redox conditions (O2<0.5 mg/L; NC>3>or<0.5; Mn2+>or<0.05 mg/L; 
Fe2+>or<0.1 mg/L; SO42‘ >or<0.5 mg/L) McMahon et al., 2008

hydric soil Occurrence of hydric soils in 500 m buffer (%) Wolock, 2003
soil organic 
matter Soil organic matter content (% by weight) Wolock, 2003

tritium (TU) Tritium concentration in groundwater (tritium units, TU) NWIS & NAWQA
iron
concentration Iron concentration in groundwater (mg/L) NWIS & NAWQA
Dunne
overland
flow Dunne overland flow in 500 m buffer (% of streamflow) Nolan et al., 2006

temperature Groundwater temperature (degrees C) NWIS & NAWQA

pH Groundwater pH (standard units) NWIS & NAWQA
manganese
concentration Manganese concentration in groundwater (mg/L) NWIS & NAWQA
sulfate
concentration Sulfate concentration in groundwater (mg/L) NWIS & NAWQA

histosol soil Amount of histosol soils in 500 m buffer (%) Nolan et al., 2006



Table 3: Results of the univariate logistic regression analysis. Logistic 
regression coefficients are outside parenthesis and p-values are enclosed in 
parenthesis. Bolded values are significant at the alpha level of 0.2 and were 
selected for initial inclusion in the multivariate logistic regression analysis.

Explanatory variable north CCB central CCB south CCB CCB (all)

Nitrogen Source

farm fertilizer
6.46E-04
(0.0153)

6.33E-06
(0.8264)

8.28E-05
(0.3260)

5.906E-5
(0.0734)

open space
-0.0097
(0.8332)

0.0910
(0.0770)

-0.0263
(0.4813)

0.0106
(0.6307)

medium intensity 
development

-0.0367
(0.7052)

-0.0014
(0.9345)

0.0237
(0.1418)

0.016
(0.1304)

high intensity development
-60.3879
(0.9939)

-0.0149
(0.4651)

1.0942
(0.0886)

0.0048
(0.8053)

shrubs
-0.0241
(0.6671)

-0.4863
(0.1906)

-0.1013
(0.2030)

-0.1069
(0.1269)

grassland
-0.0032
(0.8494)

-0.0219
(0.6013)

-0.0291
(0.2724)

-0.0213
(0.1068)

crops
173.1187
(0.2797)

-0.0044
(0.8327)

0.0291
(0.2731)

0.0225
(0.1940)

wetland
-23.6409
(0.9928)

-0.3832
(0.1867)

-1.0162
(0.5365)

-0.6227
(0.2390)

atmospheric N 03‘
5.7945

(0.0152)
0.5643

(0.7341)
1.2246

(0.1364)
0.3759

(0.2527)

calcium concentration
0.0055

(0.1726)
-0.0019
(0.2466)

-0.0018
(0.6162)

-0.0006
(0.5625)

Transport

altitude
0.0021

(0.9067)
-0.0107
(0.4985)

-0.0061
(0.0162)

-0.00456
(0.0156)

recharge
-0.0198
(0.0151)

0.0031
(0.9109)

-0.0394
(0.1106)

-0.0109
(0.0026)

Hortonian overland flow
0.0961

(0.4005)
0.0157

(0.7923)
0.1050

(0.3011)
0.1051

(0.1486)

soil slope
-0.0055
(0.8627)

0.0797
(0.1208)

-0.0744
(0.2133)

-0.0013
(0.9405)

precipitation
-0.0050
(0.0864)

-0.0045
(0.3536)

-0.0093
(0.0810)

-0.0028
(0.0025)

soil thickness
-0.0858
(0.0673)

-0.0225
(0.6418)

-0.0398
(0.4343)

-0.0518
(0.0544)

soil group B
-0.0412
(0.1162)

-0.0021
(0.8708)

0.0242
(0.1635)

0.008
(0.3405)

soil group C
-0.0274
(0.4442)

0.0160
(0.6845)

-0.0458
(0.0701)

-0.0406
(0.014)

soil group D
0.0588

(0.0244)
-0.0106
(0.6326)

0.0240
(0.3179)

0.0122
(0.306)

soil erodibility
-7.8915
(0.4425)

-9.0313
(0.2983)

40.8818
(0.0173)

4.8914
(0.2609)

upper soil erodibility
6.5450

(0.0684)
-13.6142
(0.2585)

28.3819
(0.0367)

7.5306
(0.1898)



Explanatory variable north CCB central CCB south CCB CCB (all)

Transport (continued)

soil permeability
-0.4540
(0.3571)

0.5697
(0.1631)

-0.0807
(0.5712)

-0.0351
(0.6711)

soil available water capacity
12.3590
(0.6166)

-17.4091
(0.2729)

37.5578
(0.0666)

8.5073
(0.2874)

soil bulk density
-3.1593
(0.4440)

12.3901
(0.1296)

-10.8610
(0.0795)

-0.3457
(0.8656)

soiKNo. 4 sieve
-0.0133
(0.8474)

-0.1836
(0.2140)

0.1027
(0.0957)

0.0535
(0.0588)

soiKNo. 200 sieve
0.0316

(0.5816)
-0.1624
(0.0624)

0.1029
(0.0287)

0.0151
(0.4008)

soiKNo. 10 sieve
-0.0287
(0.6382)

-0.1627
(0.1846)

0.1010
(0.0651)

0.044
(0.0765)

soil silt
0.0454

(0.6812)
-0.1295
(0.2309)

0.1081
(0.1719)

0.0202(0.55
07)

soil sand
-0.1065
(0.2796)

0.1489
(0.1107)

-0.0611
(0.1203)

0.0006
(0.9733)

soil loss tolerance factor
0.0016

(0.9960)
-1.2792
(0.0254)

-0.4165
(0.1556)

-0.5481
(0.0044)

soil wind erodibility
1.3468

(0.1058)
-0.0708
(0.6575)

-0.2419
(0.2985)

-0.2092
(0.0529)

fresh surface water 
withdrawal

786.3675
(0.0160)

16.6250
(0.7463)

102.8617
(0.3604)

113.8096
(0.0590)

annual runoff
-0.1942
(0.0108)

0.0200
(0.9286)

-0.3340
(0.1138)

-0.111
(0.0021)

Attenuation

seasonally high water table
0.3020

(0.7132)
0.1530

(0.8283)
-1.1004
(0.0745)

-0.4468
(0.2259)

dissolved oxygen (DO)
0.4685

(0.0126)
9.4403

(0.1472)
0.4398

(0.0151)
0.4738

(<.0001)

oxic redox
16.3762
(0.9936)

1.7346
(0.1571)

16.2029
(0.9922)

17.2296(0.9
902)

tritium (TU)
-0.4436
(0.0498)

0.1129
(0.1768)

-0.1735
(0.3692)

0.0296
(0.5920)

iron concentration
-0.0017
(0.2304)

-0.0115
(0.1380)

-0.0734
(0.2602)

-0.0036
(0.0748)

temperature
0.2061

(0.1195)
-0.0043
(0.9819)

0.0340
(0.7334)

0.1235
(0.0654)

pH
0.0003

(0.9998)
-1.3606
(0.1797)

1.2285
(0.2757)

0.2853
(0.5414)

manganese concentration
-0.1205
(0.1153)

-0.0187
(0.2448)

-0.0343
(0.0567)

-0.0248
(0.0062)



Table 4. Model calibration and goodness-of-fit for the multivariate logistic regression models of NOb greater than or equal to
the relative background concentration in recently recharged groundwater.

Model
NOj threshold 

(mg/L)
Model

Intercept
LLR

p-value HL p-value ROC

north CCB 2 -0.799 <0.001 0.944 0.98

central CCB (model a) 2 0.009 0.013 0.295 0.82

central CCB (model b) 2 -8.762 <0.001 0.993 0.98

south CCB 2 -3.857 <0.001 0.375 0.94

CCB (north, central, and south) 2 -1.492 <0.001 0.759 0.86
[LLR, log-likelihood ratio; ML, Hosmer Lemeshowjgoodness-of-fit; HOC, Receiver Operating Characteristic curve; * s presented in
am .............. ........... ............ ...............  ............................ ..........................



Table 5. Parameters for logistic regression models for N 03— above relative background concentration (2 mg/L) in recently
recharged groundwater of sub-regions of the California Coastal Basin (CCB) aquifer system .

Explanatory variables 
(S, source; T, transport; A, 

attenuation)

Explanatory
variable

coefficient
(p-value)

Standardized
Coefficient Standard Error

Wald confidence Interval 
lower 95% upper 95%

north CCB 
(2 mg/L )

fann fertilizer (kgkml of 
cropland): S 0.00085 (0.008) 1.313 0.00032 0.00022 0.00148
dis solved oxygen (mg/L): A 0/719(0.002) 1.129 0.237 0256 1.1838
soil thickness (cm): T -0.126(0.02.5) -0.625 0.056 -0.236 -0.016

central
CCB 

(2 mg/L)
model a open space (%): S 0.190(0.029) 1.137 0.087 0.019 0.361

soi group D (%): T -0.075 (0.058) -0.731 0.039 -0.152 0.002
model b dissolved oxygen (mg/L): A 9.440(0.007) 14.001 3.506 2,569 16.31.1

south CCB (2 mg/L)

low mtensitv development (%): 
S 1.503 (0.071) 7.618 0.832 -0.128 3.133
crops (%): S 0.071 (0.093) 0.830 0.043 -0.012 0.155
dissolved oxygen (mg/L): A 0.371 (0.073) 0.830 0207 -0.034 0.777

CCB (north, central, 
and south)
(2 mg/L)

dissolved oxygen (mg/L): A 0.479 (<0.001) 0.751 0.117 0267 0/732
soil thickness (on): T -0.059(0.096) -0.278 0.036 -0.134 0.009
sod available water capacity 
(oncm): T 18.389(0.122) 0.271 11.902 -3.603 43.872
farm fertilizer (kg/km2 of 
cropland): S 0.000054 (0.110) 0.269 0.00003 -0.00001 0.00013



Table 6. Model validation and goodness-of-fit for the multivariate logistic regression models o f  nitrate greater than or equal to
the relative background concentration in recently recharged groundwater

Model
NO3" threshold 

(mg/L)
Model

Intercept
LLR 

p-value
H L

p-value ROC

north CCB 2 -0.128 0.912 0.532 0.60

central CCB (model a) 2 0.165 0.899 0.267 0.56

central CCB (model b) 2 -22.221 <0.001 0.997 0.99

south CCB 2 -5.834 <0.001 0.926 0.97

CCB (north, central, and south) 2 -0.417 0.295 0.516 0.70
[LLR, log-likelihood ratio; HLa Hosmer Lemeshow
(27)1

joodness-of-St; ROC, Receiver Operating Characteristic curve; * a presented in



Table 7. Validation of parameters for logistic regression models for nitrate greater than the background concentration (2 mg ’L)
in recently recharged groundwater of sub-regions of the California Coastal Basin (CCB) aquifer system.

Explanatory variables 
(S, source; T, transport; 

A, attenuation)

Explanatory
variable

coefficient
(p-value)

Standardized
Coefficient

Standard
Error

Wald confidence Interv al 
lower 95 % upper 95 %

north CCB {2 
mg/L)

dissolved oxygen (mg!L)c 
A -0202 (0.609) -0.363 0.396 -0.978 0.573
soil thickness (cm): T -0.027 (0.722) -0.158 0.077 -0.178 0.123
farm fertilizer (kgkm2 of 
cropland): S

0.00005
(0.8535) 0.078 0.0003 -0.0005 0.0006

central 
CCB 

(2 mg/L)

model
a

open space {%): S -0.049 (0.6S3) -0.162 0.121 4) .287 0.188

soil group D (%): T 0.0085 (0.792) 0.105 0.032 -0.055 0.072
model

b
dissolved oxygen (mg/L): 
A 11.443 (<0 .001) 15.265 0.754 9.965 12.993

south CCB (2 
mg/L)

low intensity 
development {%): S 0.872 (0.509) 5.192 1.321 -1.717 3,462
crops {%): S 0.505 (0.174) 1.921 0.372 -0.224 1.235
dissolved oxygen 
A 0.73 (0.107) 1.418 0.453 -0.158 1.618

CCB {no rth, 
central, and: 

south) (2 mg/L)

dissolved oxygen (mj^L): 
A 0.216 (0.098) 0.371 0.131 -0.039 0.471
soil thickness (cm): T -0.059 (0.182) -0.311 0.044 -0.146 0.028
soil available water 
capacity (cmcm): T 16.088 (0.358) 0.212 17.501 -18.213 50.389
farm fertilizer (kg!km2 of 
cropland): S 0.00003 (0.441) 0.175 0.00004 -0.00005 0.00011
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FIGURES

Figure 1: (A) Map of California Coastal Basin (CCB) aquifers with location of wells 
used for calibration (black) and validation (red) analysis. Boxed areas are sub- 
regions used in study (B: north CCB; C: central CCB; and D: south CCB). There are 
30 validation wells and 15 validation wells in each sub-region with a total of 90 
validation wells and 45 calibration wells in the entire CCB.
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Figure 2: Map of calibration and validation wells used in Gurdak and Qi (2012) 
groundwater vulnerability study.
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Figure 3: Nitrate concentrations of well sites in the CCB. N=45 in the North, 
Central, and South sub-regions. N=135 in the All subregion.
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Figure 4: Nitrate concentrations of calibration well sites of the CCB. N= 30 in the 
North, Central, and South sub-regions. N=90 in the All sub-region.
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Figure 5: Nitrate concentrations of validaiton well sites in the CCB. N=15 in the 
North, Central, and South sub-regions. N=45 in the All sub-region.
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Figure 6: Map of all well sites in the CCB and associated ranges of nitrate
concnetrations.
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Figure 7: Map of calibration well sites in the CCB and associated ranges of nitrate
concnetrations.
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Figure 8: Map of validation well sites in the CCB and associated ranges of nitrate
concentrations.
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Figure 9: Sales of nitrogen fertilizer in California, 1945-2008 (Rosenstock, et al., 
2013).


