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In the Sierra Nevada, restoration of degraded montane meadows has the potential to increase 

water availability, improving meadow productivity and resilience against climate change. The 

objective of this study was to evaluate the impact of water availability on growing season timing 

and duration in a montane meadow ecosystem undergoing restoration. Plant productivity, water 

availability, and environmental variables were examined at several scales along a hydrologic 

gradient in Red Clover Valley, California. Field data were collected from May-August 2021, and 

NDGI was used to compare years 2018-2021. Analysis of the 2021 growing season indicates that 

environmental controls vary by plant group, with community changes occurring throughout the 

season. In 2021, a year of severe drought, VPD limited productivity, even with higher water 

availability and the growing season was shorter, earlier, with lower peak productivity. Results 

highlight controls on meadow vegetation and establishes a baseline of productivity metrics useful 

for comparison and ongoing monitoring efforts. 
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1 
1. Introduction 

1.1 Climate change and high-altitude semi-arid grasslands and meadows 

With warming of 0.78 °C occurring from 1850 to 2012, and additional near-term 

warming of 0.3 °C to 0.7 °C by 2035 (IPCC, 2013), climate change ushers in rising temperatures, 

sea levels, and uncertainty. Through changes in temperature and global weather patterns, climate 

change heralds changes to vegetation distribution, productivity, and species survival. On a global 

scale, we see general patterns in species range shifts with latitude and altitude (IPCC, 2013; 

Kottek et al., 2006), as plant species distributions are altered to stay within their respective 

temperature requirements for growth and reproduction. Climate change projections and their 

implications differ around the globe, with precipitation increasing in some regions, but 

decreasing in others (IPCC, 2013), and with rates of warming occurring unevenly (Bussotti et al., 

2014). In terms of vegetation productivity, there is a similar heterogeneity in predicted impacts. 

In the far north and south, which are largely limited by low temperatures, productivity and 

biomass are expected to increase with rising temperatures (Bussotti et al., 2014). In water-limited 

arid and semiarid climates, however, warmer and drier conditions could lead to decreases in 

productivity. As such, changes in water availability are particularly important to understand how 

increasing temperatures will impact vegetation, both in terms of productivity and species 

survival. 

In both grasslands and meadows ecosystems, grasses are a significant component of the 

vegetation community. However, grasses have variable rooting depths, with more shallow-rooted 

species being more sensitive to periods of drought, raising questions about community 

composition stability during drought (Li et al., 2020), particularly in areas where droughts are 



 

 

2 
becoming more frequent. Thus, changes in precipitation timing and amount are expected to have 

significant implications for meadow structure and overall productivity but the outcomes are 

uncertain. For example, previous work in montane meadow systems has shown the timing of 

precipitation can have a greater effect than changes in annual precipitation on net ecosystem 

productivity (NEP) (Sloat et al., 2015). In addition, water availability during a particular growing 

season is not limited to annual precipitation as rainfall in the preceding fall can have significant 

impacts on leaf and flower formation in the following spring (Jonas et al., 2008) which has 

subsequent effects on meadow carbon fluxes (Sloat et al., 2015). 

For meadows at high altitudes, winter snowpack is extremely important, with snow, 

snow-up and snowmelt, quantity, and depth all being important contributions to water 

availability and thus, vegetation productivity. In one experiment during a five-year drought, 

aboveground biomass of grasses (Poaceae spp.) decreased significantly, with deeper-rooting 

forbs faring much better. In comparison, results showed that where snow was deeper, there was 

an increase in root biomass and net ecosystem exchange (NEE), with community composition 

remaining markedly more stable (Li et al., 2020). Though later snowmelt did not appear to 

impede vegetation growth in this context, a study in the Swiss Alps found that later snowmelt led 

to more diminutive vegetation, and earlier snowmelt with the domination of taller and faster-

growing plants (Jonas et al., 2008). 

Winter snowpack is especially important in areas that receive little spring and summer 

rainfall (i.e., seasonally dry climates), as snowmelt can persist in deep soil horizons and serve as 

a water source for vegetation through extended dry periods. In wet-summer areas such as Inner 

Mongolia, deepening snow translated to increased soil moisture which helped sustain vegetation 
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until the wet season (Li et al., 2020). In dry-summer regions such as California, earlier snowmelt 

can mean a decrease in net ecosystem productivity (NEP), as there is more time without water, 

with higher temperatures enhancing soil drying (Sloat, et al., 2015; Arnold, 2014, p.8). 

Timing of precipitation is another key element that affects plant productivity. A watering 

experiment with montane meadow vegetation found precipitation timing was more significant 

than total amount in influencing NEP for meadow vegetation (Sloat et al., 2015). Water 

availability during one growing season is not the only factor impacting plant growth, with 

previous seasons’ precipitation also having an impact. In a Swiss Alp study primarily examining 

meadows showed that rainfall in the preceding fall impacted leaf and flower formation in the 

spring, as these had pre-formed before snow-up (Jonas et al., 2008). In addition, this has been 

seen to influence meadow carbon fluxes (Sloat et al., 2015). 

Drier conditions and insufficient water supply, either from reductions in rain, snow, or a 

combination thereof, have further implications for soil health and composition in addition to soil 

moisture. Soil drying has been linked with a decrease in peak season carbon uptake (Sloat, et al., 

2015). The earlier onset of spring spurred by higher surface temperatures also leads to shifts in 

timing, namely earlier phenology and snowmelt, the latter translating to decreased soil moisture 

(Sloat et al., 2015; Wang et al., 2020). Estimates of spring advancement observed in recent 

decades vary, ranging between 2.8 to 5.1 days per decade (Cleland et al., 2007). The impacts of 

spring advancement are unclear, and several studies have examined whether this will translate 

into a longer growing season overall. However, it has been observed in some areas to come in 

tandem with an earlier senescence, offsetting any potential gains in biomass production. A study 

in the alpine grasslands of China observed that earlier start of the growing season over several 
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decades caused a compression of the growth period, with changes in grass, sedge, and forb 

response leading to changes in abundance (Wang et al., 2020). In other cases, increased 

productivity in spring is outweighed by decreased productivity in summer, the overall decrease 

of NEP linked to warming and drier soils (Sloat et al., 2015). 

1.2 California’s montane meadows 

Montane meadows in California provide significant ecosystem services in the Sierra 

Nevada and the state at large, as important areas for water storage and filtration, flood reduction, 

wildlife habitat, biodiversity, and grazing (Lucas, 2016, p. 1). Given the numerous ecosystem 

services montane meadows provide, quantifying the impacts of climate change on California 

montane meadow systems is therefore essential for informing broader adaptive management 

goals that seek to mitigate climate change impacts on the region, and preserve the numerous 

ecosystem services these meadows provide. California, along with other Mediterranean biome 

regions, are predicted to experience a warmer and drier future (IPCC, 2013). As of 2000, spring 

advancement in California was three weeks earlier on average compared to historical records 

(Arnold, 2014, p.7). Determining how changes in water availability, timing, and rising 

temperatures impact vegetation productivity and community composition is an essential first step 

towards informing climate-adaptive planning and management strategies. Climate change itself 

has piqued interest in montane meadows in recent years, particularly in terms of their carbon 

sequestration and water storage. The former has garnered the attention of the California Air 

Resources Board (CARB) due to their potential of being incorporated into carbon markets 

established by A.B. 32 (CARB, 2015). Services such as water filtration and storage are 
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particularly important in the context of increasing drought incidence, motivating state agencies to 

enhance these services (CA Natural Resources Agency, 2016). 

According to a 2013 study, most California mountain meadows are degraded, with 67% 

having been degraded by stream incision (Emmons, 2013, p. 25), causing a lower water table and 

drier soils, leading to vegetation community changes as conditions become too dry for typical 

meadow plants, as well as the species they support. Fish habitat is also impacted, with increased 

erosion decreasing habitat suitability (FR-CRM, 1996). Numerous restoration efforts are being 

undertaken in Sierra Nevada meadows, with the goal of restoring meadow vegetation and 

enhancing their ability to provide key ecosystem services. Restoration has been observed to 

increase meadow productivity, with a 25-50% increase in evapotranspiration after restoration 

(Lucas, 2016, p. 12). However, more work is needed across meadows that vary in their degree of 

degradation to better predict the capacity for restoration, and the overall effectiveness of 

restoration in the face of climate change. Observation thus far yields some conflicting messages 

as to how sensitive to drought and inter-annual precipitation meadows might be. One study 

found that vegetation in a Sierra Nevada meadow was not water limited, even during consecutive 

drought years (Lucas, 2016, p. 13). In contrast, a study in another Sierra meadow categorized as 

“pristine” found that drought did not only reduce productivity in the short term but can cause 

permanent damage to soils and vegetation, particularly if this exceeds historical drying 

maximums (Arnold, 2014, p. 64). Further, impacts on productivity varied in different hydrologic 

regions. Vegetation diverged in its response to snow cover timing and amount, with no 

significant change for dry areas, but a significant decrease in biomass in intermediate and wet 

areas (Arnold, 2014, p. 15). As such, questions remain as to how resilient meadow vegetation is 
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to drought conditions, how this varies among species and plant types, and how effective 

restoration might be in mitigating the impacts of more frequent drought. 

1.3 Remote sensing to estimate productivity 

Vegetation indices (VIs), typically derived from satellite imagery, are one of two ways to 

remotely estimate primary productivity. VIs have many applications, from use in crop and 

climate change modeling (Tempfli et al., 2009, p.149), to better understanding dynamics of 

phenology (Noumonvi et al., 2019; Yang et al., 2019). “Productivity” can be used to describe 

any number of terms, including net primary productivity (NPP), gross primary productivity 

(GPP), net ecosystem exchange (NEE), and aboveground biomass (AGB). Though they differ in 

terms of what aspects of ecosystem productivity they include (Chapin & Mooney, p. 97-119), 

any can be used in VI-based analyses. In comparison to physical mechanism models, which are 

the alternative method of quantifying productivity using remotely sensed data, VIs are the more 

popular option. This is because VIs can be used to estimate biomass in conjunction with 

relatively simple regression models, while requiring much fewer auxiliary data in comparison to 

physical mechanism models (Xu et al., 2021).  

VIs are used to approximate productivity, being “proportionate to the amount of light 

energy absorbed by photosynthetic tissues”, which also describes fraction of absorbed 

photosynthetically active radiation (fAPAR). VIs typically incorporates the reflective properties 

of chlorophyll in plants, which are highly reflective in near infrared (NIR). As such, higher VI 

values indicate higher levels of greenness. The most used VI, the normalized difference 

vegetation index (NDVI), which uses the formula below from Zhou et al., (2014): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅

(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)
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However, it can be a challenge to determine whether light is absorbed by soil, vegetation, water, 

etc. Further, plants differ in their reflectance in the visible range, making comparison between 

system difficult (Chapin & Mooney, p.118-119), with dense forests yielding much higher VI 

values than a sparse grassland. In addition to NDVI, numerous vegetation indices have been 

developed, with 21 indices being listed in a recent review by de Castro et al. (2021). The 

suitability of each VI will vary according to application, with vegetation type, scale, snow cover, 

soil types and visibility being some considerations.  

1.4 Summary and project goals 

There are many moving parts in the puzzle of changing water availability in grasslands 

and meadows. Changes in precipitation and temperature interact in complex ways that impact 

plant phenology and productivity. In some regions, changes in rainfall appear to increase 

productivity (Li et al., 2020). However, in the mountain meadows of California, projections of 

warmer, drier conditions are concerning particularly in areas where past land use history has 

resulted in degraded meadows. Despite this, restoration provides a means to improve the 

resiliency and function of these crucial ecosystems. To examine how a warming and drying 

climate impacts montane meadow biomass and community composition, further study is 

necessary to examine the relationship of water availability and meadow vegetation.  

This work aims to improve the understanding of how montane meadow plant productivity 

and phenology varies in space and time in response to climate variability at several scales. A 

combination of remote sensing and field data was used to study the period between 2018-2021, 

to answer the following questions: (i) How does montane meadow plant phenology and 

productivity vary with climate variables, precipitation, and plant functional group during the 
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growing season? (ii) How does growing season duration and timing vary within and between 

years (2016-2021), and how does this variation relate to environmental drivers of plant water 

availability (i.e., snowpack, precipitation)?   
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2. Methods 

2.1 Study area 

Red Clover Valley (RCV) is a 2,655-acre (10.74 km2) montane meadow in Plumas 

County, CA. It is located at an elevation of approximately 5,500 feet (1680 m), with the meadow 

itself being relatively flat. There are several creeks within the meadow, including Crocker and 

Dixie Creeks, which join to form Red Clover Creek (The Sierra Fund, 2018). It is an alluvial 

valley, with loam soils that range from fine-grained to gravelly (FR-CRM, 1996). 

Like many meadows in the Sierra Nevada, RCV was degraded by various types of human 

activity, including overgrazing by cattle and beaver eradication, in addition to road and railroad 

construction, logging, and mining occurring within the broader 84 square mile (135 km2) 

watershed (FR-CRM, 2008). Over time, the numerous creek beds became incised, resulting in a 

lowering of the water table associated with a decrease in mesic and hydric plant communities, 

and the proliferation of more xeric species such as sagebrush (Artemisia spp.). The large degree 

of erosion that resulted from the creek incision motivated the first restoration efforts in 1985, 

spanning 1 mile of stream length. This included the installation of check dams, revegetation, and 

cattle exclusion, alongside a commitment to monitor the effectiveness of restoration for 10 years. 

By 1996, several aspects of restoration had been successful, such as a significant rise of the water 

table, a return of mesic and hydric plants, and increased visitation of deer, waterfowl, and other 

bird species (FR-CRM, 1996). However, the check dams installed did not prove to be a suitable 

long-term solution to the site’s erosion problems (Wild Fish Habitat Initiative, 2007), prompting 

further intervention, including plug and pond restoration methods along a larger span (3.5 mi.) of 

stream (FR-CRM., 2008). 
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Subsequent restoration projects have included other means of maintaining and enhancing 

previous efforts, incorporating rock grade control structures and beaver dam analogs, both 

implemented in 2018 (The Sierra Fund, 2018). The current project was launched in 2017, and is 

a collaboration between the Sierra Meadows Partnership, the Mountain Maidu, ranchers, and 

several universities. Field data collection efforts were in collaboration with several other entities 

to collect hydrology, vegetation, and wildlife data to inform goals to restore the meadow and 

increase habitat quality and availability. The meadow restoration project and concomitant 

monitoring efforts provide an opportunity to establish a baseline of species composition, 

seasonality, phenology, and productivity in this system, giving insight into the efficacy of 

restoration in the face of ongoing climate change. 

2.2 Field data collection 

 The location and length of the field sampling transects were informed by an examination 

of NDVI images from the 2019 growing season, derived from 20 m Sentinel-2 data at the peak of 

the growing season. The location of the transect displayed a variation in NDVI values, 

hypothesized to be linked with the existence of a hydrologic gradient, with vegetation greenness 

being a bioindicator of variable water availability in the meadow. Though the meadow is 

relatively flat, proximity to streams and topographical features impacts water availability 

throughout the study area. The South and East transects coincide with wetter areas, closer to 

several streams that are the result of water diversion. The North and West transects were in drier 

areas, without as much influence from streams, particularly farther from the center (Figure 1). 

 

Figure 1. Sampling locations in Red Clover Valley 
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Figure 1. Field data was collected from each of the sampling locations (red). Remote 
sensing analysis sampled these points, in addition to the entire study area (dotted line). 

 

The four transects radiated in each of the cardinal directions from the eddy covariance 

tower, which provided continuous measurements of micrometeorological variables, carbon flux, 

water vapor flux, and soil moisture at a single point location at depths of 10, 20, 50, and 100 cm. 

The length of the transects (300 m), was chosen to span an area that showed considerable 

variation based on 2019 NDVI data. To ensure that only one plot fell within each 10 m pixel, the 
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20 sampling locations were spaced 60 m apart. Sampling locations were georeferenced using a 

Trimble R1 GPS Receiver, which provides submeter accuracy, in conjunction with the GNSS 

Status mobile application (Trimble, Inc. Version 3.0.8.673). Points were recorded using the 

ArcGIS Collector mobile application (Version 21.0.4).  

Field sampling dates took place throughout the growing season, on a roughly monthly 

basis: 6/2 (DOY 153), 6/28 (DOY 179), and 8/3 (DOY 215). From each of the 20 plots, samples 

were collected for aboveground biomass, plant water content, shallow soil moisture (0-10 and 

10-20 cm), and belowground biomass (only 8/3). Following the 6/2 sampling, measurements 

were made in plots 1 m to the right of the previously sampled plots that had similar plant 

community composition.  

Aboveground biomass (AGB) was harvested by clipping all plant material (living and 

dead) within a 0.25 m² quadrat. The total wet weight of the plant material was measured 

immediately after clipping using Pesola field scales (100 g and 500 g). A soil moisture probe 

(FieldScout, TDR 150 Soil Moisture Meter) was also used to measure shallow (0-10 cm) soil 

moisture at each plot. In early August, belowground biomass was also collected using a soil 

auger to a depth of approximately 30 cm.  

AGB samples were collected within a 2 to 3-hour window in the morning to minimize the 

wilting of plant samples. Leaves needed to be scanned as soon as possible after collection, as a 

loss of turgidity could lead to an underestimation of leaf area, particularly with herbs. To 

mitigate this, samples were stored in a cooler, and damp paper towels were added to each bag of 

samples. On 6/2, samples were placed in a cooler with dry ice soon after sampling (1-3 hours). 
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On later sampling dates, a portable cooler was used, and samples were put on ice and/or ice 

packs at the time of collection.  

After collection, photosynthetic (green) plants were sorted into three plant functional 

groups (PFGs) in order provide a rough sketch of changing community composition and 

productivity over the growing season. The plant functional groups used included rush, 

sedge/grass, and herb, represent different responses to water availability and drought, resulting 

from different plant traits (rooting depth, leaf area, drought tolerance, et cetera). Senesced plant 

material was separated out and labeled as standing dead. The standing dead (SD) category was 

not separated further into PFGs due to the difficulty of discerning differences of dry, withered 

plants with similar physiology (i.e., withered rushes vs. sedge/grass). However, composition of 

SD appeared to reflect overall species composition observed in the data collected. Green leaf 

area (LA) was also measured using a tabletop scanner (LiCor, LI-3100C). The leaf area of each 

PFG was used to calculate the percent cover of each group. The dry weight was recorded by PFG 

for each plot (Cole-Palmer, P-bal HC 1kg x 0.01g IntCal), after drying samples at 100 °C for 24 

hours (Fisher Scientific, 100L GP gravity oven). A similar method was used for belowground 

biomass samples. After soil was removed from the roots, samples were sieved, then rinsed in a 

tub of water. After washing, samples were allowed to dry at room temperature, then weighed 

after being dried at 100 °C for 24 hours. 

Additional datasets used from the meadow include predawn water potential, a measure of 

plant water status, using a Scholander Pressure Chamber. Leaf vapor pressure deficit, and 

climate and soil data (0-100 cm), monitored continuously at the eddy flux tower (EFT). Predawn 

water potential and stomatal conductance measurements were collected on 6/2 and 6/28. For 
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predawn water potential of a plot, samples were taken by plant functional group and were then 

weighted by each group’s relative contribution to cover. Climate and soil data (0-100 cm) were 

monitored continuously at the eddy flux tower (EFT) (Figure 1).  

Metrics calculated from field data included aboveground biomass per unit ground area 

(AGB), leaf area index (LAI), plant water content (PWC), and the roots-to-shoots (R:S) ratio. 

Formulas used to calculate each are listed below:  

𝐴𝐴𝐴𝐴𝐴𝐴 (
𝑔𝑔
𝑚𝑚2) =  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑖𝑖𝑔𝑔ℎ𝑡𝑡 (𝑔𝑔)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚2)

  

𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚²)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚²)

 

𝑃𝑃𝑃𝑃𝑃𝑃 (%) =
𝑊𝑊𝑊𝑊𝑊𝑊 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 (𝑔𝑔)  −  𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 (𝑔𝑔)

𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 (𝑔𝑔)
 × 100 

The root-to-shoot ratio (R:S) is ratio between the dry weight of aboveground and belowground 

material (Harris, 1992), and is used to indicate the proportion of root to leaf allocation. Statistical 

analyses, including linear models and ANOVA tests, were conducted in RStudio, using R 

(Version 4.1.1) or Microsoft Excel (Version 2108).  

2.3 Remote sensing data 

2.3.1 VI selection 

With an average of 240.48 g/m² in the 2021 growing season (Figure 2A), the meadow 

vegetation in 2021 was not “dense” according to the threshold of 300 g/m² (Xu et al., 2021), 

necessitating a VI that accounts for bare soil. Additionally, this means that VI saturation should 

not be a large source of error, as there are no evergreens present in the study site (which could 

contaminate the signal and introduce error), and the latitude is less than 55°N, VIs should be able 

to detect green-up more easily (Cao et al., 2020). One source of error that needs to be assessed is 



 

 

15 
how rapidly green-up occurs. In a study where this green-up occurred a month after snowmelt, 

VIs were able to detect this change, as it was sufficiently slow. In Red Clover Valley, eddy 

covariance tower data indicates that green-up occurred in early April, with the system becoming 

a C sink some 20 days later (Martin et al., 2021). As snow persisted into April at the nearby 

Portola, CA weather station (NowData, NWS), it seems like green-up was rapid in the 2021 

growing season, possibly occurring concurrently with snowmelt.  

Given the consistent presence of winter snow in the study area, in addition to the 

relatively high performance of these indices in similar ecosystems, a VI which takes into account 

snow cover should be used, and of those reviewed, the normalized difference phenology index 

(NDPI) and normalized difference greenness index (NDGI) are most suitable. However, in 

comparison to NDPI, NDGI was developed specifically to be able to differentiate dead from 

living matter, important in sites with substantial amounts of standing dead biomass. As 

demonstrated by plant cover estimates (Figure 2a), standing dead was dominant during much of 

the sampling period, taking place from 6/2 to 8/3. In contrast, NDPI was seen to outperform 

NDGI in its ability to suppress the soil background, though other studies found that this may be 

less important at the field scale (at which the current study is conducted), compared to the region 

scale studied in Cao et al. (2020). In Red Clover Valley, the presence of bare soil was recorded at 

the time of sampling, with some bare soil present at 7 of 20 sites in the most productive part of 

the growing season. As there was an apparent absence of leaf litter from the previous season, this 

may indicate that these areas of bare soil may be persistent. This, in addition to the relatively 

sparse vegetation means that a VI that accounts for bare soil is necessary.  
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In addition to distinguishing dry vegetation, NDGI has the additional advantage of being 

more easily applied to more data sources than NDPI, which was developed for MODIS data and 

uses the SWIR band, which further narrows which data sources can be used. In contrast, NDGI 

can be used for any satellite so long as the formula is edited to reflect satellite parameters, and 

only uses the green, red, and NIR bands (Yang et al., 2019). The formulas are as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) =
0.65 × 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛 + 0.35 × 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟
0.65 × 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 0.35 × 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑟𝑟𝑟𝑟𝑟𝑟

   

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
NIR − (0.74 ×  𝑟𝑟𝑟𝑟𝑟𝑟 +  0.26 ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 
NIR + (0.74 ×  𝑟𝑟𝑟𝑟𝑟𝑟 +  0.26 ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

A threshold based on the results of the NDGI analysis was used to delineate the tail ends of the 

growing season. The use of relative VI thresholds is one method of estimating the beginning and 

end of the growing season (Yang et al, 2019). As the NDGI did not reach zero even when the 

vast majority of vegetation was dormant, an NDGI of 0.05 was used as a threshold of when the 

meadow was no longer productive, signaling the beginning or end of the growing season.  

2.3.2 Workflow 

Sentinel-2 imagery at 10 m resolution was acquired either from Copernicus SciHub 

(https://scihub.copernicus.eu/). For dates after 2019, level 2A images were available, which are 

atmospherically corrected bottom-of-atmosphere (BOA) images. For dates prior to 2019, 

additional steps were required to convert them from level 1C top-of-atmosphere (TOA) to level 

2A BOA images. The European Space Agency’s (ESA) SNAP application (Version 8.00) was 

used to utilize the Sen2Cor tool (Version 2.10.01). This process is used by ESA when converting 

images from 1C (TOA) to 2B (BOA), using scene classification to create a probabilistic cloud 

mask to identify and remove clouds, cloud shadows, etc. from the image (Sen2Cor Configuration 
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and User Manual, 2021). Full images were cropped to the extent of the study area and 

composited in ArcPro (Version 2.9.2) using a Python script. These images were then used to 

calculate NDGI for each image, using a Python script utilizing the formula below, with satellite 

parameters calculated for Sentinel-2 sensor 2A.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (Sentinel-2A) =  
0.616 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 +  0.384 × 𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑅𝑅𝑅𝑅𝑅𝑅
0.616 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 +  0.384 × 𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑅𝑅𝑅𝑅𝑅𝑅

 

After the NDGI was calculated for the entire image, it was also extracted for the extent of the 

sampling area and for each sampling site (Figure 1). To obtain values for the extent of the study 

area, the raster was exported, with the extent set to the bounds of the field sampling transects. 

The “Sample” tool was used to extract the values at each of the sampling locations.  
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3. Results 

3.1 Community composition and productivity in the 2021 growing season  

Though sedge and grass (SG) was the dominant PFG throughout the season based on 

percent cover, community composition shifted throughout the growing season, both in terms of 

photosynthetic and standing dead (SD) plants (Figure 2). Standing dead biomass was a 

substantial portion of total cover by 6/2 (~32%), increasing significantly by 6/28 (to ~70%), with 

a more modest increase by August 3 (to ~77%). In terms of photosynthetic plant cover, the 

contribution of SG to total cover increased as the season progressed.  

Figure 2. Community composition on 2021 sampling dates 

 

Figure 2. Contribution of each plant functional group to total cover. Cover calculated 
from the leaf area of each plant functional group and pooled for all plots by sampling date. 
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Rushes (R) decreased by 75% between early and late June, ultimately disappearing by the 8/3 

sampling date. Herbs (H) increased by 14% between 6/2 and 6/28, and decreased to 11% of total 

cover by 8/3, a more modest 21% decrease from 6/2.  

Plant dry weight decreased significantly between sampling dates, with the biggest 

difference observed in SG (Figure 2). There was a significant difference between the dry weight 

of SG and the other PFGs, but the difference between H and R was not significant. Between 6/2 

and 6/28, 54% of the variation in dry weight could be explained by PFG and DOY, though this 

dropped to 42% with the inclusion of the 8/3 data (p = 0.0002), implying that other factors 

became more important as the growing season progressed (Appendix C). In addition, this varied 

between PFGs, with variation in dry weight through time only being significant for SG, for 

which it was highly significant. For SG only, the interaction between PFG and DOY was also 

significant (p = 0.0062) (Appendix C).  

Figure 3. Average aboveground biomass on each sampling date 

 

Average aboveground biomass per unit ground area (AGB), (Figure 3), showed a modest 

increase between sampling dates (Figure 3). AGB accumulation may have been decreased 
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overall due to grasshopper herbivory, a large swarm being present on the site at 6/28 (Personal 

observation). Overall, average AGB increased just 3% between 6/2 and 8/3, indicating that the 

peak of the growing season occurred near or prior to 6/2.  

The difference in average soil moisture (SM) for all plots at 0-10 cm showed highly 

significant differences between sampling dates (p < 0.001). In the early season, there was a much 

larger range in soil moisture (9.5-65.2% VWC) (Figure 4), which decreased as the season 

progressed, ranging between 5.5-29.4% by 6/28 and 3-17.2% by 8/3.  

Figure 4. Boxplots of soil moisture (10 cm) on each sampling date 

 

Earlier in the season, there were significant differences in the soil moisture between the 

four transects, though values converged as the meadow dried and senesced (Figure 5). In the 

earlier part of the growing season, there was a significant difference between the South (wettest) 

and all other transects. On 6/28, there was a significant difference between the North (driest) and 
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South (wettest) transects. By early August, there was a very slight significant difference between 

transects (Table 1). 

 

Figure 5. Soil moisture by transect on sampling dates 

Figure 5. Asterisks indicate significant difference between transects, generated with ANOVA tests 
for each sampling date. 
 
Table 1. Differences in soil moisture (VWC%) by transect 

 

 

 
In examining relationships between dry weight, soil moisture, and PFG, SG was the only 

PFG significantly impacted by shallow soil moisture (Figure 6), with the interaction between 

PFG and soil moisture being more significant (p = 0.001) than PFG alone (p = 0.031) (Appendix 

C). Shallow soil moisture was not associated with a significant difference of dry weight in H or 

R, but was highly significant but weakly related for SG, with SM (0-10 cm) accounting for 21% 

of variation in dry weight for SG. 

DOY p-value Notes 
153 0.0018 S significantly different from all transects 
179 0.0025 S/N are significantly different 
215 0.048 Slightly significant difference 

Table 1. P-values were from ANOVA tests for each sampling date. Notes are from ANOVA tests 
used to compare differences each between individual transect. 
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Figure 6. Relationship between soil moisture and dry weight by PFG

 

Leaf area (LA) and leaf area index (LAI) were highest on 6/2, with LAI decreasing 54% 

between 6/2 and 6/28, then 13% between 6/28 and 8/3. DOY and PFG were significant for the 

leaf area of SG, but not H or R. This can be seen in the precipitous decrease in SG leaf area 

between DOY 153 and 179 (Figure 7), with a decrease of ~46% in leaf area between those dates. 

For the leaf area of SG, PFG, date, and their interactions were both highly significant and 

explained 50% of the variation in SG leaf area (p < 0.001). Similarly, the interaction between 

soil moisture and PFG was highly significant for the leaf area of SG (p < 0.001), accounting for 

48% of variation (Appendix C). 
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Figure 7. Leaf area and PFG in the 2021 growing season 

 

Figure 7. PFG percent cover (top left) reflects each plant functional group's contribution to total 
photosynthetic cover, averaged across all plots and dates. 

 

Belowground biomass (BGB) was collected on 8/3. The R:S from 8/3 shows a relatively 

low allocation of energy to roots (Figure 8a), with most values occurring between 0.00-0.15, 

with just 2 instances of roots reaching over one third of corresponding leaf mass. BGB values 

were not significantly different between transects, though there was a slightly significant 

difference between R:S of the West and East transects (p = 0.055), the former having a higher 

median as well as more variation than the latter (Figure 8b). BGB harvested on 8/3 also did not 

have a strong relationship with dry or wet weight, or leaf area. 
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Figure 8. Roots allocation at sampling locations 

 

Figure 8. a) Histogram of root-to-shoot ratio for all sampling locations on 8/3. b) Boxplots of 
root-to-shoot ratio by sampling transect. 

 

Predawn water potential, sampled on 6/2 and 6/28, was a good predictor of plant water 

content throughout the growing season (R2 = 0.55; Figure 9). Values of predawn water potential 

closer to zero indicate higher plant water status. Low soil moisture values at 0-10 cm in the later 

growing season correlates with lower plant water status (Figure 9). This indicates that plants 

were obtaining water from deeper than 0-10 cm, supported with soil moisture data collected 

between 0-100 cm at the EFT, which showed that water at depths of 0-20 cm disappeared 

between DOY 180 and 200. Though this is just one sampling point, soil moisture data at plots (0-

10 cm) was well-correlated to EFT data at same depth (R2 = 0.57). In addition, shallow SM 

collected at plots were also not strongly correlated to predawn water potential (R2 = 0.13; 

Appendix C). 
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Figure 9. Pre-dawn water potential and plant water content 

 

Figure 9. Points represent plant water content and predawn water potential, with all plant 
functional groups were combined after being weighted by their contribution to total community 
composition. 

As plants remained photosynthetic past DOY 200, this points to plants obtaining water from 

deeper horizons. However, the relationship between soil moisture and plant water content (PWC) 

decreased in strength and significance with depth, no longer being significant at 100 cm, 

indicating that most of the plant available water was between 0-50 cm, and mostly between 0-20 

cm. 

Table 2. Correlations between soil moisture and plant water content 

Depth Correlation (R2) Significance (P-value) 

10 cm 17.1% 0.0009 
20 cm 16.6% 0.001 

50 cm 9.6% 0.01 

100 cm 0.0065% 0.25 

Table 2. Soil moisture values were measured continuously at the EFT. Plant water content data 
was collected from different plant functional groups at the plot level. 
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Figure 10. Leaf vapor pressure deficit and stomatal conductance 

 

Stomatal conductance was inversely related to leaf vapor pressure deficit (VPDL) across 

PFGs regardless of plant water status (Figure 10). The relationship between stomatal 

conductance and VPDL show that high VPDL limited productivity, even during periods of higher 

water availability. This suggests that VPD is an important control of stomatal conductance and 

plant productivity over the growing season. This is supported with EFT data, which showed that 

maximum VPD was a highly significant predictor of PWC (R2 = 0.18, p < 0.001), also 

displaying an inverse relationship. 

3.2 NDGI Analysis 2018-2021 

3.2.1 Study area extent NDGI 

      Based on the results of the NDGI analysis for the extent of the entire 600 m2 study area, 

which formed a square around the transects (Figure 1). 2021 had the shortest growing season of 

all years 2018-2021. In 2021, average NDGI remained above the threshold of 0.05 for just 3-4 

months, from April or May until July. In 2018, 2019, and 2020, NDGI remained at or above 0.05 

for approximately 5-6 months, from April until late August/September (Figure 11). The 2021 
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peak was also the lowest between 2018-2021, with a mean NDGI of 0.32 on 6/2, 2021. For 

comparison, this was 0.41 in 2018, 0.52 in 2019, and 0.59 in 2020.  

Figure 11. NDGI of 600 m2 study area extent  

 

Figure 11. a) Represents median and range of NDGI values for 2018-2021, from all pixels 
within the extent of the sampling transects. b) Average min, max, mean, and standard deviation 
of NDGI from 2018-2021 of all pixels within the extent of the sampling transects. 

 

The average mean and max NDGI indicate that 2020 was the most productive growing season, 

with an overall mean NGDI of 0.25 and an average max of 0.46 (Table 3), compared to 2019 

(mean=0.19, max=0.36) and 2018 (mean=0.16, max=0.33). Both 2020 and 2021 markedly 

higher average standard deviation compared to 2019 and 2018 (~0.07 vs. ~0.04 average standard 
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deviation). This implies a greater degree of variation, which could be attributed to several 

different factors, such as differences in community composition and thus differences of plant 

response to water availability.  

Table 3. NDGI values of 600 m2 study extent (2018-2021) 

Year Avg. 
min. 

Avg. 
max. 

Avg. 
mean 

Avg. 
std. dev. 

Peak 
date 

Avg. 
peak 

NDGI 
2018 -0.01 0.33 0.16 0.04 6/14 0.41 

2019 0.06 0.36 0.19 0.05 6/19 0.52 

2020 0.05 0.46 0.25 0.07 6/8 0.59 

2021 -0.01 0.33 0.12 0.07 6/3 0.32 

Overall avg. 0.02 0.37 0.18 0.06 6/11 0.46 

 

      When comparing the study area NDGI to the entire meadow extent, which utilized a 

mask to exclude the surrounding forest, some slightly different patterns emerge. The NDGI for 

the entire meadow extent was well-correlated to values at the plot (R2 = 0.76) and study area (R2 

= 0.84). Though 2021 remains the year with the lowest peak NDGI values, 2018, 2019, and 2020 

are much more similar, with peak average NDGI ranging from 0.2442 to 0.2726. Like NDGI in 

the study area, the peak occurred in early- or mid-June. However, for the entire meadow extent, 

the highest mean peak NDGI was in 2019, versus 2020 in the study area, also corresponding to 

the year with the highest precipitation. In comparison to the study area, the extent of the meadow 

had markedly lower peak NDGI values than the study area, which supports the assumption that 

the transects spanned a more hydric area. In addition to higher peaks, NDGI values in the study 

area were also slightly lower compared to the entire meadow, which is also consistent with the 
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presence of a more hydric vegetation community being less productive in the drier part of the 

growing season. 

Figure 12. NDGI of meadow extent and study area

 

3.2.2 Plot-level NDGI  

The average NDGI at the plot level (Figure 13a) were very well-correlated to the whole 

meadow extent (R2 = 0.84; Appendix C) and study area (R2 = 0.899) but allowed for additional 

insight into patterns by individual plot and transect. The North transect had the highest NDGI at 

the start of the 2021 sampling period (Figure 13b), despite being the driest transect in terms of 

shallow SM. The smallest decrease in NDGI throughout the season was seen in the South 

transect, which also experiences a smaller decrease in soil moisture compared to the others. 

Despite these differences, the relationship between NDGI and plot/transect was not significant 

during the 2018-2021 study period. 
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Figure 13. Plot-level NDGI 2018-2021 

 

Figure 13. a) Average NDGI from 2018-2021 at the plot level for all the 20 sampling areas. b) 
Average NDGI of each transect on each sampling date from the 2021 growing season. 

 

3.2.3 Correlations between NDGI and field data 

Of the productivity measurments collected in the field (AGB, dry and fresh weight), the 

average NDGI was most closely correlated to the average fresh weight (R2 = 0.97) for the dates 

sampled in the 2021 growing season. There was no correlation between NDGI and AGB (R2 = 

0.03) or average dry weight (R2 = 0.0019) (Figure 14), which is expected given that NDGI is 

responding to greenness of vegetation, and thus would not correlate well with dead vegetation. 

However, when using all fresh weight data for the sampling dates (vs. the average), the R2 
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decreased from 0.97 to 0.40 (Table 4). The correlation also varied in strength throughout the 

growing season. When analyzed by sampling date, the relationship between NDGI and fresh 

weight was significant on 6/2 (p = 0.005, R2 = 0.33) and 6/28 (p = 0.0018, R2 = 0.40), but not on 

8/3 (p = 0.36, R2 = -0.006). For AGB and dry weight, the strength of the relationship remained 

low throughout the growing season. The correlation between LAI and NDGI was also strong and 

highly significant when including all sampling dates (R2 = 0.59, p <0.001; Figure 14). Looking at 

the data by date, the relationship between LAI and NDGI decreased alongside increasing 

amounts of standing dead vegetation (Table 4), being somewhat significant on both 6/2 (R2 = 

0.17, p = 0.04) and 6/28 (R2 = 0.20, p = 0.026). By 8/3, there was no significant relationship 

between the two (R2 = 0.07, p = 0.14).  

Figure 14. Relationships between NDGI and fresh weight, PWC, and LAI 

 

The relationship between plant water content (PWC) and NDGI was highly significant 

having the highest correlation with NDGI overall (R2 =0.7651, p < 0.001). Like other factors, this 
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relationship varied in strength throughout the growing season (Table 4), being significant on 

June 2 (R2 = 0.43) and June 28 (R2 = 0.37), then somewhat significant on August 3 (R2 = 0.24). 

Table 4. Correlation between NDGI and fresh weight, PWC, and LAI 

Variable R2 (6/2) R2 (6/28) R2 (8/3) Overall R2 
Fresh weight 0.33 0.40 -0.006 0.40 

PWC 0.43 0.37 0.24 0.77 
LAI 0.17 0.20 0.07 0.59 

 

In addition to the strong relationship of PWC to NDGI at the plot scale, PWC was 

significantly related to both CO2 (p = 0.008) and H2O fluxes (p = 0.0014) based on chamber data 

from 6/2 and 8/3, explaining 16% to 24% of variation, respectively (Appendix C). In 

conjunction, CO2 and H2O fluxes were highly correlated, with H2O fluxes explaining 64% of the 

variation in C fluxes (p = p < 0.001), making H2O fluxes a good proxy for C fluxes in the 

meadow (Appendix C).  

3.3 Plumas County climate 2018-2021 

Based on the monthly Sentinel-2 images, the difference in snow presence between years 

ranged from 200-242 days (Table 5). Snow melt was detected latest in 2019 (7/21), and earliest 

in 2021 (6/5). Though 2020 had the most productive growing season based on NDGI values, it 

did not have the highest amount of precipitation. 2020 had fewest days of continuous snow cover 

(200 days), and the second-lowest quantity of rain (74.7 cm). However, a decent proportion of 

rain fell during the growing season (37.8%), which was March-September, when NDGI 

remained above 0.05 based on the remote sensing analysis of 2018-2021. 2019 had the most days 

of continuous snow cover (242 days), the highest amount of rain (141.8 cm), with a considerable 
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portion occurring during the growing season (28.1%). 2021 received the smallest amount of 

rainfall overall (49.6 cm), as well the lowest rainfall during the growing season (10.5 cm). 

Table 5. Precipitation amount and timing in Plumas County 

Year 
Days of 

continuous 
snow cover 

Dates of 
continuous snow 

presence 

Winter 
(Oct-Feb) rain 

(cm) 

Growing season 
(Mar-Sept) rain 

(cm) 
Total rain (cm) 

2018 219  11/4 - 6/12 49.9 48.2 98.1 
2019 242 11/22 - 7/21 102.1 39.7 141.8 
2020 200 11/26 - 6/12 46.5 28.2 74.7 
2021 211 11/7 - 6/5 39.1 10.5 49.6 
2022 209*  10/18-5/14 76.2 16.6* 92.8* 

*As of May 14, 2022 

The Palmer drought severity index (PDSI) data for 2018-2021 (Figure 15b) show that 

Plumas County experienced the most severe drought conditions in 2021, reaching values below -

5 (extreme drought) in Summer 2021. A PDSI between -1.9 and +1.9 can be classified as “near 

normal” (NCAR. Though NDGI values were lower in 2018 and 2019, PDSI values remained in 

the “near normal” range during the entire growing season, winter 2019 did see values of down to 

-2.22 (moderate drought). The 2020 PDSI also remained in the “normal” range, though became 

negative throughout the year. PDSI values reached “moderate drought” levels on October 26, 

2020, reaching “severe” on October 10, 2020, and “extreme” on June 29, 2021.  
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Figure 15. Snow and drought in Plumas County, CA (2018-2021)  

 

 

  

Figure 15. Climate data for Plumas County were obtained from Climate Engine 
(http://climateengine.org), provided by Desert Research Institute and University of Idaho. Data used 
included a) Snow depth (mm) (SNOWDAS) and b) PDSI (gridMET).  
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4. Discussion  

4.1 Implications of multiscale analysis  

      Study of the years 2018-2021 suggest that years of severe drought are both shorter and 

less productive, particularly past a certain threshold of dryness. This is exemplified by the 2021 

growing season, which experienced a perfect storm of dry conditions, including earlier 

snowmelt, low overall rain, and very little rain during the growing season, which translated to the 

lowest average NDGI values thorough the growing season. It remains difficult to isolate which 

climate variables might be most important from this limited period of study, but some 

relationships were observed in the 2021 growing season. In terms of climate variables, VPD 

emerged as a key control of plant function in a severe drought year. The strong inverse 

relationship between VPD and stomatal conductance (R2 = 0.63) shows that high VPD limited 

plant growth, even with higher water availability, and was also highly significant for plant water 

content. This finding is supported by a previous study in a sub-Mediterranean grassland, which 

found that evapotranspiration responded more strongly to VPD increasing than decreasing soil 

water content (Noumonvi et al., 2019). 

      Several factors important to explaining the variation in AGB and leaf area of dominant 

sedges and grasses were found, including date, shallow soil moisture, plant functional group, and 

the interactions between these factors. Though changes in community composition were 

recorded in the 2021 growing season, factors most important to the herbs and rushes remain 

elusive, given that date and shallow soil moisture were shown to be not significant to explaining 

the variation in the dry weight of these plant groups. 
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      Relationships between soil moisture (0-10 cm) and productivity were somewhat 

contradictory, though several results point to the potential importance of shallow soil moisture 

for meadow vegetation, and by extension the creek diversion, which channels soil water to this 

area of the meadow. The interaction between shallow soil moisture and PFG was highly 

significant for sedge/grass dry weight and leaf area. Further, the decreasing correlation between 

PWC and soil moisture at various depths indicates that most of plant available water in this 

period was concentrated between 0-20 cm (Table 2). Low root allocation at time of BGB 

sampling, possibly the result of suboptimal sampling conditions, make it hard to confidently 

discern relationships between biomass allocation and climate variables. However, the EFT soil 

moisture data shows water at 0-20 cm depths disappearing by DOY 180 and 200, which points to 

the use of deeper soil water. Predawn water potential, though not sampled on all dates, was also 

weakly correlated to plot-level shallow soil moisture. However, it is still possible that shallow 

soil moisture is important to overall plant productivity at RCV, though its importance may vary 

spatially and between species. This aligns with results of another study in the same meadow and 

year, which found that the availability of shallow soil moisture was most important for 

productivity during the growing season (Mousavi, 2022, p. 69).  

      NDGI analysis revealed 2020 as the most productive year in the study area from 2018-

2021, despite 2019 having a longer period of snow cover, greater annual precipitation and during 

the growing season, all of which would be expected to bring about increased productivity. This 

differs from the entire meadow extent (Figure 12), for which 2019 had the highest NDGI values, 

indicating that 2019 had the highest productivity during the growing season at the meadow-scale. 

This difference could stem from a difference in plant community in the study area compared to 



 

 

37 
the entire meadow extent. Another study of species’ composition at RCV for the same period 

(2018-2021) which sampled a nearby area of the meadow, found that patterns in plant cover 

differed between plant groups. Categorization was based upon the wetland indicator status 

groups which include the following categories: 1. Obligate, 2. Facultative wetland, 3. 

Facultative, 4. Facultative Upland, and 5. Upland (Lichvar et al., 2012). Of these, Obligate and 

Facultative Wet had the highest percent cover in 2019, followed by a decrease in 2020. In 

contrast, Facultative and Facultative Upland species saw a large increase in 2020 over 2019, 

while Upland species showed only a very slight increase (Rust, 2021). Since the NDGI values 

show that 2020 was more productive than 2019 in the study area, this suggests that the 

Facultative and Facultative Upland species that may contribute to higher productivity in the 

study area. This also raises questions as to the reason for this difference. One reason could be 

that these plant types are more heavily impacted by the legacy effect of long-term drought. 2018 

and 2019 both came at the end of a historic drought lasting nearly eight years (National 

Integrated Drought Information System), and this may have led to a delay in the reestablishment 

of these plant species. In a study in an alpine grassland, a drought legacy effect of 10 months was 

measured (Mackie et al., 2019). In addition, a decline in certain plant communities during 

prolonged drought may have led to a delay in the impacts of increased water availability. For 

instance, higher water availability in 2019 could result in higher seed production and successful 

seed set in 2019, and thus more plants and higher productivity in 2020.  

4.2 Assessing study design 

Overall, the productivity in the sampling area represented that of the broader meadow 

study area, as the study area and plot NDGI were very well-correlated (R2 = 0.899). In addition, 
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the plot and study area NDGI were well-correlated to the NDGI of the whole meadow extent (R2 

= 0.76 and 0.84, respectively). Including another portion of the of meadow with different 

characteristics (i.e., vegetation community, soil moisture, soil type) is likely to increase the 

strength of this relationship, ensuring that sampling represents the meadow at large versus its 

wetter parts. 

The chosen VI (NDGI) performed well based on decent correlations to the several 

productivity variables collected in the field, including fresh plant weight (R2 = 0.40), LAI (R2 = 

0.59), and PWC (R2 = 0.77). The relationship was generally strongest at the growing season 

peak, with higher levels of water availability and vegetation greenness, decreasing as vegetation 

senesced. The relationship with fresh plant weight differed slightly in that there was a modest 

increase in R2 between 6/2 (0.33) and 6/28 (0.40). Even at the peak of the season, standing dead 

matter already constituted 31.7% of cover. It seems possible that earlier in the season, or in less 

dry years, there might be a lower proportion of standing dead, and thus a better relationship 

between NDGI and plants on the ground. In addition, field data did not span the whole growing 

season, but captured the peak and senescence of one portion of the meadow. However, in 

conjunction with NDGI data, the results of this study are comparable to another study that 

examined productivity and phenology in RCV in 2021. Using digital repeat photography to track 

photosynthetic potential over time, this study established the 2021 peak as DOY 157 and the end 

of senescence at DOY 240 (Mousavi, 2022, p. 44-47), patterns reflected in the NDGI values 

(Figure 11-13). 
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4.3 Study limitations 

There are several limitations and sources of error of this study that should be mentioned, 

to contextualize findings and provide an opportunity to improve future sampling efforts. Extreme 

heat in the field led to some underestimation of leaf area, particularly in herbs. Belowground 

biomass was also likely underestimated, being samples at the end of the growing season when 

roots are more desiccated, and the soil drier and more difficult to collect. In comparison, BGB 

sampling in an initial trip in May 2022 was easier to collect and appearing to capture more fine 

roots and soil. The grasshopper herbivory observed on 6/28 was another source of error, as its 

impact was not quantified and incorporated in the analysis and may lead to an underestimation of 

AGB accumulation. 

In terms of remotely sensed data, the mismatch between dates between years means that 

estimates for snow duration and season timing are merely estimates. For instance, images that 

represented the season “peak” fell on June 14, June 19, June 8, and June 3, respectively. 

However, this was based on the availability of suitable imagery and the approximately monthly 

temporal resolution. Lastly, as NDGI values were lowest in 2021, it is possible that in more 

average years, AGB surpasses threshold for “dense” vegetation, which could make another VI 

more suitable, to ameliorate the impact of saturation.  
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5. Conclusion 

Data collected establishes a crucial baseline of phenology, soil moisture, productivity, and 

community composition in the study system. In addition to laying the groundwork for future data 

collection in RCV, data collected contribute to the understanding of vegetation in the meadow, 

including its community composition, AGB values, and soil moisture in a very dry year, useful 

in advancing our understanding of this system and possibly similar montane meadows in the 

Sierra Nevada mountains. In addition, it provides clues of what more future growing seasons 

might look like as conditions become warmer and drier. The 2021 water year was second driest 

in California history, with 60% of average snowpack (CDWR 2021). Field monitoring in 2021 

showed how plant community composition changed throughout the growing season, in addition 

to the proportion which remained photosynthetic. Several drivers emerged as controls of 

productivity, including shallow soil moisture and VPD. Shallow soil moisture was highly 

significant for the productivity of sedge/grass, the dominant plant group in RCV, and high VPD 

limited productivity, even with higher water availability. 

Though productivity in the years studied did not correspond neatly with county-level 

precipitation in the relatively hydric study area, in a very dry year the peak and overall NDGI 

values were lower, and the growing season earlier and shorter. In comparison, NDGI values from 

the entire meadow relate more predictably with precipitation data, with the lowest values in the 

driest year (2021), and the highest in the wettest year (2019). Data from an extreme drought year 

allows for an improved understanding of the response of Sierran montane meadows to ongoing 

climate change and the degree to which restoration contributes to their resiliency. 
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The study design used captured meadow vegetation well and could be useful for continuing 

monitoring efforts. Though NDGI is a new VI not yet widely used, it served to illustrate the 

patterns of green-up, senescence, and greenness at RCV, exhibiting a strong overall correlation 

to plant water content. Future studies could explore the use of other VIs, with more frequent 

images and finer resolution drone data to improve correlations between field-level metrics and 

remotely sensed data. Vegetation dynamics in montane meadows are complex, and further study 

is required to make patterns clearer, and to elucidate mechanisms sufficiently to enable 

predictions for the future.  
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Appendix A: List of VIs and formulas from studies reviewed 

NDVI Normalized difference vegetation 
index 

NDVI = NIR – red / NIR + red 

NDII Normalized difference infrared index NDII = NIR – red / NIR + red 
DVI Difference vegetation index DVI = NIR – red 
DVI+ “ DVI+ = N, G (reflectance of red band on line) – 

red (actual reflectance) 
NIRv Near infrared reflectance of 

vegetation 
NIRv = NDVI × NIR 

RVI Ratio vegetation index RVI = NIR/red 
EVI Enhanced vegetation index EVI = green × ((NIR - red) / (NIR + C1* × red – 

C2* × blue + L*)) 
EVI2 Enhanced vegetation index 2 EVI2 = 2.5(NIR – red / NIR + 2.4red + 1) 
EVI3 Enhanced vegetation index 3 EVI3 = Gain factor × (NIR - red) / (NIR + C1red* 

– C2blue* + L*) 
PI Phenology index PI = NDVI – NDII 
PPI Plant phenology index PPI = – K* × ln(M* – DVI / M* – DVIsoil) 
NDGI Normalized difference greenness 

index (MODIS) 
 

NDGI = 0.65 × green + 0.35 x NIR – red / 0.65 × 
green + 0.35 × NIR + red 

NDPI Normalized difference phenology 
index 

NDPI = NIR – (0.74 × red + 0.26 × SWIR) / NIR 
+ (0.74 × red + 0.26 × SWIR) 

NDSVI Normalized difference senescent 
vegetation index 

NDSVI = SWIR – red / SWIR + red 

MNDWI Modified normalized difference water 
index 

MNDWI = (Green - SWIR) / (Green + SWIR) 

LSWI Land surface water index LSWI = NIR – SWIR / NIR + SWIR 
RVI Ratio vegetation index RVI = NIR / red 
ARVI Atmospherically resistant vegetation 

index 
ARVI = (NIR + 2 red + blue) / (NIR + 2 red – 
blue) 

SAVI Soil-adjusted vegetation index SAVI = ((NIR - red) / (NIR + red + L*)) × (1 + 
L*)  

SAVI2 “ SAVI = ((NIR - red) / (NIR + red + L*)) × (1 + 
L*)  

MSAVI Modified soil adjusted vegetation 
index 

 ½ × [2 × NIR + 1) – (√(2 × NIR + 1)² – 8 × (NIR 
– red))] 

OSAVI Optimized soil adjusted vegetation 
index 

NIR – red / NIR + red + X (X = 0.16) 

RSR Reduced simple ratio RSR = NIR / red × [1 – (SWIR - SWIRmin) / 
(SWIRmax - SWIRmax)] (Uses MODIS SWIR 
band 5) 
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RSR2 Reduced simple ratio 2 Same as above. Uses MODIS SWIR band 6. 
RSR3 Reduced simple ratio 3 Same as above. Uses MODIS SWIR band 7. 
 
L = soil brightness correction factor (USGS) 

C = coefficients for atmospheric resistance (USGS) 

C1, C2= coefficients of aerosol resistance term (Zhou et al, 2014) 

M= max DVI calculated from canopy reflectance model simulation (Yang et al., 2019) 

K = gain factor, calculated from M and solar zenith angle (Yang et al., 2019) 
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Appendix B: Remote sensing image processing workflow 
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Appendix C: Supporting formulas and figures 

Page 19 

Formula: model=lm(dry_wt_g ~ PFG + doy + PFG*doy) 

Model R² Model p-value 
0.42 1.33e-12 
Coefficients p-value 
PFGSG 0.0002 
PFGSG:doy 0.006 

 

Page 21 

Formula: model=lm(dry_wt_g~sm_vwc*PFG) 

Model R² Model p-value 
0.44 3.37e-13 
Coefficients p-value 
PFGSG 0.0313 
sm_vwc:PFGS
G 0.0010 

 

Page 22 

Formula: model=lm(LA~PFG*doy) 

Model R² Model p-value 
0.51 2.725e-16 
Coefficients p-value 
PFGSG 2.40e-07 
PFGSG:doy 1.22e-05 

 

Formula: model=lm(LA~PFG*doy) 

Model R² Model p-value 
0.48 6.821e-15 
Coefficients p-value 
sm_vwc:PFGSG 2.725e-16 

 

Page 24 
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Page 29 

 

 

 

 

 

 

 

 

y = -0.0062x + 0.4745
R² = 0.1286

0.00

0.50

1.00

1.50

2.00

0 10 20 30 40 50 60 70

Pr
ed

aw
n 

w
at

er
 p

ot
en

tia
l (

-
M

pa
)

SM (%VWC)

Predawn water potential and SM (0-10 cm)

y = 0.3821x + 0.0488
R² = 0.842

0
0.05
0.1

0.15
0.2

0.25
0.3

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
ea

do
w

 e
xt

en
t m

ea
n 

N
D

G
I

Study area mean NDGI

Study area NDGI vs. meadow extent NDGI 



 

 

51 
Page 32 

 
Formula lm=lm(pwc~CO2.flux) 
R² 0.16 
p-value 0.008 

 

 
Formula lm=lm(pwc~H2O.flux) 
R² 0.24 
p-value 0.001 
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Formula H2O.flux~CO2.flux 
R² 0.64 
p-value 2.939e-10 
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