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The objective of this thesis is to understand how cloud computing and artificial 
intelligence can be applied to vast amounts of remotely sensed data to better understand 
macro-level trends for humanitarian and defense issues. Computer vision algorithms and 
data were provided by Orbital Insight, Inc., a geospatial analytics company based in Palo 
Alto, CA.  

Specific projects were curated, data was acquired, and analysis was applied to 
three use cases: “Patterns of life for The Battle of Marawi”, “Indications and Warnings 
using multi-class aircraft detections”, and “Camp Fire land cover analysis”. The use cases 
show how with imagery ingestion pipelines, cloud computing, and computer vision 
algorithms, a massive quantity of data can be analyzed in a relatively short amount of 
time. Without these workflows and new technologies, analysis of large amounts of data 
would prove to be less efficient and resource heavy. The events show the benefits users 
of spatial data would have to gain a better understanding of humanitarian and defense 
issues. Algorithms used to derive insights from thousands of imagery scenes consisted of 
a car detection algorithm, multi-class aircraft algorithm, and a land cover classification 
algorithm. Additionally, the thesis briefly explores the use of geolocation data to 
supplement computer-vision algorithm data. The thesis shows on a high level, through 
examples, how users could use the technologies to analyze data more efficiently. This 
analysis can be incorporated into high-level humanitarian or defense decisions. Future 
work regarding this field should seek to evaluate the algorithm performance on a more 
granular level. Researchers should also build different algorithms on open-source 
imagery to allow for more users to benefit from the efficiency computer vision provides. 
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Introduction  
Most classification and object detection methods are applied to a few images at a 

time. Artificial intelligence (AI) and cloud computing, combined with an increased 

availability of remotely sensed images, can increase the efficiency and effectiveness of 

analyzing vast amounts of imagery. By understanding macro-level trends such as 

disposition of military aircraft over hundreds of airfields, users understand patterns to 

help guide policy level or mission-oriented decisions. This is also true for defense and 

humanitarian issues. To show the value of rapid imagery ingestion pipelines, cloud 

computing, and computer vision (CV) algorithms, different real-world examples will be 

evaluated. 

First, a brief overview of AI, CV, and machine learning (ML) will be explored to 

provide background on what these terms mean regarding remotely sensed satellite 

imagery. Advances in cloud computing and the use of graphics processing units (GPUs) 

have significantly advanced the ways AI/ML/CV analyze imagery and other forms of 

data (Jermain et al., 2016). The advances surrounding AI/ML/CV and cloud 

computing/processing power would not be possible without the actual data. In this case, 

the data is commercially available satellite imagery. New imagery providers and the 

reduced price of satellites and imagery have created an increase in imagery over the last 

decade (Chisuwo, 2018). Chapter 1 explores the nexus between compute power, 

AI/ML/CV, and increased availability of imagery. 

Today there are few ways in which to automate object-based image analysis or 

land-cover classification (Maggiori et al., 2017). Classification is more likely done on an 

image by image basis. This allows for individual control when classifying an image, but 

it fails to attain a bigger picture over space and time. Due to the decreased cost of 

imagery, there is more imagery available to generate analysis over time. The derived 

large-scale data and analysis can be incorporated into financial, defense, or humanitarian 

assistance models that deal with spatial data. (Hope, 2016). Instead of working manually 
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with many images, automation allows for the analysis of thousands of images in the same 

amount of time. The data can then be incorporated into a broader model or workflow 

(Buchen, 2015).  

To show the value of AI/ML/CV, cloud computing, and increased availability of 

imagery, different humanitarian and defense use cases are presented below. Section 2.1 

examines the Battle of Marawi. The battle took place in the Philippines between May and 

October 2017. The automated detection of objects at scale over the area of interest (AOI), 

land cover classification, and insight into geolocation data will be used to show the 

importance of such data to a military commander or humanitarian organization. Section 

2.2 evaluates the automation of multi-class aircraft at scale for peacetime indications and 

warnings (I&W). The importance for an analyst revolves around the movements of near-

peer adversaries, and the time savings associated with AI/ML/CV when compared to a 

human analyst. The last use case examines the Camp Fire which took place in Fall 2018. 

A land cover examination shows how large-scale data is used to help guide disaster relief 

efforts both in near real-time and for post-disaster recovery.  

This demonstration of novel workflows seeks to show how the above use cases 

can benefit from AI/ML/CV. These workflows can be reproduced for future imagery and 

other forms of geospatial analysis in the geographical sciences, both broadly and for 

specific humanitarian and defense needs. The object detection algorithms were trained on 

Digital Globe’s Worldview. The land cover algorithm was built and trained on Planet 

Dove constellation imagery. Use of imagery and geolocation/telemetry data was made 

possible by Orbital Insight, a geospatial analytics company based in Palo Alto, CA 

(“Orbital Insight” n.d.).  
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Chapter 1: Technology Advances 
1.1 Increase in Data 

New commercial satellite imagery providers, and the cost reduction of building 

and launching satellites has increased the amount of imagery available (Marr, n.d.-b). 

This is partially due to venture capital money supporting new companies involved in 

creating and launching satellites. From 2015 to 2017, it is estimated that a combined $4.2 

billion in venture capital investment went to space ventures(“The Most Active Space 

Tech Investors,” 2017). In addition, from 2011 to 2016, the number of satellites orbiting 

Earth increased by about 40 percent (Burningham, 2016). These new datasets, that were 

once sparse and only limited to government customers, have now been opened for 

commercial uses.  

The growing interest of the data has continued the cycle of building satellites, 

launching, and then acquiring remotely sensed data for various uses. The private sector 

has enabled this cycle. SpaceX, a private rocket company, launches its Falcon Heavy 

Rocket for approximately $90 million per launch (“SpaceX Readies First Falcon Heavy 

Launch for Paying Customer ,” 2019). This contrasts with NASA’s Space Launch System 

(SLS), which costs approximately $1 billion per launch (Powell, 2018). The SpaceX 

rocket is partially reusable, driving down future launch costs. Therefore, the cost of 

launching future rockets and imagery satellites decreases. This also leads to an 

unprecedented amount of data creation in general. In 2018, it was estimated that 90% of 

the world’s data had been created in just the previous two years (Marr, 2018). Although 

not directly relating to remote sensing data, it provides a metric for understanding the 

future supply and demand for all forms of data. As seen in figure 1 below, there has been 

a sudden increase in civilian operated satellites within the last decade (Belward & Skøien, 

2015). 
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Figure 1. Near-polar orbiting, operational land imaging civilian satellites (Belward & Skøien, 2015). 

  

Since 2010, an increased rate of commercial satellites have been launched. Many 

of these satellites include multispectral and synthetic aperture radar (SAR) capabilities. 

Some also are referred to as “constellations,” or “small sats.” These are groups of 

satellites that are relatively small, and collectively allow for a higher revisit rate of the 

Earth’s surface (“eoPortal - Earth Observation Directory & News,” 2019).  
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Table 1. Sampling of current imagery satellites. 

 
 

 Table 1 is not a comprehensive list of commercial satellites launched in the last 

ten years (“Satellite Missions Directory - Earth Observation Missions - eoPortal,” 2019). 

However, it shows the increasing number of satellites launched over the last seven years 

and an indication for more launches in the next decade (“Satellite Launches to Increase 

Threefold Over the Next Decade - Via Satellite -,” 2017). Planet, Iceye, Blacksky, and 

Capella also are planning on launching more constellations (Spaceflight, n.d.). These 

small and relatively cheap satellites, combined with commercial launch vehicles, are 

contributing to the increase of data and reduced cost of imagery. For instance, on 1 April 

2018 the India Space Agency delivered 24 U.S.-made small satellites(“India space 

launch: One rocket, 29 satellites, three orbits,” 2019). Satellites from Lithuania, Spain, 
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and Switzerland also were delivered on the same launch, at varying orbits. Government 

databases also are useful for humanitarian and defense uses. As of 2016, the Earth 

Science Data and Information System (ESDIS) held 7.5 petabytes of data, all of which 

was in-domain remote sensing data (Chi et al., 2016). The increase of data has provided 

the opportunity for exploratory analysis to be conducted. Exploratory analysis on large 

quantities of satellite imagery may not have been the reason for the increased number of 

launches carrying imagery satellites. However, understanding what insights and signals 

can be derived from this type of “big data” is worthy of evaluating. AI/ML/CV and cloud 

computing is one way to analyze these datasets.  

 

1.2 Cloud Computing 

Private satellite and launch vehicle companies have driven down the cost of 

satellite imagery (Peng, n.d.). Therefore, governments are not the only organizations to 

have access to this data. As more remotely sensed data is created, the need for storage 

and analysis also increases. Like the creation of data through multimedia, big data also 

relates to geospatial data. This can be in the form of imagery, geolocation data from cell 

phones, and automated identification system (AIS) data for ships. Regardless of what 

constitutes big data, there are similarities among them. Three characteristics that help 

explain big data in general, and satellite imagery and other geospatial datasets in 

particular are: 1) data is numerous, 2) data cannot be categorized into regular relational 

database, and 3) data are generated, captured, and processed rapidly (Hashem et al., 

2015).  

A major concern is that data are being generated quicker than they can be 

processed. This is not a necessarily new phenomenon, but the current scale and diversity 

of data sources at which it takes place creates new challenges. These challenges span 

many industries, but it is especially relevant to the geospatial and remote sensing 

communities due to the novel nature of its applications for humanitarian and defense 
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issues. Big data can also be explained as “the amount of data just beyond technology’s 

compatibility to store, manage, and process efficiently” (Manyika et al., 2011). 

Additionally, big data can be understood through volume, variety, velocity, and value 

(Gantz et al., 2011). This definition also applies to remotely sensed and spatial data. 

Volume refers to the amount of imagery, in bytes, that is continuously being created. 

Variety refers to the type of data collected. For the remotely sensed data and spatial data 

fields, this refers to the different sensors that collect data, including but not limited to 

private and government sources of multi-spectral, hyperspectral, radar, geolocation/cell 

phone telemetry, and AIS data. Velocity is the speed of transfer. With advancements of 

downlink stations, imagery and cloud-based companies now need to create this 

technology to keep up with the amount of data created. For example, Amazon Web 

Services (AWS) have introduced ground stations to quickly downlink imagery from 

satellites (“AWS Ground Station – Ingest and Process Data from Orbiting Satellites,” 

2018). Lastly, the above needs to have value derived from them in order to prove useful. 

This means being able to find insights and unobvious value from large datasets. For 

satellite imagery, it is possible to use cloud computing to analyze large amounts of 

imagery and attain an understanding of what is happening over space and/or time. Before 

cloud computing (and eventually AI/ML/CV), this was done manually one image at a 

time. This degraded an analyst’s ability to incorporate a contextual narrative into their 

analysis.  

Cloud services and big data methods therefore work together by utilizing 

distributed storage technology in the cloud, rather than a local server or device. Big data 

are evaluated by cloud based applications, often as a service model, reducing the cost for 

a user who otherwise would need an architecture of their own (Hashem et al., 2015). 

Cloud computing allows for the processing of data over the internet by providers using 

“instances.” (Jermain et al., 2016). An Elastic Compute Cloud (EC2) instance from 

Amazon is one such example. An EC2 instance is a virtual server within the EC2 for 
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running applications on an AWS infrastructure (“Amazon EC2 Instance Types - Amazon 

Web Services,” n.d.).  For image processing, it is possible to not only use central 

processing units (CPU), but also graphics processing units (GPU) in a cloud instance. 

Previously, GPU-based computing required special hardware from such companies as 

NVIDIA (Buonaiuto et al., 2017). With cloud computing, GPUs, and parallel computing, 

new methods of analyzing big data exist. Microsoft, Amazon, Google, and other large 

technology companies offer their service as a relatively cheap way of using computing 

power (Sharma et al., 2012).  

Large vector and raster-based spatial datasets have also benefitted from the use of 

cloud computing and GPUs. A simple map projection transformation in a geographical 

information system (GIS) may not succeed if the dataset is too large. The efficient 

conversion of large vector datasets from one projection to another is possible through 

cloud computing and GPU technology (Tang & Feng, 2017). Applying GPU technology 

and cloud computing to imagery similarly helps computer vision algorithms complete a 

large-scale task. 

 

1.3 Artificial Intelligence 

Artificial intelligence is a broad term. For the purpose of this paper it is used as it 

relates to computer vision algorithms’ application to remotely sensed imagery. Object 

detection and land cover classification algorithms are applied to imagery at scale in the 

use cases in Chapter 2. 

Machine learning is one part of artificial intelligence. The design of algorithms is 

based on data that a machine can read, and can incorporate different types of algorithms 

such as neural networks, decision trees, or random forests (Lary et al., 2016). Machine 

learning can be used for classification of objects or pixels and be based on a few or 

thousands of variables. With the increased availability of satellite imagery, a more robust 

training dataset is possible to train and test algorithms. For instance, an algorithm for 
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detecting cars ideally uses thousands of training images during development. Training 

data is needed, and cars would be “tagged” or “labeled” based upon the specific 

circumstances and parameters of the future algorithm. The algorithm is then “trained” on 

these images and told what a car is and what a car is not, considering all pixel values for 

an image. This is repeated, and the algorithm is “tested” on a subset of images it has 

never seen before. Algorithm performance can then be scored. Typically, algorithms are 

scored based on a “precision and recall curve.” This curve is one way of evaluating 

algorithm performance. The curve is based on errors of omission and commission, but for 

computer vision as opposed to remote sensing purposes, precision and recall is used 

(Boschetti et al., 2004). Figure 2 is a confusion matrix example in which the concepts of 

precision and recall are taken. 

 

 
Figure 2. Confusion matrix example. 

 

Precision (Equation 1) relates to the metric measuring “out of everything the 

algorithm detected, what percentage was actually what it wanted to detect.” Or, “ability 

of a classification model to return only relevant instances.” (Koehrsen, 2018).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 +,-.	/012324.
+,-.	5012324.67891.	5012324.	

  (1) 
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Recall (Equation 2) means “out of all available objects that should have been 

detected, what percentage were actually detected.” Or, “ability of a classification model 

to identify all relevant instances (Koehrsen, 2018).   

 

𝑅𝑒𝑐𝑎𝑙𝑙 = +,-.	5012324.
+,-.	5012324.67891.	=.>8324.

   (2) 

 

These two numbers create a precision and recall curve. Algorithms can also be 

built to increase the weight of one of these metrics. So, if an algorithm has very high 

precision, it may have a lower recall. Conversely, if an algorithm recall is high, it may 

also have a higher number of false positives. Therefore, there are tradeoffs when trying to 

optimize for one performance metric. Optimizing the metrics that are most effective for a 

specific problem will vary. Lastly, the F1 score (Equation 3) is a single metric that 

averages precision and recall metrics for a model. 

 

𝐹1 = 2 × 5,.C2120D	×E.C899
5,.C2120D6E.C899

   (3) 

 

Specifically, this paper will showcase computer vision algorithms being used at 

scale, analyzing thousands of images in order to understand macro level trends that help 

guide more pointed investigation. These algorithms are part of a web-based geospatial 

analytics platform created by Orbital Insight, Inc. 

 
1.4 Algorithm Details 

The car detection algorithm was built on Worldview imagery from Digital Globe, 

with parking lots in the United States collected as training data. Imagery was then tiled 

and uploaded to a web-based data labeling software. Technicians then “tagged” 

thousands of cars in the imagery to create a training set. Figure 3 shows initial algorithm 

performance on a test set of imagery showing cars in parking lots. Initial car detector 
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performance was evaluated to be above 80% precision and recall. Future improvement 

includes training the car detector algorithm on imagery other than parking lots or paved 

surfaces. Dirt, grass, and other ground surfaces should be implemented into future 

training sets to improve overall algorithm performance on non-pavement surfaces.  

 

 
Figure 3. Initial car detector algorithm performance. Green dots are true positives, blue dots are 

missed detections, and red dots are false positives. Courtesy of Orbital Insight. 
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The land cover classification algorithm used mostly imagery from urban areas 

around the globe. Due to the imagery that is available in Planet’s catalogue, imagery 

sampling skew towards urban areas. Like the car algorithm, the land cover classification 

algorithm was built on training data created by human image analysts. Thousands of 

images are tiled and uploaded into a proprietary marking tool. Classes can then be 

“painted” or “tagged” based on the customized marking instructions provided. The land 

cover class primary focused on the building and road classes during the marking 

campaigns. This ultimately lead to higher performance for the building and road classes 

versus the other classes. Future improvement would include gathering more rural and 

non-urban training datasets. Precision and recall scores vary by class, but as seen in 

figure 4 initial land cover algorithm output visualizations suggest relatively valid results. 
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Figure 4. Initial output visualizations from land cover classification algorithm broken down by 

class. Courtesy of Orbital Insight.  
 

 Like the car detection and land cover classification algorithms, the multi-class 

aircraft detector went through a similar process during development. Imagery was 

gathered from airfields around the world, tiled, and uploaded into a web-based marking 

software tool. Aircraft were then manually marked using a customized marking tool 

within the marking software. In phase one, specific points on the aircraft were marked. 

During phase two, the marked aircraft were then categorized as fighter, bomber, 

commercial/passenger, and other. Machine learning was used to train an algorithm, which 
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was then tested on a different set of test imagery, not yet seen by the algorithm. 

Identifying true positives, false positives, false negatives, and false positives helped 

quantify the initial performance of the algorithm. This was also done for the car detection 

and land cover classification algorithms. Performance varied by class depending on two 

main factors. The first was how many aircraft of a specific class was marked. The more 

training data, the more likely that class will have a higher precision and recall. Second, 

how distinct an aircraft looks helps create a standardized type of object the algorithm can 

look for. For instance, a fighter plane looks very different than a commercial plane. 

Therefore, the algorithm has an easier time distinguishing the two types during the 

machine learning process. This contrasts with the difficulty the algorithm may have when 

trying to figure out the difference between a large cargo plane and a bomber plane. For 

the classes used in the use cases, precision and recall were all above 70%. Figure 5 shows 

a sampling of true positives during initial algorithm performance on a test dataset.  

 



 

 

                     
15 

 

 
Figure 5. True positives derived from initial multi-class aircraft detector algorithm performance. 

Courtesy of Orbital Insight. 
 
Chapter 2: Use Cases 

The use cases to follow and the associated technology are intended to show the 

benefits of AI/ML/CV when it comes to large-scale analysis. Example personas that 

would be able to use these workflows for their benefit include humanitarian organization 

personnel, military commanders, or intelligence analysts. With limited time and 
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resources, they are most likely to have to focus on finding and reporting on visible 

phenomena immediately relevant to the situation: military vehicles/equipment, 

barricades, closed neighborhoods, physical damages, infrastructure status, etc., leaving 

little to no availability for second-order impacts or locations, or longer-term 

predictive considerations. The introduction of CV-derived object detections either 

at selectively indicative locations such as destroyed buildings or at scale across the 

entirety of the city, can provide an auto-derived set of data with which to enrich the 

otherwise (justifiably) myopically-focused conflict reporting. Consequently, this provides 

a far greater depth of analysis and volume of quantitative data to the geospatial/imagery 

analyst's reporting, in turn increasing its utility to external analyst counterparts or national 

decision-makers.  

For the Battle of Marawi, these personas would either already be on the ground or 

preparing to intervene or monitor the battle at hand. Car counts, land cover changes, and 

geolocation information all help to provide personas with timely information that helps 

guide their mission decisions.  
By monitoring airfields globally, a geospatial/imagery analyst responsible for 

covering the region or subject matter has a responsibility to provide imagery-based 

reporting on aircraft counts at various airfields. Logging these counts creates a historical 

trend. From these trends, “Indications and Warnings” can be derived and thresholds for 

anomalous activity decided.  

Lastly, large-scale and timely land cover classification will be briefly examined in 

how it related to the Camp Fire in Northern California during the fall of 2018. This 

analysis has the potential to help wild land firefighters and other humanitarian assistance 

/disaster response personnel identify the situation on the ground with remote sensing and 

CV algorithms.  
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2.1 Battle of Marawi 
2.1.1 Introduction 

 The Battle of Marawi was a five-month long conflict that started 23 May 2017 

and is considered the longest urban battle in modern Philippine history (Singh, 2018). 

The main belligerents involved included the Armed Forces of the Philippines (AFP) and 

militants affiliated with The Islamic State (ISIS), including the Maute and Abu Sayyaf 

Salafi jihadist groups (Franco, 2017). Essentially these terrorist organizations took over 

part of the city, and the AFP’s mission was to clear and re-take the city. By doing so, 

many human and physical geographical changes took place. Patterns of life changed, 

civilians left the city, and many of the cities buildings were damaged or completely 

destroyed (Tagoranao & Gamon, 2017) .  

This use case shows tools and workflows that an analyst could deploy to produce 

information on a conflict area. First, car counts in the most heavily affected area of the 

city will be shown. Next, data from a land cover algorithm will be used to create visuals 

that show changes in building and road land cover classes. Lastly, sample geolocation 

data for the Marawi area will be shown against that of a nearby city where fighting did 

not take place. The computer vision algorithms used were built by Orbital Insight.  

 

2.1.2 Marawi Car Counts 

Digital Globe high-resolution imagery was the sole provider utilized for car 

detection. This was determined through the high performance and relevance of the DG 

Car Counter to this specific analysis. Once imagery is ingested into the pipeline, and 

tiling and pre-processing are completed, algorithms can be processed relatively quickly. 

The AOI examined is the southeastern part of Marawi, which is separated from the "safe 

zone" to its northwest by the Agus River and bordered to its south/southwest by Lake 

Lanao. This area was most affected by the fighting (Gunaratna, 2017).  
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Approximately 148 scenes were analyzed and 35,000 cars were counted. Setting 

up the project parameters took approximately 15 minutes. It took about 24 hours of 

compute time to order, ingest, and analyze all imagery. Without automated ingestion 

pipelines and car detector algorithms, the entire process would have taken several days. 

This would make the nature of the data less useful if it was needed by someone who is 

doing daily analysis as the battle unfolds. It should be noted that the larger the AOI, the 

longer it takes for all required imagery to be ingested. Also, note that due to the 

geography of the region, many scenes were unusable due to cloud cover. Figure 6 shows 

an aggregated hexbin plot of cars that were detected using car detector algorithm from 

January 2009 to June 2018. This map illustrates the scale and speed in which the data can 

be created, as well as an initial look into dispersion characteristics. Digital Globe imagery 

was used with a 50% cloud cover filter when querying available imagery. 

 

 
Figure 6. Aggregated hexbin plot of cars using car detector algorithm from January 2009 to June 

2018. Made with QGIS v3.0. 
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Based on the time series of this AOI, we note that raw car counts immediately 

decline once the battle starts on 23 May 2017. These trends are consistent with the 

expectation that commercial and passenger traffic through Marawi are severely disrupted 

due to the battle. The severe drop in automated car counts as soon as the battle begins 

would warrant a more in-depth analysis. Alerts for car count increases and decreases can 

then be set up based on the historical counts if needed using specific thresholds. Upon 

receiving a "decline in car counts" notification, an analyst would be prompted to examine 

the area more closely. The key results of the analysis include: 1) Notable drops in raw 

and rolling mean values during the initial start of the battle in late May 2017 and 2) As of 

July 2018, car counts have not completely recovered to their pre-battle numbers, possibly 

indicating that the city is still rebuilding, lacking infrastructure, and not suitable for 

repopulation. However, there is some hint of car numbers starting to increase after the 

battle possibly indicating cleanup and reconstruction. These key results can be seen when 

looking at figures 7 and 8. Car counts were derived from the available Digital Globe 

imagery dating back to the beginning of 2009. 
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Figure 7. Car counts per square kilometer for the Battle of Marawi AOI. The light blue block 
indicates the duration of the battle. Made with Plotly.py library. 

 

Figure 8. Raw car counts for the Battle of Marawi AOI. The light blue block indicates the duration 
of the battle. Made with Plotly.py library. 

 

Due to the relatively large size of the AOI, not all scenes provide 100% coverage 

as seen in figure 9. Conversely, figure 10 shows a scene covering the entire AOI. A 

threshold for the percentage of AOI unobserved was set to a minimum threshold of 25% 

coverage. This allows for the customization between using more scenes and car count 

observations, even if the scene only covers a small part of the AOI, versus less scenes 

that may have a more complete coverage profile. Therefore, it is likely that the very small 

counts shown are the result of limited coverage scenes, or scenes that are only covering 

areas that normally have low car counts (a field versus a parking lot). In this case, the 

rolling mean of car counts can be used as a better patterns of life indicator. Average car 

counts per square kilometer was also used as another way of verifying that car counts did 



 

 

                     
21 

 

in fact decrease once the battle began. Web-based graphic user interfaces (GUI) are also 

being created to visualize results detected by the back-end computer vision analysis. 

Figures 9 - 11 are such examples from an early version of Orbital Insight’s platform.  

 

 
Figure 9. Inconsistent with the trend of higher car counts before the battle, is a 5 April 2014 count of only 
100 cars. However, upon closer examination, this scene provided only partial coverage for the AOI. Also, 

the part of the AOI where there was coverage was in arguably a less densely populated area. These factors 
can be considered during post project analysis in order to create a more accurate portrait of what is 

happening on the ground. Map created from Orbital Insight platform using Mapbox basemap.  
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Figure 10. Cars visualized as dots from an image dated 10 April 2017. 892 cars were counted in this part 
of Marawi, just over a month before the battle began. This scene had total AOI coverage. Map created 

from Orbital Insight platform using Mapbox basemap. 
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Figure 11. Cars visualized as dots from an image dated 29 May 2017. 102 cars were counted in this part of 
Marawi a week after the battle began. The scene had total AOI coverage. Map created from Orbital Insight 

platform using Mapbox basemap. 
 
 

Because of the potentially randomized nature of single-collect observations, 

aggregated detection statistics along monthly intervals are examined, as seen in figure 12. 

In this case, figures are summarized by the maximum and average values of monthly 

composites. The monthly high and monthly average are helpful in a few ways. When 

looking at historical imagery in 2009, many monthly highs and monthly means are the 

same. This would indicate only one scene was taken during that month. Overall, there is a 

decline in car counts once the battle started. Car counts at scale also can be used to track 

reconstruction and repopulation efforts post-battle, assuming higher revisit rates continue 

as compared to pre-battle revisit rates. 
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Figure 12. Monthly car counts in the Battle of Marawi AOI. The gray block indicates the duration 

of the battle. Made with Plotly.py library. 
 

 

In addition to the overall impact of conflict on traffic within Marawi, spatial 

patterns are analyzed to derive additional conclusions or open new lines of analytic 

questioning. An interactive web map displaying commonly accessible background maps 

underneath CV-derived car points using Orbital Insight’s proprietary web-based platform 

is generated. This allows analysts to display and explore their findings in a readymade 

graphic format. Prior to the start of the battle, the most densely populated car counts were 

found in the west/southwest part of the conflict area AOI. Once the battle began, and 

civilians displaced, the general civilian pattern of life (PoL) changed. Car counts 

decreased overall within the combat AOI, and their dispersion arguably changed as well. 

This is especially evident in later stages as well as post battle. If a major city normally 

has the highest car concentration in the central business district (CDB), and that city was 

the location of a battle, then it can be assumed that the normal civilian PoL would be 
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affected. This would mean that there may not be as high of a concentration of cars in the 

CBD during or after the battle, when fighting and/or reconstruction is taking place. By 

understanding the counts and dispersion of cars, an analyst can better identify civilian 

and/or military patterns of life. In this case, the removal of civilian cars in an area of the 

AOI that normally has the highest concentration of cars could queue the analyst to focus 

more on the movements of the cars that are still there. Furthermore, if a high 

concentration of cars returns to what was considered the normal PoL car concentration 

location, then it could indicate a return of displaced persons. Figures 13 - 17 show the 

spatial distribution and counts of car detections at varying times leading up to, during, 

and post battle.  
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Figure 13. 14 MAR 2017: Before battle; a normal pattern of life with car counts clustered in what is 
assumed the central business district (CBD). Made with QGIS v3.0. 
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Figure 14. 10 APR 2017: Before battle; another normal pattern of life scene observed, cars still clustered 
in CBD. Made with QGIS v3.0. 
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Figure 15. 29 MAY 2017: One week into battle; severe decline in car counts overall, still some clustering 
in CBD, potential exodus of civilians. Made with QGIS v3.0. 
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Figure 16. 18 SEP 2017: One month before end of battle; continued decline in car counts, less clustering, 
potential removal of most civilian vehicles. Made with QGIS v3.0. 
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Figure 17. 07 JUN 2018: Seven months after battle; car counts beginning to increase, no CBD clustering, 
potential reconstruction efforts but no return of civilian PoL. Made with QGIS v3.0. 

 
 

Sample scenes in the above graphics were chosen based on the best AOI coverage 

and lowest cloud score. The dates reflect pre, during, and post battle timeframes. With 

this data, analysts begin to analyze the spatial distribution of cars over time, and make 

educated guesses concerning what is happening on the ground. Different counts of cars, 

as well as dispersion and clustering give insight into what is happening on the ground day 

to day. This data can be implemented into a larger humanitarian or operational plan that 

allows resources to go where they are most needed (Quinn et al., 2018). For instance, if 
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less civilian cars are in the city, a humanitarian organization can begin to look outside the 

city for where displaced peoples are settling, instead of wasting time and resources trying 

to get into the city to provide aid.  

 
2.1.3 Marawi Land cover Analysis 

 According to the Office of the United Nations High Commissioner for Refugees 

(UNHCR), 98% of the population of Marawi City was forcibly displaced (Refugees, 

n.d.). When the battle was declared over, many of the city's buildings were either 

destroyed or damaged due to aerial bombing, fire, or other explosive weaponry 

(Tagoranao & Gamon, 2017). By running a land cover algorithm over available imagery, 

an analyst can begin to track classification changes. Figures 18 - 20 help military 

planners and humanitarian relief personnel have a better, high-level understanding of 

what is happening in their area of operations. These visuals could eventually be 

incorporated into maps or other tactical mission planning products that are used to brief 

mission orders. Subsequent mission planning products could then be physically taken on 

a tactical mission where the status of a building or road is needed and can be easily 

referenced by the operator. This also proves useful for humanitarian organizations that 

need updated maps of roads and buildings to guide their efforts of providing aid and 

reconstruction. Land cover can also help automatically detect displaced-persons camps 

(Hassan et al., 2018) 

 The proprietary land cover algorithm available via Orbital Insight analyzed 

available Planet imagery over a 45 square kilometer AOI between January 2016 and 

November 2018. By creating a broad timeframe, a user can perform analysis on specific 

time ranges and classes. Once the classifications are complete over the imagery, the data 

can be queried to find quantifiable class information. For this use case, buildings and 

roads classes were used as indicators for what is happening on the ground. To find 
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before-and-after metrics, a Python script was used to detect changes between a 

“Baseline” and “Target” time range. The script uses date/time and AOI parameters to 

query two separate time ranges and the available data, and then determine if changes in 

class detections for buildings or roads took place. Changes are identified as “destruction” 

or “construction,” indicating a removal or addition of a polygon between the time ranges, 

respectively. In our case, the land cover algorithm creates class polygons, so the first 

metric performed simply was a count of “construction” and “destruction” polygons. The 

time ranges used were one month before the battle began and 13 months after the battle 

started. This analysis gives us a high-level indication if there were more buildings and 

roads destroyed or constructed once the battle began. The analysis showed (figure 18) 

that for these time ranges, 700 buildings were destroyed while only 150 were constructed.  

 

 
Figure 18. Polygon count changes based on specified baseline and target time ranges for battle AOI. Made 

with Plotly.py library. 
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 Selecting different baseline and target time ranges helps to understand what is the 

normal PoL. Baseline and target time ranges over the AOI when the battle was not taking 

place was used as a starting point in comparison to other time ranges. In figure 19, the 

output for time ranges when the battle did not take place is shown. All of 2016 was used 

as the baseline, and January – May 2017 was used as the target time range (right before 

start of battle). By evaluating different time ranges, change detection is observed for 

building and road classes. Change detection is not new, and pixel and object based 

classifications have been used to detect changes (Hussain et al., 2013). However, the 

scale and speed at which the process takes places allows for the analysis of hundreds of 

images in the time it would take a human to classify one. The land cover classification 

algorithm, like other methods, is based on a proprietary convolutional neural network to 

using spectral values and other parameters (Tewkesbury et al., 2015).  Once in the 

database, a query can be performed to identify class changes between time periods. The 

output can be visualized as polygons in a GIS. There are relatively few changes in figure 

19 as compared with figure 20, which shows changes between one month before and one 

month after the start of the battle. It would be expected that as the battle progressed, more 

buildings would be damaged or destroyed. Figure 21 shows how analysis can be 

portrayed on a rolling basis (month one of battle versus month two). By having a large 

database of land cover classifications, a user can conduct more specific time range 

analysis in order to get a better understanding of what is happening on the ground. The 

user can also reference historical analysis from previous imagery to see how the current 

analysis is similar or different. This allows the user to better understand PoL, what is 

normal, and what anomalous. This would be difficult for a user to perform manually at 

scale on an image by image basis without the use of the land cover algorithm. Instead, the 

user would most likely analyze a single image at a time manually, without understanding 

the previous pattern of life of the area. 
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Figure 19. Road and buildings class change analysis between two large, non-battle time ranges. Made with 

QGIS v3.0. 
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Figure 20. Road and buildings class change analysis between one month before battle and one month after 

start of battle. Made with QGIS v3.0. 
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Figure 21. Road and buildings class change analysis between month one of battle to month two of battle. 

Made with QGIS v3.0. 
 
 

As fighting continues, more strategic targets are engaged. The group of 

destruction polygons can be used to indicate happenings on the ground. In this case, an 

analyst would have guidance to investigate further. When doing so they would find that 

government forces were closing in on a Maute terrorist stronghold. The stronghold is a 

mosque and houses the Masjed Mindanao Islamic Centre. A closeup is shown in figure 

22.  

The mosque, which houses the Masjed Mindanao Islamic Centre, had been 
used by militants from the Maute terrorist group as a shelter, stockade, 
sniper's nest and holding area for their hostages. Satellite images show that 
the area around it has been reduced to rubble. The army had avoided 
bombing it out of respect for Muslims." (“Govt troops retake grand 
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mosque in Marawi, Asia News & Top Stories - The Straits Times,” 2017 
August, 26) 

 

 

 
Figure 22. A close up of changes near the Masjed Mindanao Islamic Centre. 

 

 

By looking at a close of the mosque area, we can see large destruction polygons 

(blue). These changes correspond to reports of militants using the mosque as a 

stronghold, and the government’s operational response (“The Straits Times,” 2017 

August, 26). The changes were detected using a land cover change detection script 

following the mass-classification of scenes using the land cover algorithm. This 

algorithm was trained on Planet Dove imagery with a 3m ground sampled distance 

(GSD) resolution. Additionally, the construction polygons of roads (green), show how 
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changes in the road are portrayed over time. Imagery in the “before” time range most 

likely had the road covered with debris or barricaded, and therefore that area would not 

be classified as road. It would make sense that rubble would be routinely created by 

bombings, and then removed to some degree in order to facilitate mounted patrols or 

other vehicle-necessary military operations. In a non-permissible environment such as a 

battle or humanitarian crisis, ground truth is often difficult to attain. Classifying large 

areas at scale helps provide a user of this technology make better decisions about what is 

happening on the ground as opposed to them not having any data and trying to operate 

blindly with no guidance. Figure 23 shows a higher resolution image from Digital Globe 

at the same location as the land cover classification outputs in figure 22. Using a lower 

resolution imagery source with a higher revisit rate can help detect changes, which an 

analyst can follow up on in higher resolution imagery for a closer analysis.  
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Figure 23. High resolution Digital Globe image taken a day after the land cover algorithm detected change 
in Planet imagery. 

 

Even amongst different commercial imagery sources, a variation of "tip and cue" 

could be used by one user or analyst with access to the algorithms. The tip and cue 

concept is used as a solution to the problem of trying to sort through loads of data 

efficiently to identify key events and patterns of life. Tipping takes place when key 

characteristics in an image in a large database is discovered and alerts an analyst or other 

user, thus saving that analyst from searching for the events in the database blindly (Post, 

2017). Cueing then is the creation of a list of characteristics to identify in the image 

database. Often the tipping event is generated after analyzing a large amount of imagery, 

and the cueing component allows for an analyst or other algorithm to take a closer look 

with higher resolution imagery. It often is a use case for sensors that are over tasked or 

have limited resources (Post, 2017).  

Figure 24 shows four different change detection results from four different time 

periods. The overall time frame was June 2017 to November 2017. Baseline and target 

time ranges were used on a month to month basis. The green polygons indicate the 

construction of structures just outside the main battle area along a main highway. Upon 

seeing this, an analyst would want to investigate further. 

 
Figure 24. Construction polygons from different time ranges as the battle progresses, left to right. 

 
 



 

 

                     
40 

 

The land cover change detection was the tip, and the cue would be a follow up to 

get more details with higher resolution imagery. In this case, Digital Globe Worldview 

imagery was used in the follow up (figure 25). The outcome showed a field hospital and 

helicopter landing pad construction. This finding shows how automation helps consumers 

of large quantities of remotely sensed data find value quickly, which in turn is 

implemented into mission or other plans.  

 

 
 
Figure 25. Digital Globe Worldview high resolution imagery of figure 21. The helipad and construction of 
new buildings could indicate a field hospital, or other AFP/humanitarian installation. By identifying other 
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such installations, a pattern of life can be pieced together. Detecting this trend without the help of the 
LULC algorithm would require increased analyst time and resources. 

 
 Quantifiable metrics for building and road class area also help understand pre-, 

during-, and post-battle events. Not surprisingly, the number of square meters destroyed 

(figure 26) would most likely be more than the number of square meters constructed 

(figure 27) during the battle. These metrics help understand when the most buildings 

were destroyed during the battle on a high level. This information is important for post 

battle analysis as well as near-real time metrics as the battle is going on. For 

reconstruction and humanitarian efforts, it helps quantify square meters of buildings or 

roads constructed post battle, thereby tracking reconstruction progress quantifiably.  

 

 
 

Figure 26. Square meters of area destroyed calculated based off land cover algorithm classifications. 
Shaded blue area indicates duration of battle. AOI is the greater Marawi area. Made with Plotly.py 

library. 
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Figure 27. Square meters of area constructed calculated based off land cover algorithm classifications. 

Shaded blue area indicates duration of battle. AOI is greater the Marawi area. Made with Plotly.py 
library. 

 

  
 The main land cover analysis can be summarized by the following. First, 

automatically derived class changes at a large scale allows an analyst to more easily 

detect anomalous activity. This gives the analyst a visual guide on which images to start 

analyzing in detail. Second, when comparing land cover output at scale before and after 

the battle, or month to month, the building and road classes identify areas requiring 

further analysis from a military and humanitarian perspective. Third, the AOI can 

automatically be examined over a long period of time to evaluate the speed at which 

reconstruction and repopulation takes place. A user or analyst can then take this data and 

incorporate it into their intelligence or operational models. Previously, manual gathering 

of this data would take additional time and resources.  
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2.1.4 Geolocation Data 

In addition to satellite imagery, geolocation data is a relatively new form of 

spatial dataset that is being used for PoL analysis. The geolocation data gathered for this 

analysis is based on anonymous cell phone GPS. Mobile applications on cell phones 

sometimes require location services to be enabled. This data is aggregated and sold to 

third-party vendors, which in turn sell it to other consumers of data. For example, 

geolocation, or “telemetry cell phone data”, is used to help understand traffic patterns in 

cities, thus making transportation more efficient (Bachir et al., 2019). The data comes in 

the form of “pings.” Pings are when a unique device such as a cell phone transmits a 

signal. That signal is then cached, along with billions of other pings from other devices. 

The pings contain coordinates and other data that can be analyzed to understand trends of 

movement, dwell time, etc. Visually, pings can be thought of as a point shapefile layer. 

This data has restrictions depending on the country, and the European Union (EU) 

has enacted the General Data Protection Regulation on 25 May 2018 (Goddard, 2017). 

GDPR increases the jurisdiction of those protected, the penalties of people breaching 

such data, strengthened conditions for consent, among other privacy based regulations 

regarding personal data(“Key Changes with the General Data Protection Regulation – 

EUGDPR,” n.d.). Geolocation data also has different “penetration rates” between 

countries, according to the third-party providers. The Philippines does not abide by 

GDPR and has a penetration rate high enough to understand basic insights into the 

Marawi area.  
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Geolocation data is acquired by different methods, but for our brief examination, 

the geolocation comes from a third-party provider that bought the data from undisclosed 

mobile apps. These apps were present on an individual device (mobile phone) during the 

time of location data retrieval. A one-month global sample was acquired from 15 June 

2018 to 15 July 2018. Although the sample timeframe is not ideal regarding the time of 

the battle, it does showcase what possibilities there are when incorporating geolocation 

data. For example, geolocation data can identify a high-level pattern of life change within 

a city due to an acute decrease of counts. It can also help quantify displaced persons’ 

migration patterns when only qualifiable information is available (Stein, 1981). Along 

with imagery, the geolocation data shows we can help identify “cold zones” or bombed 

out areas where people would not be living. For this use case, basic analysis concerning 

total number of pings and unique device counts over Marawi (figure 28), and a nearby 

city (figure 29) not engaged in a battle are compared. By visually looking at the data, the 

area with the heaviest fighting is a “cold zone.” Table 2 shows the breakdown of unique 

device counts and total pings for each city. This is just one example showing what can be 

derived from geolocation data. By adding context, personnel can more specifically query 

locations for geolocation data, proving more information for their specific need. 
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 Figure 28. Geolocation hexbin plot in the greater Marawi area. Note that despite the battle being 
over for about 8 months, geolocation pings in the southeast part of the city are still reduced. Made with 
Leaflet JavaScript library in a Python Jupyter Notebook.  

 

City Total Number of Pings Total Number of Unique Devices 

Marawi 117,336 4,099 

Iligan 461,934 18,624 

Table 2. The total pings and unique device count only show part of what is happening on the ground. 
Visualizing clustering and dispersion are important to understand human patterns of life. 
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Figure 29. Geolocation hexbin plot in the greater Iligan area, a neighboring city. Notice the lack of a “cold 
zone,” and the homogeneity of pings as one would expect in a city. Made with Leaflet JavaScript library in 
a Python Jupyter Notebook.  

 
 
2.2 Indications and Warnings: Multi-class Aircraft 
2.2.1 Introduction 

 Another use case revolves around high-level indications and warnings. Indications 

and warning intelligence is a methodology used by analysts to produce intelligence that 

can be used by the military or policy makers regarding an adversary’s ability and 

likelihood to act dangerously or aggressively (Wirtz, 2013). The idea is that by 

monitoring certain characteristics of an enemy, operational decisions will be made early 

on so that preventative action can take place before any nefarious action comes to fruition 

(Wilson et al., 2008). To be successful at implementing policies from indication and 

warning analysis, data is needed to identify patterns and sift through the noise (Lasoen, 

2017). This data can take many forms, but for this use case it is attempted to create a 
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workflow that can be implemented into a larger threat analysis model for entire countries 

or regions. The regions examined were military or dual-use airfields in the countries of 

China and Russia. Other airfields in the Middle East were also examined. By counting 

aircraft, policymakers can begin to understand the quantifiable counts of aircraft 

associated with each region or specific airfield and what is normal. These airfields can be 

continuously monitored, and any anomalous behavior automatically detected by the 

computer vision algorithm for multi-class aircraft detections. This use case also will 

attempt to show how new technology is able to use commercially available imagery and 

create historical time series analysis at scale for entire countries and their military aircraft 

posture.  

 

2.2.2 Methods 
The multi-class aircraft detector classifies fighter, bomber, and 

commercial/passenger, or other types of aircraft. Using cloud computing, 342 airfields 

and dual-use airports are analyzed. Historical imagery over the AOIs helps create a 

baseline pattern of life. As more training data is created and the algorithm is improved, 

new classes of aircraft can be incorporated into the multi-class detector. Large scale 

counts of these classes, particularly of near-peer adversaries, helps guide strategic plans 

such as the National Defense Strategy and National Military Strategy. The audience for 

this type of technology includes military analysts at all levels of command or intelligence 

analysts working in various organizations and teams.  

More specifically, the challenge that the multiclass aircraft detector algorithm is 

trying to solve is understanding foreign military aircraft disposition of forces at hundreds 

of locations. During large-scale conflicts, monitoring kinetic enemy activity uses valuable 

time and resources. Automatically analyzing historical imagery produces a baseline 

aircraft count. The baseline provides the analyst a database to refer to that includes 

historical aircraft locations and counts. Anomalous counts of aircraft are then more easily 
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identifiable. This analysis is relevant during peacetime and combat operations of varying 

scales. 

To showcase the importance the algorithm provides for saving time and resources, 

a project was created to count aircraft from available Digital Globe imagery across all 

342 airfields for 2018. To further the granularity of this analysis, a user could take the 

aircraft classes and break down the analysis by groups of airfields or type of aircraft. 

 

2.2.3 Results and Discussion 

 The multi-class aircraft algorithm counted 53,974 aircraft from 2,469 imagery 

scenes over 342 airfields. The algorithm ran on imagery filtered for less than 60% cloud 

cover with a minimum area coverage of 10%. This means that at least 10% of the image 

scene needed to be within the AOI (airfield) boundaries. The automatic analysis took 

slightly under a day to run. Conversely, it would take a human analyst a conservative and 

optimistic estimate of 7.5 work days to perform the same task. A breakdown of human 

counting estimates is provided in table 3. Human count estimates were gathered from the 

writer, who helped create the training data for the multi-class aircraft detecting algorithm. 

With computer vision and automated workflows, an analyst can focus more on contextual 

details of an area, providing a more accurate analyst report. The automated workflow also 

allows for a more rapid decision-making process during operational planning. 
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Number of 
scenes 

Number of 
aircraft in scene 

Avg. seconds it takes a human to 
count/analyze aircraft per scene 

Seconds Hours 

517 0 5 2,585 
 

709 1-10 15 10,635 
 

332 11-20 45 14,940 
 

446 20-40 90 40,140 
 

457 40  300 137,100 
 

total 
  

205,400 57 

Table 3. Breakdown of estimated time it would take a human to count aircraft. It would take 57 
straight hours of work to perform what the algorithm performed in slightly less than 24. This equates to 

approximately 7.5 work days assuming an 8-hour work day and breaks. 
 
 

Large scale analysis is one key result of using cloud computing, AI/ML/CV, and 

improved imagery ingestion pipelines. These technologies allow for a workflow that 

could not be done with traditional remote sensing software. With the correct architecture, 

hundreds of AOIs are analyzed. Figure 30 shows the AOI locations of the airfields 

monitored with available Digital Globe imagery from 2018. The multi-class aircraft 

detector algorithm then ran on that imagery as one complete, end-to-end workflow.  
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Figure 30. Locations of the 342 airfields analyzed with the multi-class aircraft detector for all of 2018 

using available Digital Globe imagery. Made with QGIS v3.0 
 

Once the algorithm is finished analyzing imagery, raw data is acquired via an 

application program interface (API) endpoint. Figures 31 -  34 are graphs created with the 

measured count of aircraft for an AOI, or groups of AOIs. The derived data shows 

aircraft locations as well-known-text (WKT) format. WKT is a text markup language for 

representing vectors on a map, and can be used to visualize points, lines, polygons, multi-

point, multi-polygons, etc. (“Well-known text representation of geometry,” 2019) WKTs 

act similarly to coordinates or shapefiles, as the text string can be used to create a visual 

geometry in a Geographic Information System. 
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Figure 31. Total aircraft automatically detected for Russian AOIs during 2018. Made with Plotly.py 

library. 
 
 
 

 
Figure 32. Total aircraft automatically detected for Chinese AOIs during 2018. Made with Plotly.py 

library. 
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Figure 33. Total aircraft automatically detected for miscellaneous AOIs during 2018. Made with Plotly.py 

library. 
 

 
Figure 34. Aircraft counts for Dzemgi airfield during 2018. Made with Plotly.py library. 

 
 

The multi-class air detector algorithm results output is in the form of a bounding 
box as shown in figure 35. These rectangles are categorized as fighter, bomber, 
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commercial/passenger, or other. Close-ups of thumbnail Digital Globe imagery in figures 
36 and 37 show ground truth detections of aircraft. 
 

 
Figure 35. Visualization of results from 14 April 2018 of Dzemgi airfield. A total of sixty aircraft were 

automatically detected in this image. Made with QGIS v3.0 
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Figure 36. Close up of aircraft detected in figure 35. The image corresponds to the northwest portion of the 

AOI in figure 35. Screenshot taken from Orbital Insight platform using Digital Globe thumbnail as base 
map. 

 
 
 

 
Figure 37. Close up of aircraft detected in figure 35. The image corresponds to the middle group in the 
southeast portion of the AOI in figure 35. Screenshot taken from Orbital Insight platform using Digital 

Globe thumbnail as base map. 
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 In peacetime, monitoring indications and warnings via disposition of near-peer 

enemy aircraft saves time and resources. It allows the military or intelligence analyst to 

focus on context and create deeper analysis while the data is being automatically 

collected. This historical data can also help predict when anomalies happen. For example, 

if airfields near a contested region suddenly have an increase of fighters or bombers, it 

could indicate some type of pending military action. The historical data collection of 

those specific AOIs, and the more robust analysis from the analyst, will help verify 

enemy intention. This in turn helps military and intelligence strategists formulate a more 

rapid and accurate mission response plan. Analysis can also be broken down into regions 

or individual airfields, with analysts assigned specific AOIs. This top-down 

planning/bottom up refinement flow of data creates ownership and transparency among 

an organization or military unit. 

 
2.3 Camp Wildfire 
2.3.1 Introduction 

 The Camp Fire in Butte County, CA was the deadliest and most destructive 

wildfire in California history (“CAL FIRE - Home,” n.d.). Total burned area is estimated 

to be 153,336 acres, with 86 fatalities and 18,804 buildings destroyed (“Camp Fire 

(2018),” 2019). There have been many studies surrounding forest recovery from wildfires 

using remote sensing. The use of the Normalized Difference Vegetation Index (NDVI), 

which is a numerical indicator that uses visible and near-infrared (NIR) bands to assess 

whether what is being observed contains live green vegetation or not has been used many 

times to evaluate forest recovery (Cuevas‐González et al., 2009). The shortwave infrared 

band (SWIR) has also been used to identify active fires, and to some degree see through 

smoke (Cho et al., 2018). Despite these analyses being useful, there are limitations. First, 

many of the analysis being used are run on imagery that is of relatively medium to low 

resolution (Brewer, et al., 2005). Additionally, the higher resolution imagery coming 
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from airborne and drones are only able to image small parts of a large fire, and are 

relatively expensive to employ (Allison et al., 2016). In order to provide valuable, timely, 

and large-scale information during a wildfire, new methods need to be employed that take 

advantage of cloud computing, AI/ML/CV, and robust imagery ingestion pipelines. 

 

2.3.2 Methods 

 A pipeline using cloud computing to rapidly ingest imagery allows for automated 

analysis to take place on imagery the same day of capture. Once imagery is ingested an 

already built land cover algorithm processes the imagery and provides land cover 

classifications over a large area. This can be repeated daily or as imagery becomes 

available. The area classified was 620 square kilometers. Before and after periods of one 

month each were used to show results, but in a real-time scenario time ranges can be 

adjusted as needed. The land cover aggregation algorithm used takes an area of interest 

(AOI) and ingests available imagery based on certain parameters such as date range, 

cloud cover, and percent AOI coverage. It then looks at all cells from all scenes and 

assigns it a class based on all the available data. These cell classifications are then 

polygonised. The polygon results are visualized in a web-based platform built by Orbital 

Insight. Additionally, the result geometries can be retrieved via an API and visualized in 

any GIS software.  

Once the imagery request was completed, the algorithm took approximately 3 

hours to complete the analysis. The result is an aggregated classification of the Camp Fire 

extent area. In this manner, we can collect such foundation data from time periods closely 

preceding a natural disaster, thereby offering a viable and accurate baseline comparison 

against other data sources for after the disaster. This provides government and 

humanitarian organizations with real-time, predictive insights regarding the human, 

infrastructure, and network costs of these events. 
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2.3.3 Results and Discussion 

Visually the differences between figures 38 and 39 can be seen even when 

zoomed out to show the full extent of the Camp Fire’s reach. Not surprisingly, large areas 

of the forest class were removed. These classifications, if performed daily, would be able 

to give a quantifiable estimate of class loss quicker and easier than a person on the 

ground. Once the data is in a GIS or Pandas python library DataFrame (“Python Data 

Analysis Library — pandas: Python Data Analysis Library,” n.d.), it can be analyzed to 

quantify changes in classes. Additionally, one can zoom in as shown in figures 40 and 41 

to see more specific instances of destruction. Figure 40 shows a neighborhood where 

buildings were classified in the before aggregation but lost in the after aggregation, and 

figure 41 shows another area affected by the Camp Fire with before and after land cover 

classification results. figure 42 attempts to portray visual accuracy of the algorithm. 

Classification results output is overlaid on an OpenStreetMaps base layer for comparison.  

Areas with no classification simply did not have enough data as per the 

aggregation parameters of the algorithm. These thresholds can be adjusted if needed to 

accept a wider variance of classification precision metrics. However, with less stringent 

precision thresholds for each class, the higher the potential for misclassifications and 

therefore reduced usefulness.  

Metrics concerning damage assessment are important to policy makers and 

leaders in government, even while a fire is ongoing. Anecdotally, firefighters are often 

ordered to count damaged and destroyed buildings even when the extent of the fire is 

unknown. Due to these politics, government leaders succeed in filing reports but at the 

expense of firefighter resources that could better have been spent by obtaining where the 

fire is in entirety and fight it appropriately.  
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Figure 38. Aggregated land cover classification based on available Planet Dove 3-5m 
GSD imagery for one month prior to the start of the Camp Fire. Made with QGIS v3.0. 
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Figure 39. Aggregated land cover classification based on available Planet Dove 3-5m 

GSD imagery for one month after the end of the Camp Fire. Note: false positives for the 
water class , but accurate portrayal of forest and building class removal. Made with 

QGIS v3.0. 
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Figure 40. Zoomed in classification of a neighborhood in the Camp Fire AOI. Left is the 
before fire classification result. Right is the after-fire classification result. Light gray is 

buildings, dark gray is roads, dark green is forest. Screenshot taken from Orbital Insight 
platform using Mapbox basemap. 
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Figure 41. Zoomed in classification of a rural area in the Camp Fire AOI. Left is the before fire 

classification result. Right is the after-fire classification result. Light green is grass, dark gray is roads, 
dark green is forest. Screenshot  taken from Orbital Insight platform using Mapbox basemap. 
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Figure 42. Close-up comparison of land cover aggregation algorithm and OpenStreetMaps basemap, 

before fire, showing building (red) and road (pink) classes. Made by using QGIS v3.0. 
 

Conclusion 
 This study showcased the advantages cloud computing, AI/ML/CV, and big data 

analysis has on remotely sensed data for humanitarian and defense issues. Three use 

cases were examined to illustrate how workflows using these technologies assist defense 

and humanitarian organizations achieve mission successes.  

 The Battle of Marawi used object detection, land cover change detection, and 

geolocation data to show how a commander on the ground could better fill in information 
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gaps to better create an operational plan. Humanitarian organizations could use the data 

to better project civilian pattern of life migration and rates of city reconstruction.  

 An indications and warnings use case used a multi-class aircraft detecting 

algorithm as a proxy for near-peer adversary military activity. Aircraft counts were taken 

form 342 airfields over a one-year time period. This data helps create a baseline, which 

can be incorporated into a military or intelligence model for high-level foreign 

operational activity. It also allows a user to create a historical analysis from which future 

anomalous activity can be automatically detected, saving analyst time and resources. 

 Last, it was briefly examined how with the proper imagery ingestion pipelines and 

automated analysis, an algorithm can mass-classify large disaster areas before and after 

the event. This analysis helps with post-disaster reporting as well as relatively real time 

data needed to guide disaster relief efforts. The algorithm can provide daily metrics on 

land cover classes that otherwise would have needed a human to manually review all 

available imagery. This in turn allows more firefighters and relief personnel to be in the 

area where action is needed most, and not wasting time counting buildings that have been 

damaged, something an algorithm can instead do. 

 The use cases show that as cloud computing, AI/ML/CV, and remotely sensed 

data become more mainstream in private and public sectors, there are manifold 

possibilities it can be used to help solve humanitarian and defense problems. The 

algorithms vary in maturity, iterations built, number of training datasets, and imagery 

used. As algorithm performance increases, so will their use by humanitarian and defense 

organizations.  

Algorithm performance proved well enough to understand use cases better and 

save a user time and resources. However, these algorithms need constant training and 

increased iterations that encompass more diverse training sets. Additionally, industry 

would find it useful to train algorithms on open source imagery for humanitarian or other 

public sector use in local, state, and federal governments. Having these assets ahead of a 
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humanitarian crisis will help officials be prepared in correctly allocating resources to the 

correct areas in an efficient manner.  
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