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ABSTRACT

McClure, A.; Liu, X.; Hines, E., and Ferner, M.C., 0000. Evaluation of error reduction techniques on a LIDAR-derived
salt marsh digital elevation model. Journal of Coastal Research, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-
0208.

Accurate elevation information is a necessity for conservation and management of tidal salt marshes where elevation
differences can be as little as 2 m and where sea-level rise is a critical threat. We applied an existing method to evaluate
and improve the vertical accuracy of a 1-m LIDAR-derived digital elevation model (DEM) using a real-time kinematic
(RTK) GPS dataset with a vertical accuracy of 60.02 m and local vegetation data within a tidal salt marsh. We generated
correction factors for vegetation species within each major vegetation class and produced a modified DEM of the site.
Comparison between the original and modified DEM showed that the mean error was reduced from 0.16 m to�0.004 m
and the root mean squared error was reduced from 0.212 m to 0.098 m. These results demonstrate that it is possible to
significantly reduce vertical error contained within a salt marsh DEM derived from a LIDAR dataset using highly
accurate RTK GPS data combined with vegetation data collected on a per site basis.

ADDITIONAL INDEX WORDS: DEM, China Camp State Park, National Estuarine Research Reserve, coastal
vegetation, sea-level rise.

INTRODUCTION
Tidal salt marshes and surrounding estuaries are among the

world’s most biologically productive ecosystems, providing

commercial harvesting and recreational fishing opportunities

that in California alone are estimated to produce statewide

annual economic benefits between $6.3 billion and $22.9 billion

(Allen et al., 1992). These ecosystems provide detoxifying sites

through chemical transformation of contaminants and aid in

the stabilization of global nitrogen, atmospheric sulfur, carbon

dioxide, and methane levels (Goals Project, 1999). Vegetation

contained within tidal salt marshes in particular enhances

water-purification processes and offers many species refuge

from predators (Nicholls, Hoozemans, and Marchand, 1999;

Reddy and Gale, 1994). Salt marshes protect inland areas

against coastal flooding during storm-surge events, thereby

decreasing risk to life and property (Arkema et al., 2013;

Nicholls, Hoozemans, and Marchand, 1999). They also shelter

shorelines from waves and currents as sea-level rise (SLR)

accelerates.

To preserve salt marshes, marsh elevation relative to the

local tidal range must be monitored closely, as small deviations

from established tidal marsh elevations can be critical to the

ecology of a marsh. Studies have found that elevation

differences of less than 10 cm can dictate species distributions

(Silvestri, Defina, and Marani, 2005) and change salt marsh

erosion and accretion rates (Vanderzee, 1988). If the relative

tidal elevation of salt marshes declines, vegetated platforms

will have the potential of converting to mudflats or open water,

and both animal and plant species will undergo environmental

stresses (Callaway, Nyman, and DeLaune, 1996). As global

warming accelerates, SLR has become a major concern in

regard to the preservation of tidal salt marshes. Understanding

how tidal salt marshes respond to SLR and how SLR rates

affect the temporal and spatial patterns of salt marsh accretion

are thus becoming increasingly important (e.g., Kirwan and

Megonigal, 2013; Schile et al., 2014; Stralberg et al., 2011;

Swanson et al., 2013).

To accurately model various SLR scenarios and their

consequences on these elevation- dependent ecosystems, a

digital elevation model (DEM) possessing both high resolution

and high accuracy is crucial (Gesch, 2009; Kirwan and

Megonigal, 2013; Knowles, 2009; May, 2013). LIDAR is widely

considered a promising technology in fulfilling such demand

thanks to its unprecedented accuracy and resolution. LIDAR is

an active remote sensing technology that emits laser beams to

detect a surface. By measuring the time between transmission

and reception, the distance between the sensor and the ground

surface can be computed, thus enabling the inference of

elevation and height information (El-Sheimy, Valeo, and

Habib, 2005). Currently, the vertical error of LIDAR systems

generally ranges from 0.10 m to 0.20 m (Hodgson and

Bresnahan, 2004; Murakami et al., 1999). LIDAR systems

with a point density of 1 point/m2 are commonly available

(Ogilvie, 2014; USGS, 2013), and systems with 8–10 point/m2

are becoming the norm with technology advancements (Hein-

zel and Koch, 2011; Hladik and Alber, 2012; Jakubowski, Guo,

and Kelly, 2013). These characteristics of LIDAR make it the

desired technology to acquire high-resolution elevation data in
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areas with finely varying vertical relief (Rayburg, Thomas, and

Neave, 2009; Webster and Dias, 2006), such as salt marshes.

Interestingly, the application of LIDAR in salt marshes has

not been very successful. This is because the range of elevation

in these vegetated habitats is usually less than 2 m, making

small topographic differences very difficult to detect, even by

LIDAR (Chassereau, Bell, and Torres, 2011; Hladik, Schalles,

and Alber, 2013; Rosso, Ustin, and Hastings, 2006). In fact, it

has been found that while the vertical error in LIDAR sensors

is usually 0.10 m–0.20 m, the vertical error in LIDAR-derived

DEMs within salt marsh sites can be up to 0.31 m (Hladik and

Alber, 2012; Montane and Torres, 2006; Morris et al., 2005;

Sadro, Gastil-Buhl, and Melack, 2007; Schmid, Hadley, and

Wijekoon, 2011). Such error far exceeds the accuracy require-

ments of short-term SLR impact analysis.

An alternative technology used to obtain more accurate

elevation data is real-time kinematic (RTK) GPS, which is

commonly used for surveying salt marshes. When using local

bench marks, RTK GPS is capable of delivering horizontal and

vertical accuracy as high as 0.01 to 0.02 m (Leica Geosystems,

2013), which is nearly 10 times as accurate as current LIDAR

systems. However, it is impossible to acquire RTK GPS points

in salt marshes at a density similar to that of LIDAR. This is

because while LIDAR acquires elevations remotely, RTK GPS

has to collect elevations in the field. Costs to survey a large area

can be prohibitive, not to mention the difficult ground access

and ecological sensitivity (Athearn et al., 2010). Considering

that DEM accuracy is highly correlated with sample density

(Hu, Liu, and Hu, 2009; Wilson, 2012), RTK GPS points alone

will not provide adequate data to create a high-accuracy DEM

(Liu et al., 2012). It is possible, however, to use RTK GPS data

to calibrate and supplement LIDAR-acquired elevations during

DEM generation so that errors in LIDAR-derived DEMs may

be effectively reduced (Hladik and Alber, 2012; Sadro, Gastil-

Buhl, and Melack, 2007).

In addition to RTK GPS data, local vegetation data have also

been found to benefit topographical modeling. One problem

with using LIDAR in vegetated areas is that LIDAR-laser

returns often cannot fully penetrate dense vegetation, thus

leading to a misrepresentation of the ground surface (Rosso,

Ustin, and Hastings, 2006; Schmid, Hadley, and Wijekoon,

2011; Webster and Dias, 2006). This also applies to salt

marshes, as noted by Montane and Torres (2006) and

Chassereau, Bell, and Torres (2011) from their research at a

reserve in South Carolina. If local vegetation data are

available, however, vegetation-specific correction factors may

be generated to calibrate a LIDAR-derived DEM. Research by

Hladik and Alber (2012) in a salt marsh in Georgia showed that

this method can significantly reduce the overall mean error

(ME) from 0.10 m to�0.01 m. The same method was used again

the following year as part of a study that used hyperspectral

data to modify a LIDAR-derived DEM, which achieved similar

results (Hladik, Schalles, and Alber, 2013).

In this research, we examine the effectiveness of using both

RTK GPS and vegetation data to reduce the errors in a LIDAR-

derived DEM of a salt marsh on the Pacific coast. While similar

error production techniques have been applied before, all

previous studies were conducted along the Atlantic coast. Tidal

marsh environments in these areas are expansive and consist

of broad coastal floodplains (Phinn, Stow, and Zedler, 1996;

Zedler, 1991). Salt marsh vegetation is relatively homogeneous

along these coastlines and is often dominated by a single

species, Spartina alterniflora (Zedler et al., 1999), though other

species also exist (Hladik and Alber, 2012; Hladik, Schalles,

and Alber, 2013; Schmid, Hadley, and Wijekoon, 2011). In

comparison, Pacific coast salt marshes such as those in the San

Francisco Bay (SF Bay) are typically smaller in size, fragment-

ed with complex creek networks, and characterized by high

vegetation diversity; descriptors that make evaluating these

environments using remote sensing techniques more difficult

(Byrd et al., 2014; Byrd, Kelly, and Dyke, 2004; Zedler et al.,

1999). Whether RTK GPS and vegetation data can effectively

reduce vertical error contained within a LIDAR-derived DEM

in these areas is still unknown. In the literature, Sadro, Gastil-

Buhl, and Melack (2007) used vegetation data to improve a

LIDAR salt marsh DEM in southern California. Their accuracy

assessment was only carried out on the unmodified DEM,

however. Within SF Bay, Rosso, Ustin, and Hastings (2006),

Schile et al. (2014), and Stralberg et al. (2011) have applied

techniques to reduce error in LIDAR salt marsh DEMs, but

these studies have lacked either vegetation-specific corrections

or a detailed vertical accuracy assessment. In contrast, our

research provides the first comprehensive analysis on the

effectiveness of using RTK GPS and vegetation data to reduce

vertical error in a LIDAR-derived DEM on a Pacific coast salt

marsh. Findings and lessons from this case study will inform

future studies along the Pacific coast where a detailed

understanding of marsh responses to SLR is needed to help

prioritize conservation and restoration opportunities.

METHODS
Our study site was a salt marsh in China Camp State Park,

hereafter referred to as China Camp. Located approximately 25

km north of the city of San Francisco, China Camp borders the

SW edge of San Pablo Bay in Marin County, California (Figure

1). Vegetation within the site primarily consists of five species

(Figure 2). Salicornia pacifica covers the largest area of marsh

surface and dominates the relatively high salt marsh platform.

Known as a preferred habitat for the Rallus longirostris

obsoletus, S. pacifica is interspersed with tidal creeks, and its

canopy height is typically between 0.2 m and 0.4 m (Baye, 2012;

Wood et al., 2012). Another vegetation species is Spartina

foliosa, which is found along the low fringing tidal marsh, a

transitional area between salt marsh and mud flats, and can

grow up to heights of 1.2 m (Nordby, Cohen, and Beissinger,

2009). Three other less dominant vegetation species cover a

variety of locations. Bolboschoenus maritimus is found sporad-

ically populating low marsh areas between S. pacifica and S.

foliosa and has a height range of 0.08–1.5 m (Kantrud, 1996).

Grindelia stricta, with a canopy height of up to 1 m (Nordby,

Cohen, and Beissinger, 2009), is known as an important

habitat for the state endangered Laterallus jamaicensis

coturniculus (California National Diversity Database, 2013)

and is found primarily on natural berms alongside tidal creeks

(Baye, 2012; Wood et al., 2012). Distichlis spicata has a height

range of 0.15–0.45 m at maturity (Hauser, 2006) and is located

throughout the tidal marsh platform area and along the

terrestrial-marsh ecotone.
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Golden Gate LIDAR Project LIDAR Survey
We used LIDAR data from the Golden Gate LIDAR Project

(GGLP), which collected data for the United States Geological

Survey (USGS) National Map (USGS, 2015) for Marin and San

Francisco Counties along with portions of San Mateo and

Sonoma Counties between the months of April and July of 2010

during the lowest tides possible (Hines, 2011). All horizontal

data were projected in North American Datum of 1983

(National Oceanic and Atmospheric Administration [NOAA]

National Geodetic Survey [NGS]), and their accuracy was less

than 1 m based on a minimum point density of 2 points/m2.

Vertical data were collected in North American Vertical Datum

of 1988 (NOAA NGS) and have an accuracy of less than or equal

to 0.0925 m when measured as root mean squared error

(RMSE) (Hines, 2011). Further detail regarding LIDAR

acquisition for the dataset used in this study is provided in

Table 1.

Over 18 million points were extracted from the GGLP dataset

for this study. These LIDAR points were filtered with

TerraScan to produce a set of points classified as bare-earth

ground (Hines, 2011). This filtered set of points was then

cropped based on the study site boundary. A triangulated

irregular network (TIN) was built based upon the bare-earth

LIDAR points within the study site. The TIN was then

converted to a 1-m resolution DEM using the TIN-to-Raster

tool in ArcGIS software (ESRI, 2013). Details of the TIN-to-

Raster conversion can be found in Hu, Liu, and Hu (2009). This

DEM is hereafter referred to as the Original DEM.

RTK GPS Survey
A set of 753 RTK GPS points were collected over 0.967 square

km of salt marsh (Figure 1d) located along the NE edge of

China Camp between February and March 2010 by the USGS

Western Ecological Research Center as part of a comprehen-

sive study of SLR modeling of 12 salt marshes within SF Bay

(Takekawa et al., 2013). Elevation points were recorded with a

Leica RX1200 RTK GPS rover with a horizontal accuracy of 61

cm and a vertical accuracy of 62 cm (Leica Geosystems, 2013).

The WGS84 ellipsoid model was used for both horizontal and

vertical positioning, measuring vertical error within 2.5 cm

throughout the study. An elevation point was measured every

25 m along transect lines separated by 50 m with no points

collected within tidal creeks (Takekawa et al., 2013).

Vegetation Classification Map
A vegetation classification map of China Camp, which has

served as the baseline habitat map for the San Francisco Bay

National Estuarine Research Reserve China Camp Compo-

nent, was obtained from NOAA. This map has been used to

identify marsh areas likely to be most susceptible to changes in

inundation and to prioritize areas for monitoring and restora-

tion planning. The map was created based on a 0.25-m

resolution color-infrared (CIR) aerial image acquired on 26

July 2006 (NOAA, OCM, 2012). This CIR image was classified

using a training set of 31 GPS points, which were collected in

November 2005, to represent the dominant vegetation species.

The classification method used was the maximum likelihood

algorithm in the ArcGIS Multivariate Toolbox. The classifica-

tion result was assessed using 176 points randomly generated

by NOAA personnel within the study site in February 2008.

Each of the 176 points was located in the field using a GPS

receiver; the dominant species within a 1-m radius was

recorded for each point. These 176 GPS points are separate

from the 753 RTK GPS data points introduced previously in the

‘‘RTK GPS Survey’’ section. The overall accuracy of the

classification was 91%, and the Kappa statistics were 82% for

six vegetation species, five of which are found within our study

Figure 1. (a) Study site location along the west coast of California. (b) Study

site location within San Francisco Bay. (c) USDA National Agriculture

Imagery Program (USDA, 2009) aerial image with original LIDAR-derived

DEM overlay (Hines, 2011). (d) RTK GPS survey point locations within study

site boundary (USGS, 2013).

Figure 2. Vegetation distribution within the study site based on a color

infrared image classified using the maximum likelihood method (NOAA,

OCM, 2012).
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area (Figure 2). These five vegetation species are B. maritimus,

S. foliosa, G. stricta, S. pacifica, and D. spicata. Table 2

summarizes the areal coverage of these vegetation species,

their elevations in the Original DEM, and their classification

accuracy in terms of user’s accuracy. It can be seen that

although all other vegetation species were classified fairly

accurately, the accuracy of B. maritimus, which has the least

areal coverage, was only 33%.

Accuracy Assessment of Original DEM
Using a similar method to Hladik and Alber (2012) and

Hladik, Schalles, and Alber (2013), we assessed DEM vertical

accuracy by overlaying RTK GPS points on the Original DEM.

RTK GPS elevation values were assumed to be the true ground

elevation. The elevation of the cells containing RTK GPS points

was extracted from the Original LIDAR-derived DEM and

compared to the RTK GPS elevation. A comparison of the

overall site was conducted first, followed by assessments in

each of the five vegetation species listed in Table 2.

For each vegetation-specific accuracy assessment, the error

at point i, denoted as Dzi, was calculated by Dzi ¼
zLIDARi

� zRTKi
, where zRTKi

was the elevation of the ith RTK

GPS point and zLIDARi
was the elevation of the cell in the

Original DEM, which contained the RTK GPS point. The errors

were then summarized using the following statistics: ME,

standard deviation (SD), RMSE, fundamental vertical accura-

cy (FVA), and 95th percentile. ME is the mean of all errors, i.e.

ME ¼ ð
X

DziÞ=n. RMSE, which is routinely used in DEM

accuracy assessments, is calculated using the following

formula:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðDziÞ2

n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðzLIDARi

� zRTKi
Þ2

n

s

RMSE can be interpreted as SD if the errors are normally

distributed and contain random errors only (NDEP, 2004).

Otherwise, RMSE is best interpreted as the average magnitude

of the errors (Liu et al., 2012). FVA, also known as the 95%

confidence interval, is calculated as 1.963RMSE. This statistic

is useful when DEM errors have a normal distribution (Flood,

2004). In the case of nonnormal distribution, the 95th

percentile, which means 95% of errors are less than or equal

to this value, should be used (Flood, 2004; NDEP, 2004). To

determine whether the vertical errors follow a normal

distribution, we calculated the skewness of the errors in the

Original DEM and Modified DEMs, first using all errors in each

DEM and then using the errors in each vegetation species. A

skewness value beyond the range of [�0.5, 0.5] suggests

nonnormal distribution (Flood, 2004).

DEM Modification Using RTK GPS and Vegetation
Data

A correction factor was generated for each vegetation species

by calculating the corresponding ME. ME of the overall study

site was calculated as well to be later used to modify areas

devoid of vegetation. When generating each correction factor,

75% of the RTK GPS points bound by that vegetation class (or

the entire study site for the site-wide correction factor) were

randomly selected to serve as training points. The remaining

25% of the RTK GPS points served as test points. Elevations of

the training points in the Original DEM were extracted and

compared with the elevation values provided by RTK GPS. The

ME of these training points was calculated and used as the

correction factor to modify the elevations in that vegetation

class. Accuracy of the modified elevations was assessed using

the 25% test points and reported in ME, SD, RMSE, FVA, and

95th percentile. Because of a relatively small number of RTK

GPS points for B. maritimus, S. foliosa, G. stricta, and D.

spicata, bootstrapping was used when evaluating these species

to obtain reliable statistics. Specifically, the 75%–25% partition

process described previously was repeated 30 times for each of

the four species. During each iteration, ME, SD, RMSE, FVA,

and 95th percentile were calculated using test points. The

average of the 30 iterations was used to describe the accuracy of

the modified elevations in B. maritimus, S. foliosa, G. stricta,

and D. spicata.

Table 1. LIDAR flight and sensor system specifications during acquisition

for the Golden Gate LIDAR Project (GGLP) dataset.

Sensor Leica ALS60 MPiA

Aircraft Cessna 207

Flight Date April, July 2010

Altitude (m above ground level, nominal) 2000

Swath Width (m, nominal) 1454

Sidelap (%, minimum) 20

Number of Spectral Bands 1

Wavelengths (nm, coherent pulsed laser source) 1064

Field of View (8, nominal) 40 (620 from nadir)

Laser Pulse Repetition Frequency (kHz, nominal) 120

Scan Frequency (Hz, nominal) 85

Scan Angle (8, nominal) 40

Nominal Post Spacing (pts/m2) 2 minimum

Table 2. Summary of vegetation height, areal coverage, elevation statistics, and classification accuracy for each vegetation type and the entire study site. All

elevation statistics were calculated based on the Original 1-m LIDAR-derived DEM and describe minimum, maximum, mean, and standard deviation (SD)

values in m. Areal coverage was based on the vegetation map created by classifying a color infrared imagery using the maximum likelihood method.

Classification accuracy values are the user’s accuracy for each vegetation species, as well as the overall accuracy for the entire site (NOAA, OCM, 2012).

Vegetation Class Height (m) km2 % cover

Elevation Statistics (m)

Classification Accuracy (%)Min Max Mean SD

Bolboschoenus maritimus 0.08–1.5 0.031 3.2 0.262 7.554 1.845 0.329 33

Spartina foliosa �1.20 0.065 6.7 0.139 2.274 1.172 0.325 100

Grindelia stricta �1.00 0.033 3.4 0.221 2.496 1.764 0.405 83

Salicornia pacifica 0.20–0.40 0.765 79.1 0.152 6.135 1.963 0.167 93

Distichlis spicata 0.15–0.45 0.032 3.3 0.384 5.489 1.969 0.278 100

No vegetation - 0.041 4.3 - - - - -

Overall - 0.967 100.0 0.139 10.356 1.886 0.348 92
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The ME value of each vegetation class was used as the

correction factor for that species throughout the site. The

Modified DEM was obtained by subtracting the vegetation-

specific correction factors from the Original DEM. Areas devoid

of vegetation were modified using the site-wide correction

factor. The accuracy of the Modified DEM was assessed using

the 25% RTK GPS points saved as test points for the overall

study site.

RESULTS
Overall, the Original DEM had a ME of 0.160 m and a RMSE

of 0.212 m, and 95% of the vertical errors were equal to or less

than 0.301 m (Table 3). Among vegetation species, B.

maritimus produced the largest ME, RMSE, and 95th

percentile values. G. stricta produced the smallest ME, and

D. spicata produced the smallest RMSE and 95th percentile.

Unlike other vegetation classes whose vertical errors in the

Original DEM have both overestimations and underestima-

tions, ground elevations in the S. foliosa class were consistently

overpredicted in the Original DEM. In terms of correction

factors, which are the ME values in Table 3, the largest

correction factor of 0.255 m was for B. maritimus, and the

smallest correction factor of 0.103 m was for G. strica. The

correction factor of 0.170 m was applied to the largest amount

of the marsh surface because of the dominance of S. pacifica.

After the correction factors (ME) in Table 3 were applied, an

accuracy assessment was conducted on the Modified DEM. The

overall ME was reduced to �0.004 m, RMSE was reduced to

0.098 m, and 95% of the vertical errors were equal to or less

than 0.137 m (Table 4). B. maritimus still had the largest ME

(�0.018 m) among all classes; however, the sign of its ME

changed during DEM modification, suggesting that while

overestimation errors were effectively reduced, underestima-

tion errors were worsened in some areas. Large RMSE values

were still associated with tall vegetation species such as B.

maritimus (0.202 m) and G. stricta (0.200 m), and short

vegetation species such as S. pacifica (0.106 m) and D. spicata

(0.087 m) continued to have smaller RMSEs. The RMSE of S.

foliosa, which is similar to B. maritimus and G. stricta in height

but had much higher classification accuracy in the vegetation

map, was reduced to 0.073 m. Regardless of their RMSE values,

the 95th percentile of all vegetation species were less than or

equal to 0.142 m, and the overall 95th percentile was 0.137 m.

This suggests that even in B. maritimus and G. stricta habitats,

which had the largest RMSEs after modification, only 5% of

their errors were more than 0.142 m. Interestingly, the largest

95th percentile was found in S. pacifica (0.142 m), whose RMSE

(0.106 m) was much smaller compared to B. maritimus (0.202

m). This is most likely because B. maritimus had more negative

errors than S. pacifica, which also explained why the ME of B.

maritimus (�0.018 m) was negative while the ME of S. pacifica

(0.002 m) was positive.

DISCUSSION
As shown in Figure 3, there are both overestimation and

underestimation errors in the Original and Modified DEMs,

although the majority of errors in both DEMs were attributable

to overestimation. Overestimation of a LIDAR-derived DEM

ground surface within a salt marsh has been noted in previous

studies on both Atlantic and Pacific coasts (Hladik and Alber,

2012; Montane and Torres, 2006; Morris et al., 2005; Sadro,

Gastil-Buhl, and Melack, 2007; Schmid, Hadley, and Wijekoon,

2011). In our study, 95% of the ground elevations were

overestimated. A skewness test based on the errors in the

Original and Modified DEM, respectively, suggest that the

errors in neither DEM follow a normal distribution (Figure 3).

Nonnormal distribution was also observed when testing

skewness for individual vegetation species. These results

suggest that FVA values, which are based on the assumption

of normal distribution, are not useful in this research. Instead,

95th percentile vales should be used.

Multiple sources contributed to the error in the Original

DEM. According to the accuracy assessment framework by Liu

et al. (2012), error in a DEM is the sum of two components:

Table 3. Accuracy assessment of the Original DEM with n indicating the number of samples used to calculate mean error (ME), standard deviation (SD), root

mean squared error (RMSE), fundamental vertical accuracy (FVA), and 95th percentile. ME values were used as species-specific correction factors to create the

Modified DEM. Except S. pacifica and overall classes, all values were obtained using boostrapping. All values are in m.

Vegetation Class n ME SD RMSE FVA 95th Percentile

Bolboschoenus maritimus 14 0.255 0.176 0.310 0.608 0.437

Spartina foliosa 12 0.215 0.073 0.226 0.443 0.314

Grindelia stricta 16 0.103 0.202 0.215 0.421 0.260

Salicornia pacifica 480 0.170 0.104 0.199 0.390 0.292

Distichlis spicata 19 0.148 0.109 0.184 0.361 0.258

Overall 564 0.160 0.139 0.212 0.416 0.301

Table 4. Accuracy assessment of the Modified DEM with n indicating the number of samples used to calculate mean error (ME), standard deviation (SD), root

mean squared error (RMSE), fundamental vertical accuracy (FVA), and 95th percentile. Except S. pacifica and overall classes, all values were obtained using

bootstrapping. All values are in m.

Vegetation Class n ME SD RMSE FVA 95th Percentile

Bolboschoenus maritimus 9 �0.018 0.181 0.202 0.395 0.136

Spartina foliosa 4 0.002 0.067 0.073 0.142 0.068

Grindelia stricta 6 0.004 0.189 0.200 0.391 0.140

Salicornia pacifica 159 0.002 0.106 0.106 0.207 0.142

Distichlis spicata 6 0.011 0.087 0.087 0.170 0.102

Overall 189 �0.004 0.098 0.098 0.191 0.137
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error in the source data and error introduced by interpolation.

Previous research has derived that the error introduced by

interpolation is determined by curvature and point density

(Hu, Liu, and Hu, 2009). Given that tidal salt marshes are

relatively flat, interpolation error can be expected to be

negligible. Thus, error in the Original DEM was mainly

attributable to the error in the source data, which are the

bare-earth LIDAR points used to derive the DEM. Such an

error includes both the error in the LIDAR system and the

error caused by the laser’s difficulty to penetrate the salt marsh

vegetation canopy, a problem similarly noted in previous

LIDAR studies (Hladik and Alber, 2012; Morris et al., 2005;

Rosso, Ustin, and Hastings, 2006; Sadro, Gastil-Buhl, and

Melack, 2007; Schmid, Hadley, and Wijekoon, 2011). Because

the RMSE of the Original DEM was 0.212 m and the RMSE of

the LIDAR system was 0.0925 m, we estimate the RMSE of the

error attributable to other factors such as canopy penetration

difficulty and vegetation classification error to be approximate-

ly 0.120 m. Although we realize that RMSE is a descriptor of

DEM errors on a flat, paved surface and that we are calculating

RMSE on a vegetated surface, RMSE is still widely used as a

descriptor of error within a DEM. Methods and standards are

currently under review that would allow for future DEM

accuracy assessments on vegetated terrain (Coleman, 2014).

The error in the Original DEM varied from species to species.

Larger RMSEs were found in tall species such as B. maritimus

(0.310 m), S. foliosa (0.226 m), and G. stricta (0.215 m), while

smaller RMSEs were found in short species such as S. pacifica

(0.199 m) and D. spicata (0.184 m). One explanation is that

taller vegetation species can form a canopy that is difficult for

LIDAR to penetrate. In the case of B. maritimus, its height can

range from 0.08 m to 1.5 m (Kantrud, 1996), and its maximum

height is greater than any other species within the study site.

Similarly, S. foliosa and G. stricta both have a height of more

than 1.0 m, which is much taller than the height of S. pacifica

and D. spicata, which ranges from 0.20 to 0.40 m and 0.15 to

0.45 m, respectively. Yet, height is not the only factor affecting

LIDAR laser penetration (Sadro, Gastil-Buhl, and Melack,

2007). Stem density, biomass, and leaf orientation can also

prohibit LIDAR sensors from fully reaching bare earth at

marsh locations (Hodgson and Bresnahan, 2004; Rosso, Ustin,

and Hastings, 2006; Schmid, Hadley, and Wijekoon, 2011). In

our study, the LIDAR data were acquired between April and

July, the primary growing season for salt marsh vegetation. B.

maritimus can produce flowerhead clusters with three long leaf

bracts (Baye, 2007) and can form dense colonies, another factor

that could have contributed to canopy penetration difficulty. In

comparison, S. pacifica is erect, shrubby, and highly branched

(Baye, 2012), which could have allowed a greater chance for

laser penetration.

Another source of error in the Original DEM is vegetation

classification accuracy. In our study, B. maritimus has the

poorest classification accuracy (33%) followed by G. stricta

(83%). B. maritimus and G. stricta are both the least dominant

species in our study site, each occupying only 3.2% to 3.4% of

the total area. The habitat of B. maritimus is also adjacent to

the habitat of S. foliosa, two species that have been known to be

difficult to differentiate when using remote sensing techniques

during drought years (Baye, 2012). Furthermore, both B.

maritimus and S. foliosa are located downslope from the rest of

the salt marsh and can become smothered by dense S. pacifica

litter (Baye, 2012), allowing an opportunity for further laser

obstruction and classification confusion. G. stricta is bushy and

highly branched, and its distribution follows tidal creek edges

(Figure 2). In contrast, S. pacifica and D. spicata both

possessed very high classification accuracy, 93% and 100%,

respectively. S. pacifica dominated nearly 80% of the study site,

and D. spicata is dominantly found in sloping areas of the

terrestrial-marsh ecotone. These reasons explain why S.

pacifica and D. spicata contained smaller errors than that of

B. maritimus, S. foliosa, and G. stricta.

Error in the Original DEM was reduced significantly after

applying vegetation-specific correction factors. The RMSE of

the Modified DEM was 0.098 m, and 95% of the errors were less

Figure 3. (a) Histogram of vertical errors within the original DEM using 75% of the RTK GPS points. (b) Histogram of vertical errors within the modified DEM

using 25% of the RTK GPS points.
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than or equal to 0.135 m (Table 4). A closer look at each

vegetation class revealed that the RMSE of S. foliosa (0.073 m),

D. spicata (0.087 m), and S. pacifica (0.106 m) species are close

to the RMSE of the LIDAR sensor (0.0925 m), indicating that

most nonsensor errors such as those attributable to laser

penetration difficulty have been removed. B. maritimus saw a

nearly 50% reduction in RMSE, but its RMSE (0.202 m) is still

the largest among all species. The RMSE of G. stricta (0.200 m)

remained nearly the same after modification. However, its 95th

percentile was reduced from 0.260 m to 0.140 m, signifying that

many overestimation errors in G. stricta in the Original DEM

have been corrected.

The maximum vegetation-specific correction factor (ME) in

our study was 0.255 m (B. maritimus), which was identical to

that found by Hladik and Alber (2012). However, the minimum

correction factor in our study was 0.103 m (G. strica), which

was 0.06 m greater than that found by Hladik and Alber (2012).

When compared to Sadro, Gastil-Buhl, and Melack (2007), the

only other study that produced vegetation-specific correction

factors for a salt marsh DEM on the Pacific coast, our

maximum vegetation-specific correction factor was 0.07 m

greater, and our minimum correction factor was 0.03 m less.

These results suggest that vegetation-specific correction

factors vary from location to location, depending on vegetation

type and the data used during modification. For Rosso, Ustin,

and Hastings (2006), who found the heights of live and dead

canopies of S. foliosa and S. pacifica at a site located south of

China Camp ranging from 0.15 m to 0.80 m, their vegetation-

specific correction factor would likely be different from ours,

even though their study site was located in SF Bay. Similarly,

because Wang et al. (2009) found that using their 8 points/m2

LIDAR over a salt march in Italy resulted in an underestima-

tion of the vegetation canopy top by 0.177 m, their correction

factor would most likely be around 0.177 m, a smaller value

than the 0.255 m found in our research. Schmid, Hadley, and

Wijekoon (2011) reported a ME of 0.150 m for S. alterniflora in

a marsh area in South Carolina. Had they created a correction

factor for this species, the value would likely be 0.150 m instead

of the 0.03 m–0.27 m, as in Hladik and Alber (2012). These

studies suggest that vegetation-specific correction factors are

location and data dependent. They must be generated

according to vegetation type and salt marsh location using

the LIDAR and GPS data available.

To evaluate the effectiveness of our error reduction, we

compared the accuracy of our Original and Modified DEMs

with those found in Hladik and Alber (2012). For the errors in

the Original DEM, the overall ME was 0.160 m in our research

and 0.10 m in Hladik and Alber (2012). Similarly, overall

RMSE was 0.212 m in our research and 0.16 m in Hladik and

Alber (2012). These values suggest that our Original DEM

contained more errors than the Original DEM in Hladik and

Alber (2012). This was confirmed when comparing the

vegetation-specific statistics between the two studies. Because

of the difference in vegetation species, a direct comparison was

not informative. Vegetation-specific MEs in our study ranged

from 0.103 m to 0.255 m, whereas those found in Hladik and

Alber (2012) ranged from 0.01 m to 0.27 m. RMSEs in Hladik

and Alber (2012) ranged from 0.04 m to 0.31 m with all

vegetation species except tall S. alterniflora being less than

0.18 m. In contrast, all of the vegetation species in our study

had a RMSE of more than 0.18 m, with the largest RMSE being

also 0.31 m. Comparisons using the 95th percentile in both

studies further confirmed that the Original DEM in our study

contained more errors than the counterpart in Hladik and

Alber (2012).

Despite the significant differences between the Original

DEMs in these two studies, the Modified DEM in our study

matched more closely with that found in Hladik and Alber

(2012). After applying vegetation-specific correction factors,

the overall ME in our Modified DEM became �0.004 m

compared to �0.01 m in Hladik and Alber (2012). Overall

RMSE in our Modified DEM was 0.098 m, whereas the RMSE

in Hladik and Alber (2012) was 0.10 m, and 95% of the vertical

errors in our Modified DEM were 0.137 m or lower, whereas

95% of the vertical errors in the Modified DEM in Hladik and

Alber (2012) were 0.17 m or lower. These statistics suggest that

our Modified DEM was more accurate than the Modified DEM

produced by Hladik and Alber (2012). In both studies, the

largest RMSE value of 0.31 m, which was found in tall S.

alterniflora in Hladik and Alber (2012) and B. maritimus in our

study, was reduced by nearly 50%. On the other hand, our

vegetation-specific RMSEs and 95th percentiles remained

higher than those in Hladik and Alber (2012) even after

modification. This can be most likely attributed to the different

methods used to produce vegetation maps and the difference in

salt marsh vegetation composition and density between the

Pacific coast and the Atlantic coast. In addition, Hladik and

Alber (2012) used four test sites within their study site to

generate vertical accuracy statistics. In comparison, we

generated statistics based on the entire study site. Side-by-

side comparisons between the Original and Modified DEMs

produced during this study suggest that the error reduction

method based on using vegetation-specific correction factors

can be applied to salt marshes in the Pacific Coast as effectively

as, if not more so than, salt marshes located along the Atlantic

Coast.

Although our results highlight significant vertical error

reduction within the Original LIDAR-derived DEM, the

Modified DEM is still not adequate for some salt marsh

applications. For example, to model the impact of SLR, NOAA’s

rule of thumb is that the vertical error of a DEM should be at

least twice as certain as the SLR increment (NOAA, 2010). The

California Climate Action Team (2013) estimates that SLR for

coastal areas south of Cape Mendocino, which includes our

study site, is projected to be 0.15 m between the years of 2000

and 2030, 0.305 m between 2000 and 2050, and 0.835 m

between 2000 and 2100. Given these SLR increments, the

corresponding DEM must have a vertical accuracy of 0.075 m,

0.153 m, and 0.418 m, respectively, to reliably map SLR

vulnerability. The Modified DEM in this research has a RMSE

of 0.098 m, meaning it is suitable for modeling SLR impact

between 2000 and 2050 or between 2000 and 2100, but not

between 2000 and 2030. In fact, given that the LIDAR system

used in this research has an RMSE equal to or less than 0.0925

m, even if there was no additional error introduced by laser

penetration or vegetation classification, the LIDAR elevation

data would still not be accurate enough for near-term SLR

impact analysis between 2000 and 2030. More advanced
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LIDAR technology possessing lower sensor error and higher

penetration ability is necessary. While full-waveform LIDAR

allows for digitization and a full recording of the complete

backscatter signal, software and technical limitations present-

ly exclude this type of LIDAR from common commercial usage.

This being said, others have suggested that full-waveform

LIDAR can be used to deliver improved elevation data in marsh

and coastal areas with the ability to detect different types of

vegetation (Schmid, Hadley, and Wijekoon, 2011; Wagner et

al., 2004).

In addition to using advanced LIDAR technology, further

improvement on the Original DEM can be obtained by

increasing the number of RTK GPS points. In our study, all

vegetation species except S. pacifica had a limited number of

training and test points. Although we used bootstrapping to

assure statistical validity, an increased number of RTK GPS

points would help generate more accurate and robust correc-

tion factors. The American Society of Photogrammetry and

Remote Sensing guideline requires 30 samples per vegetation

species (Flood, 2004) based on the assumption that DEM errors

are normally distributed. Because both overall and vegetation-

specific DEM errors in this study were found not to be normally

distributed, more than 30 samples are necessary for each

vegetation species. On the other hand, the sensitivity of salt

marsh ecosystems and the cost of field data collection dictate

that proper planning and extreme care must be practiced so

that the salt marsh is exposed to the least amount of physical

harm during RTK GPS surveying. Considering that this study

site is home to federally endangered endemic species such as

Reithrodontomys raviventris and R. longirostris obsoletus, as

well as the previously mentioned state of California threatened

L. jamaicensis coturniculus (California National Diversity

Database, 2013), a useful direction of future research would

be to assess the minimum amount of additional RTK GPS

points needed for each vegetation species and their distribu-

tion. Additionally, we recommend collecting vegetation height

and species data for all points when collecting RTK GPS points,

thereby allowing for the production of height groups within

vegetation classes, which could be used to further refine

correction factors.

Another strategy for further improvement is site-specific

vegetation mapping. Hyperspectral and aerial images are often

collected concurrently with LIDAR data and have been used in

previous salt marsh DEM research (Hladik, Schalles, and

Alber, 2013). Images taken concurrently provide the opportu-

nity to obtain a highly accurate vegetation classification. In the

case that concurrent images are not available, care should be

exercised to minimize the temporal gap between LIDAR data

and vegetation mapping. In our research, the temporal gap

between the aerial imagery used to classify vegetation and

LIDAR datasets was larger than desired; however, the

vegetation map we used was the only one available for the

study site at this time. Additionally, planning a future LIDAR

flight during times when the marsh has the least biomass

accumulated (i.e. leaf-off conditions during a dry season) could

reduce vertical error because of laser penetration.

The error reduction technique used in this study as well as in

previous salt marsh studies (Hladik and Alber, 2012; Hladik,

Schalles, and Alber, 2013; Sadro, Gastil-Buhl, and Melack,

2007; Schile et al., 2014) addressed only the vertical accuracy

aspect of a LIDAR-derived DEM. Other accuracy aspects of a

DEM, such as its ability to preserve sequence and terrain

structure (e.g., peaks, pits, ridges, valleys, passes), are also

important but are beyond the scope of this study. For the

purpose of salt marsh preservation, different applications have

different accuracy requirements. For example, SLR vulnera-

bility analysis affects mostly the vertical accuracy of a DEM

because the result depends directly on absolute elevation

values; however, for other salt marsh analysis such as

topographical feature analysis in tidal creeks and coastal

environment monitoring, the ability of a DEM to preserve

elevation sequence signifies far more than a DEM’s vertical

accuracy. A DEM may produce fairly accurate estimates of the

elevation at two points a and b; however, if this DEM suggests a

is higher than b while the truth is the opposite, then this DEM

will not be useful to derive topographical features or flow

directions despite its high vertical accuracy (Liu, Hu, and Hu,

2014). The way to create DEMs that preserve elevation

sequence and terrain skeleton is still under investigation

(Liu, Hu, and Hu, 2014).

CONCLUSIONS
Tidal salt marsh habitats are under increasing pressure from

urbanization within SF Bay, a region that contains marshes

with higher primary productivity when compared to other

climate regions (Kelly and Tuxen, 2009). Recent studies have

found that the majority of marsh areas within SF Bay will not

be able to keep pace with current SLR rates unless they

sufficiently increase in elevation through accretion of sediment

and organic matter (Takekawa et al., 2013; Thorne et al., 2014).

Acquiring accurate elevation data is necessary to monitor the

future health of these essential ecological areas. Although

LIDAR provides a high density of points, higher vertical

accuracy is needed in these salt marsh areas that have

relatively small variations in elevation. To create accurate

LIDAR-derived DEMs for tidal salt marshes, our research calls

for more advanced LIDAR sensors that can deliver higher

vertical accuracy by penetrating vegetation canopies and

improved planning techniques that involve acquiring LIDAR,

RTK GPS, and local vegetation data concurrently, as well as

advanced research on DEM generation and accuracy assess-

ment.

In this study, we examined the feasibility of using RTK

GPS and vegetation data to improve the vertical accuracy of a

LIDAR-derived DEM. The methods outlined in this paper

were based on those applied to a salt marsh along the Atlantic

coast (Hladik and Alber, 2012). We demonstrated transfer-

ability of those methods to salt marshes found along the

Pacific coast and confirmed that the methods serve as a

robust protocol to assess and modify LIDAR-derived salt

marsh DEMs. Our research found that the Original 1-m

LIDAR-derived DEM overestimated 95% of ground eleva-

tions. RMSE in the Original DEM was 0.212 m, among which

the LIDAR sensor system accounted for no more than 0.0925

m and the remaining vertical error was primarily attribut-

able to laser penetration difficulty and vegetation classifica-

tion errors. Applying vegetation-specific correction factors

improved the DEM’s accuracy significantly, with 95% of the
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vertical errors being reduced to 0.137 m or less. This Modified

DEM will benefit future salt marsh research and manage-

ment efforts, such as long-term SLR modeling, habitat

conservation, and tidal salt marsh rehabilitation, many of

which are currently underway within SF Bay and all of which

rely on an accurate DEM (Brand et al., 2012; Goals Project,

1999; May, 2013). Research evaluating ecosystem resiliency

and marsh sustainability (Schile et al., 2014; Stralberg et al.,

2011; Swanson et al., 2013; Thorne et al., 2014) will also

benefit from highly accurate salt marsh DEMs for use with

current modeling techniques. In particular, a salt marsh

DEM with reduced vertical error could offer a comparison to

previous modeling efforts when used for initial marsh

elevation input.
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