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This study demonstrates a developing method for the isolation of individual trees in a 

canopy from 3-dimensional laser scanning data. This method is capable of delineating 

single trees from a storied canopy, and is effective for individual tree isolation. This 

research compared the Normalized Cut (NCuts) method of single tree segmentation to a 

more commonly applied Hierarchical Watershed Transform (HWT) within an urban 

setting. For this study two field sites located within the urban build-up of San Francisco, 

CA were selected. The results of this work demonstrated an implementation of the 

Normalized Cut method coded using freeware libraries, and showed significant 

differences between the two methods, especially in storied canopies. This study also 

demonstrated the effectiveness and feasibility of using freeware coding tools for research, 

thereby enabling a wider range of research possibilities without the expense of large 

software packages. 
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Introduction 

 With the use of airborne laser sensors, a large array of detailed information can be 

collected from vegetated areas without excessive field work, which usually comes at a 

high cost and often involves destructive sampling (Popescu, 2007). LiDAR (Light 

Detection and Ranging) is a technology that presents the ability to collect high density 3-

D point cloud data within densely vegetated study areas. This can be done through hand 

editing or through commonly applied automated techniques (Gatziolis and Anderson, 

2008; Gougeon, 1999; Zhao and Popescu, 2007; Kwak et al., 2007; Chen et al., 2006; 

Reitberger et al., 2007). One field that greatly benefits from these remote sensing 

technologies is forestry, where these data can be classified to simplify forest inventory 

and stand management through the creation of more detailed stand maps or individual 

tree identification (Popescu, 2007).  

 LiDAR system collects multiple returns per laser pulse as well as intensity of the 

return, while maintaining high levels of accuracy both horizontally and vertically 

(Popescu et al., 2007). However, there is still no single approach capable of returning 

optimal individual tree delineation in all cases. There are several available methods that 

attempt to delineate individual trees, each with advantages and limitations. This paper 

focuses on a comparison of two methods: the more traditional Hierarchical Watershed 

Transform (HWT) and the emerging method Normalized Cuts (NCuts).  

In my study there are two goals: 1) to compare HWT to NCuts to demonstrate the 

strengths of NCuts, especially in multi-storied canopies and 2) to demonstrate the 

feasibility of coding with freeware libraries for this research application. 



 

 

 

Developed by Shi and Malik (2000), the Normalized Cut is an unsupervised 

technique for image segmentation, meaning the cut is performed without user input of 

training information. This method approaches the tree delineation as a graph-partitioning 

problem, based around a set of global criteria (Carballido-Gamio et al. 2004). The basis is 

the separation of a region of interest (ROI) into a voxel space, or a set of 3-D volumetric 

pixels, which can be represented as a graph.  As the distance between voxels increases, 

the similarities between them decreases and will drop to zero after a threshold. The final 

goal is to split the graph into segments based on maximized similarities between segment 

members, or nodes, while minimizing the similarity of the edges that connect the nodes 

(Reitberger et al., 2007). 

My research compares the Normalized Cut method of single tree segmentation to 

a Hierarchical Watershed Transform within an urban setting. The results will demonstrate 

an implementation of the Normalized Cut method through the freeware Point Cloud 

Library (PCL - http://pointclouds.org/). My research question explore the difference in 

accuracy for Normalized Cuts single tree extraction versus that of the Watershed 

Transform.  I will also demonstrate the effectiveness and feasibility of using freeware 

coding tools for research to enable a wider range of research possibilities without the 

expense of large software packages. 

Methods 

Study Area 

For this study we used two field sites located within the city of San Francisco, CA 

(37.7833° N, -122.4167° W). Both sites are surrounded by urban build-up, but are part of 



 

 

 

the largest green-spaces in San Francisco. The first is the panhandle of Golden Gate Park 

(37.7723° N, -122.4474° W) (Figure 1a), which stretches approximately 1.2 km west to 

east from the eastern boundary of the main area of Golden Gate Park into the middle of 

the city. This section of the Park has high pedestrian and vehicular traffic, and has 

multiple streets that cross through it. The Park is home to many different species of trees, 

with some of the most common being the blue gum eucalyptus (Eucalyptus globulus), 

Monterey pines (Pinus radiata), coast redwoods (Sequoia sempervirens) and the 

Monterey cypress (Cupressus macrocarpa). The second site is John McLaren Park 

(37.7203° N, -122.4184° W) (Figure 1b), located in south San Francisco, which is the 

second largest park in San Francisco, covering 312 acres. The dominant tree species in 

this park is the blue gum eucalyptus, which was introduced early in the development of 

the Park. 

 LiDAR Collection and Processing 

 The LiDAR data being used for this study were collected in the spring of 2010 

through the American Recovery and Reinvestment Act (ARRA) Golden Gate LiDAR 

Project (Hines et al. 2010). These data were classified to create a 0.5 m canopy height 

model (CHM) by subtracting ground elevation values in a digital elevation model (DEM) 

from the elevation values of a digital surface model (DSM). A raster map layer was then 

returned where the z- values stored for each point represented a height above ground, 

instead of an elevation (Loos 2009, Naesset et al. 2002, Gougeon 1995). These processes 

were performed using the LP360 software package developed by QCoherent and the 

Lastools suite of tools developed by Martin Isenberg. 



 

 

 

 Hierarchical Watershed Transform 

A Watershed Transform can be thought of as a flooding simulation, where the 

canopy height model (CHM) is inverted. This process creates an image where tree tops 

are represented by low points, or minima, which resemble catchment basins. The edge-

detection algorithm portion of the watershed delineation then creates a boundary where a 

basin would overflow if filled with water, to prevent two basins from merging (Vincent 

and Soille, 1991). These boundaries are called watershed lines and are used to delineate 

the individual trees or tree stands. This study implemented a more advanced version of 

this method, called the Hierarchical Watershed Transform (HWT), which generates a set 

of nested partitions at several resolution levels.  

For a HWT a gradient image is used instead of the original. When using LiDAR 

data, the intensity of the return pulse can be used to create the gradient image (Kwak et 

al., 2007). The version of HWT we used calculates the boundaries with either a pixel or 

region level precision (Figure 2). Pixel level precision indicates that the image is viewed 

as a weighted graph, where the intensity values of the pixels are the primary unit. In 

contrast, the region level precision indicates that the image, when viewed as a weighted 

graph, has vertices representing the primitive catchment basins (PCB), or largest and 

simplest segmented regions, of each regional minimum.  

 The HWT is formulated as a graph optimization problem under the framework of 

the Image Foresting Transform (IFT) (Falcao et al., 2004). This means that the data are 

converted into a weighted graph represented by G=(V,E,w), where there exists two sets V 

and E, representing the vertices and edges, respectively. These two sets are weighted by a 



 

 

 

cost function, shown here as w. This structure results in partitions by labeling the 

different digitized edges, with the labels corresponding to separate catchment basins. 

Some of these edges can then be suppressed, to create larger watershed regions.  The 

edge weights determine which edges are suppressed, with the finest partition suppressing 

all edges and corresponding to the classical watershed.  

To derive the hierarchies between the most extreme segmentation levels, 

synchronous flooding was used so all parts of the image were submerged at a constant 

speed. This results in the assignment of different weights to the edges of the weighted 

graph. These calculations were performed by ranking regions by the volume criterion, 

which is the combined weight of image contrast by region and the region's size. 

A well-documented problem with the basic watershed transform is over-

segmentation of the image where the canopy of a single tree is split into multiple objects 

(Roerdink & Meijster, 2001; Popescu, 2003; Zhao and Popescu, 2007).  This problem has 

largely been solved through the inclusion of marker-controls to aid in identifying 

individual tree tops (Zhao and Popescu, 2007; Kwak et al., 2007; Chen et al., 2006). 

Marker controls were implemented in this study to limit over-segmentation, chosen from 

GPS data collected and corrected in the lab for a standard error of approximately one 

meter. 

Normalized Cuts 

 The method compared to the HWT was the Normalized Cut method introduced by 

Shi and Malik (2000) (see Figure 3 for a flow chart of Ncut methods). The basic 

approach of Normalized Cut treats the segmentation of images as a graph partitioning 



 

 

 

problem, where the edges joining two sets of graphs are removed, and the total weight of 

those removed edges are calculated as the dissimilarity between the graphs; this 

dissimilarity is called the cut. Typically this cut has been minimized to create the 

optimum partitioning, however this favors very small nodes and graphs, thereby creating 

extremely small disjointed cuts in larger datasets (Shi and Malik, 2000; Wu and Leahy, 

1993). 

 The basis of this method, when applied to LiDAR, is the separation of a ROI into 

a 3-dimensional volumetric pixel (voxel) space, which can be represented as a graph 

G={V,E}, where V is the set of voxels representing the segmentation nodes, and E the set 

representing the edges between nodes. The key idea is that as the distance between voxels 

increases, the similarities between them decreases and will eventually drop to zero. The 

cut is implemented on the sparse graph using similarities larger than empirical threshold. 

The sparse graph enables the near linear, versus exponential growth of computation time. 

The algorithm splits the graph into segments by maximizing the similarities between the 

individual voxels, while minimizing the similarity of the different graph segments. The 

resulting cost function is presented in equation (1), with equations (2) and (3) as inputs.  

   

𝑁𝐶𝑢𝑡(𝐴, 𝐵) =  
𝐶𝑢𝑡(𝐴,𝐵)

𝐴𝑠𝑠𝑜𝑐(𝐴,𝑉)
+  

𝐶𝑢𝑡(𝐴,𝐵)

𝐴𝑠𝑠𝑜𝑐(𝐵,𝑉)
       (1) 

 

𝐶𝑢𝑡(𝐴, 𝐵)  =  ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝐵        (2) 

 

𝐴𝑠𝑠𝑜𝑐(𝐴, 𝑉) =  ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝑉        (3) 



 

 

 

 

Equation (4) represents the sum of weights between two graph segments, A and B, and 

equation (5) is the sum of the weighted edges ending at segment A. In both equations, he 

value wij represents the weight value between two points, i and j. 

 A generalized eigenvalue problem, represented by equation (4), then solves the 

minimization cut of NCut(A,B) (Reitberger et al., 2007).   

 

(𝐷 − 𝑊)𝑦 = 𝜆𝐷𝑦         (4) 

 

In this equation the n x n weighting matrix W represents the weights between all voxels 

within a graph. The eigenvector is represented by y and the eigenvalue by 𝜆. This 

equation is derived from the Rayleigh quotient, which can be minimized by the smallest 

eigenvector of the matrix (in this case the matrix is represented by D - W), and the 

minimum value is the corresponding eigenvalue. This means that, because the first 

smallest eigenvalue of the matrix is 0, the second smallest eigenvalue is the solution for 

NCuts, and the corresponding eigenvector determines how to partition the graph (de 

Carvalho et al., 2010). To calculate the weights for the matrix W equation (5) is used.  

 

𝑤(𝑖, 𝑗) =  𝑒−𝐹(𝑖,𝑗) ∗  𝑒−𝑋(𝑖,𝑗) ∗ 𝑒−𝑍(𝑖,𝑗)      (5) 

 

In this equation, F(i,j), X(i,j), and Z(i,j) are weighted values for the intensity, horizontal 

data, and vertical data respectively. These values are more thoroughly explained in 



 

 

 

equations (6) – (8) respectively. This matrix is a variation on a simple adjacency matrix, 

where instead of a binary matrix measuring the relationship between each point, the 

weight between two vertices is used instead. A threshold is also implemented below 

which all calculated values become zero, to reduce computational complexity. The next 

matrix, D, is derived from W and is the number of edges incident to the vertex. In a two 

dimensional image this is computationally similar to performing a k-nearest neighbor 

search, or radius search, to find the number of connected nodes (Zhao and Liu, 2007). 

However, in a LiDAR dataset, the data is unstructured, meaning that the number of 

connected nodes is variable. In this instance, all other points within the graph must be 

initially considered when calculating the number of nodes, and then limited by a “no 

impact” threshold.  

 Therefore, the minimum solution for y1 represents the second smallest eigenvalue, 

and may only have two indicator values (+1,-1). These indicator values must then be 

discretized using a variable voxel threshold based upon the study site. For our study, the 

variable was set to 40 voxels based on the average number of points and collected tree 

heights. 

 NCuts was implemented using C++ and pre-existing libraries available from the 

Point Cloud Library project, which is a suite of coding libraries designed for 2D and 3D 

image and point cloud processing (http://www.pointclouds.org/). The initial point cloud 

data were left in an ASCII format in a text file containing X, Y, Z locations and the 

intensity value of each point. These points were read into an array, which was used to 



 

 

 

create the n x n weighting matrix W, based on equation (5) with equations (6) through (8) 

as inputs.  

 

𝐹(𝑖, 𝑗) = (
|𝑓𝑖−𝑓𝑗|

𝜎𝑧
)

2

 𝑤ℎ𝑒𝑟𝑒 𝑓𝑖 = {𝐼𝑚𝑒𝑎𝑛, 𝑊𝑚𝑒𝑎𝑛}     (6) 

 

In this equation 𝐼𝑚𝑒𝑎𝑛 and 𝑊𝑚𝑒𝑎𝑛 represent the average mean intensity of a voxel and 

the pulse width of the waveform. For this study the pulse width is not available, due to the use of 

discrete return LiDAR, however the algorithm can run without it, cutting the data based on spatial 

coordinates and pulse intensity. 

 

𝑋(𝑖, 𝑗) = (
𝐷𝑖𝑗

𝑋𝑌

𝜎𝑥𝑦
)

2

       (7) 

 

𝑍(𝑖, 𝑗) = (
𝐷𝑖𝑗

𝑧

𝜎𝑧
)       (8) 

 

The next two components, from equations (7) and (8), are X(i,j) and Z(i,j). These 

weights are used to control the distances between the voxels using the quadratic 

Euclidean distance between the voxels, with Dij
XY representing the horizontal and Dij

Z the 

representing the vertical. These functions calculate the most important impact factors of 

the similarity, dependent upon the distance between voxels, where F(i,j) is the quadratic 

Euclidian distance between two features, derived from the reflection values of the voxels, 

represented in equation (6). 



 

 

 

The resulting matrix, W, was then transferred to a triplet format, which is a small 

structure designed to hold the location and value of a non-zero data point. This triplet 

format is used to smoothly transfer data into a sparse matrix through tools from the 

freeware coding library Eigen, which is bundled with PCL. Based on our field data, we 

used the empirical weighting values σ
f 
= 0.5, σ

xy
= 8.47 m, σ

z 
= 14.12 m to keep the impact 

factors of F(i,j), X(i,j), and Z(i,j) controlled. These values were chosen from the data and 

through a Monte-Carlo simulation to represent the proper weighting points for quadratic 

Euclidean distance between the voxels, the crown width and height of the trees, and the 

average intensity values respectively. The value of σ
z
 is kept larger than the value for σ

xy
 

because typically tree heights are larger than their crown diameter. 

The cut value for each voxel is based on the results of equation (4), which can be 

calculated in a number of ways. In my project I experimented with two different 

eigensolvers. The algorithms I used were, minimal residual solver (MINRES), and 

Lanczos with a QR transform. 

The first eigensolver I implemented was a version of MINRES written for use 

within the Eigen libraries. This method is designed to approximate the exact solution of 

equation (4) by creating a vector within the Krylov subspace of the graph. This means 

that the equation works by multiplying vectors with the primary input matrix and then 

calculating the eigenvalues and eigenvectors based on the results. For the MINRES 

algorithm, this is used to minimize the Euclidean norm of the residual, producing the 

estimated eigenvalue. 



 

 

 

The next algorithm was a direct implementation of the Lanczos algorithm with a 

QR transform, tested through Eigen, a linear algebra library called LAPACK, and an 

interpretative language called GNU Octave. The Lanczos algorithm is an adaptation of 

the power iteration method used to find the most useful eigenvalues and eigenvectors of a 

system, using a limited number of operations. The algorithm works by iteratively solving 

for potential normalized eigenvectors of a matrix, which will correspond to the largest 

eigenvalues. As the values converge, they correspond to the largest eigenvalue of the 

matrix, and the algorithm can then be restricted to find the second largest. This will 

output a tridiagonal matrix of values that requires another algorithm, such as QR, to 

transform the results into eigenvalues and eigenvectors.  

The resultant data from both of these eigensolvers were used to create the cut 

threshold. Any values that fall below the second eigenvalue are separated into a new class 

if the voxel count for each class exceeds the maximum limit. This process splits the class 

G into two new class G1 and G2, creating areas of points for two distinct trees. This 

process is iterated until the total number of voxels reaches our threshold of 40. The output 

data consists of voxel values and locations, indicating which voxels fall within each of 

the split graphs, with the splits corresponding with the outer edges of each individual tree. 

Field Data Collection 

 To perform the accuracy assessment in situ data were collected from plots located 

at each study site.  In the Panhandle, data were collected from all of the trees located 

between the cross-streets of Cole and Clayton (Figure 4).  Data were also collected from 

six circular plots, 30 m in diameter, located within John McLaren Park (Figure 5) to get a 



 

 

 

representative sample of the variation in species and stand age in the area. At both sites 

tree height was measured using both a MDL LaserAce 300 Digital rangefinder as well as 

through the application of trigonometric principles based on distance from the tree, and 

the angle from the observer to the base and top of the tree. These data were collected 

using a meter tape and a Suunto clinometer. 

Results 

The results for each method were split into three tree layers based upon the height 

above ground. The first layer was anything less than 15 m tall, the second was between 

15 m  and 25 m, and the final layer was classified as anything above 25 m. For the lower 

layer of trees, the HWT method detected less than 5% of the trees that were identified in 

the field. In the intermediate layer the HWT found approximately 25% of the trees. In the 

uppermost layer, considered the canopy layer the HWT performed well, correctly 

identifying 85% of the trees within this layer. Overall the HWT method correctly 

identified less than 60% of the trees within both study sites. 

All implementations of the Normalized Cut that I wrote for this study only 

accurately performed at the lowest height layer.  At the lowest layer (<15 m) my NCuts 

implementation produced an average accuracy of 45%. At the middle and upper 

classification layer, my implementation failed to perform, resulting in an accuracy of 

20%, and 10% respectively.  The final output data all were all classified in horizontal 

bands across the study sites as seen in Figure 6.  

Based on the handheld GPS data collected in situ, individual tree locations were 

found to be off by an average of one meter for measurements taken at John McLaren Park 



 

 

 

and in the interior of the panhandle of Golden Gate Park. Measurements taken from the 

outer edges of the panhandle, along the sidewalk, were found to be off by as many as 10 

meters. Tree heights collected in situ were found to differ from LiDAR measurements by 

an average of one meter, however the individual measurements were found to differ by as 

many as four meters.  

Discussion 

Overall the implementations of the Normalized Cuts method of individual tree 

identification written for this study failed to outperform the Hierarchical Watershed 

Transform at any of the higher canopy levels. The algorithm I wrote for this study 

consistently produced inaccurate results at all canopy layers, tending towards classifying 

the data in horizontal bands (Figure 6). At the lowest canopy level there is a significantly 

higher classification rate from NCuts, however the accuracy was appears to be the 

coincidental result of smaller trees being located within the horizontal classification band. 

At the middle and high classification heights, the accuracy dropped significantly due to 

the horizontal classification only capturing parts of a tree. These horizontal sections did 

consistently classify tree tops at each level, however the over-classification into other 

trees lowered the overall accuracy. 

The inaccurate results of my implementation of NCuts were consistent through all 

eigensolver implementations, using Eigen libraries, Octave and LAPACK. In all of the 

methods attempted, the resulting cuts were either horizontal or scattered around the data 

(Figure 7). This would seem to indicate that errors are caused either in the calculation of 

the input matrices, or in the way the data are being input into the solvers. These are both 



 

 

 

areas of my code that have had to be re-written multiple times through the duration of the 

project, as I became more comfortable with linear algebra.  

I worked alongside Bill Kruse in an effort to find the source of my errors, based 

on a functional version of the NCuts algorithm he had written in the Python programming 

language. This work helped verify that my weighting factors were calculating correctly, 

however these efforts were not enough to elucidate the errors within my own algorithm.  

The GPS errors made locating and comparing some of the trees difficult, and 

could be a source of error in the analysis. This can be attributed to a combination of the 

LiDAR data being collected four years prior to the fieldwork, as well as the introduction 

of human error in the in situ ground-truthing methods.  

Conclusions 

The goal of this research was to compare the more commonly applied 

Hierarchical Watershed Transform (HWT), and the Normalized Cuts (NCuts) method. 

Overall, the study failed to demonstrate a working version of the NCuts method and was 

unable to give an accurate comparison of the two algorithms. The failure to correctly 

implement these concepts led to very low accuracies and a horizontal classification 

scheme, as opposed to vertical. Although I was not able to demonstrate the efficacy of 

freeware software libraries, this error seems to be a flaw with my own ability to 

implement the tools available. I believe that future research studies could be performed 

without the expense of large software packages, however it would take a researcher much 

more familiar with programming. In the literature, it is suggested that by taking 

advantage of the 3-dimensional attributes of LiDAR data, more thorough tree isolations 



 

 

 

can be performed. Future studies could work on implementing the code with other 

eigensolvers, and include an implementation GPU processing, or could implement the 

code with higher point density LiDAR data for more accurate delineations. These data 

could then also be used for more thorough stand management studies, such as tree species 

identification, canopy structure and biomass studies. 
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Figures 

  

Figure 1. In the upper left (a) shows the Panhandle of Golden Gate Park, and (b) John 

McLaren Park, both located within San Francisco. 



 

 

 

 

 

 

 

 

  

Figure 2. Flowchart of Hierarchical Watershed Transform methods 
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Figure 3. Flowchart of Normalized Cuts Methods 



 

 

 

  

Figure 4. Outline of sample sites in Golden Gate Park Panhandle 



 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5. Locations of sample sites from John McLaren Park 



 

 

 

 

 

Figure 6. Horizontal banding in the Normalized Cuts results. Two classes shown for three tree 

tops. Class 1 - Grey and Class 2 - Black 


