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Landslides are pervasive hazards that pose significant risk to human populations. Routine
quantification of landslide occurrence is necessary for hazard mitigation, traditionally compiled
from manual interpretation of aerial imagery. To increase precision, reduce costs, and expedite
analysis, much effort is focused on landslide identification from satellite imagery, with object-
based methods rapidly emerging as a viable approach. Recent work has also utilized machine
learning classifiers to increase automation and transferability. This study built on previous work
to apply object-based image analysis (OBIA) and machine learning classification to sub-meter
and multi-temporal WorldView-2 imagery. The primary objective was to explore scenarios
resulting in optimal classification, considering: (1) random forest (RF) versus support vector
machine (SVM) classifiers, (2) multispectral versus fused image resolutions, (3) binary versus
multi-class structures, and (4) variations in sample size. A study area was selected involving
challenging image composition and an extended capture window to test the robustness of the
method to non-ideal conditions. The eCognition software allowed for image segmentation.
Following selection of training samples, the R software was then utilized for machine learning
classification with both RFs and SVMs. Classification was performed for each parameter
combination over 100 replications, with accuracy assessed against a manual reference
inventory. Optimal results were observed for RF at the largest sample size using a binary class
structure and fused resolution, with an average F-score of 60.2 + 1.3%. RF classifications
consistently reached ~3-5% higher accuracy versus SVM when compared between specific
parameter combinations. RFs demonstrated higher run-to-run stability, both in terms of spatial
results and lower variance by area, as well as lower processing cost by an order of magnitude.
These findings aid future work in determining optimal classification frameworks. The need for
future research is also highlighted, including automation of sample selection and further

refinement of the image segmentation task.
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INTRODUCTION

Landslides are natural hazards of concern to administrative bodies due to impacts on
infrastructure and degradation of the environment (Schuster, 1996). Mass wasting is
synergistically exacerbated by anthropogenic disturbance (Guthrie, 2002; Schuster &
Kockleman, 1996) and can pose significant risk to human populations (Van Westen et al., 2006).
Considered over time, landslides are the most persistent of all geologic hazards and often pose
the greatest risk to human populations, particularly in developing nations (Nadim et al., 2006;
Varnes, 1985). Much effort has focused on routine quantification of landslide occurrence in
order to identify hazards and mitigate risk (Mantovani et al., 1996; Metternicht et al., 2005).

Comprehensive, multi-temporal inventory maps provide a indispensable foundation for
landslide susceptibility analyses (Carrara et al., 1992; Varnes, 1985). Landslide re-occurrence is
more likely than initial mobilization (Ardizzone et al., 2007), such that routine inventories allow
determination of localized process rates for hazard mitigation (Van Westen et al., 2006).
Knowledge of landslide occurrence is also useful for sediment transport estimation, in turn used
to prevent surface erosion and preserve stream quality (Brardinoni et al., 2003; Guthrie, 2002).
Although quantitative assessments depend on catalogued landslide inventories, records are
often unavailable or are substantially incomplete (Van Westen et al., 2006; Wills & McCrink,
2002).

Traditionally, landslide maps are assembled by manual delineation onto stereoscopic
aerial photographs (Carrara et al., 1992; Galli et al., 2008; Varnes, 1985). Such expert analysis

often requires years for completion and is subject to uncertain costs, such that scale or precision



are compromised to meet deadline pressures (Ardizzone et al., 2007; Galli et al., 2008; Guzzetti
et al., 2000). In addition, manual landslide inventories are inherently subjective (Albrecht, 2010),
and vary according to intended purpose, methods employed, and perception of natural
phenomenon by technicians (Van Westen et al., 1999; Wills and McCrink 2002).

Attempts have been made at landslide identification using satellite imagery (Mantovani
et al., 1996; Metternicht et al., 2005) in the interest of increasing precision, reducing costs, and
expediting analysis. Additionally, satellite acquisitions are standardized over extensive portions
of the planet, allowing for broad-scale analyses. Validated methods incorporating satellite
imagery would also be of benefit to rapid emergency response efforts (Mondini et al., 2011b;
Weirich & Blesius, 2007). Nonetheless, state-of-the-art digitization workflows continue to rely
on aerial photography and labor-intensive human interpretation (Ardizzone et al., 2007; Galli et
al., 2008).

Use of satellite imagery for detection and monitoring of mass wasting has seen
important contributions in the past decade. Pixel-value change in optical imagery has been
utilized to successfully track slow-moving landslides on the basis of both spectral difference
(Hervas et al., 2003) and sub-pixel feature tracking algorithms (Debella-Gilo & Kaab, 2011).
Active-sensor LiDAR data has driven advances in monitoring large, slow-moving landslides
(Glenn et al.,, 2006; McKean & Roering, 2004), including dormant failures obscured under
canopy (Booth et al., 2009; Van Den Eeckhaut et al., 2007, 2012). However, these methods are
generally not transferable to more common and devastating forms of landslides that occur at

high velocity. Single events, such as seismic shock or intense rainfall, slope failures en masse



(Malamud et al., 2004; Stark & Hovius, 2001; Wieczorek, 1984), resulting in broad impacts that
demand immediate and accurate analysis. Yet, to date, no automated methodology has been
proven to consistently replicate the accuracy of human image interpretation.

The recent introduction of very high resolution (VHR) sensors has increased the
capability to distinguish landslides from spaceborne platforms. Following the launch of lkonos in
1999 were additional sensors at meter or sub-meter resolutions, including SPOT, Quickbird,
Worldview-1 and -2, GeoEye, and Pleiades-1A and -1B. The resolutions available now meet the
demands of operational mapping, such that VHR products are gaining acceptance for landslide
digitization (Ardizzone et al., 2007; Mondini et al., 2011a; Weirich & Blesius, 2007).

Although new sensors provide new opportunities, VHR imagery has introduced unique
challenges related to heightened variability within scene features (Blaschke, 2010). Satellite
imagery analysis has traditionally relied on pixel-based methods (e.g. unsupervised clustering
algorithms) for tasks such as land cover classification (Cihlar, 2000). However, for certain tasks,
pixel-based analyses perform poorly (Blaschke, 2010; Cleve et al., 2008). This follows a long-
standing commentary (Aplin, 2006; Cracknell, 1998; Fisher, 1997; Woodcock & Strahler, 1987)
highlighting the insufficiency of arbitrary pixelation to adequately represent landscape features.
Specifically, landslides are discrete objects of inconsistent shape and spectral response,
inadequately differentiated from the spectral background to be accurately detected by pixel-
based clustering algorithms (Barlow et al., 2006; Metternicht et al., 2005). Landslide detection at
high resolution is sensitive to intra-class overlap of feature spectra, resulting in a salt-and-

pepper effect in classifications from VHR imagery (e.g. Hervds et al.,, 2003). With previous-



generation sensors of lower resolution, sensitivity to noise is reduced by generalization of
spectral radiance over a broad instantaneous field of view (IFOV; Cracknell, 1998). Although
sensors such as Landsat TM (30 m) or ASTER (15 m) are appropriate for land cover classification,
these resolutions are beyond the extent of small and narrow mass wasting occurrences such as
shallow translational slides or earth flows (Brardinoni et al., 2003; Nichol & Wong, 2005).

Several pixel-based studies (e.g. Mondini et al., 2011a, 2011b; Nichol & Wong, 2005)
have achieved useful results by employing change detection transforms, such as principle
component analysis (PCA), and machine learning classification such as discriminant analysis (DA)
and artificial neural networks (ANN). In addition, object-based methods have rapidly emerged as
a viable alternative for the analysis of VHR imagery (Blaschke, 2010). Object-based image
analysis (OBIA) overcomes the limitations inherent to pixel-based methods by grouping pixels
into coherent image regions that present similarity of associated attributes (Benz et al., 2004),
allowing the user to reclaim control of image generalization (Burnett & Blaschke, 2003). By
nesting pixels within the context of their discrete representations, OBIA mimics the human logic
process (Benz et al., 2004; Blaschke, 2010).

Research into landslide mapping with OBIA has delivered steady advancements in
accuracy and methodological sophistication (Anders et al., 2011; Barlow et al., 2006; Chang et
al., 2011; Lahousse et al., 2011; Lu et al., 2011; Martha et al., 2010, 2011, 2012; Moine et al.,
2008; Stumpf & Kerle, 2011). Initial work (e.g. Barlow et al., 2006; Martha et al., 2010; Moine et
al., 2008) established a foundation of understanding into indicator variables that are strongly

correlated with landslide occurrence across diverse environments. Much effort has been



devoted to implementing user-driven workflows within the eCognition software. In addition to
image segmentation, eCognition incorporates a wide variety of object-refinement routines and a
semi-programmatic graphical user interface (GUI) environment that allows development of
“rulesets” to carry analysis from segmentation through classification (see Anders et al., 2011;
Barlow et al., 2006; Martha et al., 2010). A persistent shortcoming of such an approach is
reliance on the user-driven process of trial-and-error parameter refinement (Blaschke, 2010).
The selection of meaningful image features and ruleset parameters retains the subjectivity, time
commitment, and dependence on expert knowledge inherent to previous, manual methods of
interpretation. There is a need for a transferable and highly automated means of classification
that approaches the accuracy obtained by a skilled operator.

Recently, pioneering efforts have successfully utilized machine learning classifiers to
increase the automation and transferability of landslide detection (Chang et al., 2011; Stumpf &
Kerle, 2011). Machine learning algorithms are widely used tools for variable selection and
classification, such as in bioinformatics (Diaz-Uriarte & Alvarez de Andrés, 2006; Statnikov et al.,
2008). Several approaches gaining popularity in the field of remote sensing include support
vector machines (SVMs; Vapnik, 1999) and random forests (RFs; Breiman, 2001). SVMs and RFs
are both non-parametric and non-linear (i.e. requiring no assumptions of normality or
separability in the underlying data distribution), making them well suited to satellite imagery
applications. Both algorithms require supervised training, but are robust to statistically under-
represented sets when properly applied (Diaz-Uriarte & Alvarez de Andrés, 2006; Statnikov et

al., 2008). Although artificial neural networks (ANNs) have a tradition of satellite imagery



applications (Mas & Flores, 2008; Paola & Schowengerdt, 1995), comparison studies have
highlighted the mathematical transparency, comparable accuracy, greater speed, and relative
ease of implementation of SVMs (Dixon & Candade, 2008; Foody & Mathur, 2004a) and RFs
(Chan & Paelinckx, 2008; Gislason et al., 2006; Lawrence et al., 2006).

SVMs are a family of boundary classifiers with a history of remote sensing applications
(Mountrakis et al., 2011). The learning algorithm attempts to find an optimal decision boundary,
or hyperplane, to separate the dataset into a pre-defined number of classes (Vapnik, 1999). In
situations of class overlap, as is common with imagery datasets, the assumption of linear
separability fails. Thus, SVM applications introduce slack-variable kernels (e.g. radial basis
functions) to allow higher order and non-linear solutions. Assuming appropriate selection of
features, kernels and parameters, SVMs provide robust classification under class-imbalance and
variable cross-correlation (Statnikov et al., 2008). Although SVMs do not include internal
measures of variable importance, they may be applied independently to variable selection
(Archibald & Fann, 2007; Diaz-Uriarte & Alvarez de Andrés, 2006), with comparable results to
RFs (Pal, 2005, 2006).

RFs are an ensemble approach to maximizing the potential of tree-based classifiers (e.g.
decision trees) by growing a ‘forest’ of trees from random subsets and allowing these to vote for
the most likely class in a manner similar to bagging (Breiman, 2001). RFs have been successfully
applied to remote sensing classification tasks (Duro et al., 2012; Gislason et al., 2006; Lawrence
et al., 2006; Pal, 2005, 2006). In addition to aforementioned benefits, RFs are appealing for OBIA

due to embedded variable importance measures, ease of implementation, and algorithm



efficiency (Breiman, 2001). RFs are relatively robust to predictor interactions, but are nontheless
sensitive to over-fitting under class-imbalance (Blagus & Lusa, 2010) and over-estimation of
variable importance under cross-correlation (Nicodemus et al., 2010; Strobl et al., 2007).

Class-imbalance and class-overlap are a common problem for ensemble- or kernel-
based classifiers, given a tendency to over-fit to the majority class in the interest of minimizing
total error (He & Garcia, 2009; Mountrakis et al., 2011). Landslides represent a minority class of
the overall landscape (Malamud et al., 2004; Stumpf & Kerle, 2011), such that their classification
is susceptible to imbalance. As such, a training sample based on a natural class balance within
the scene will tend to favor the majority class and under-fit to landslides, resulting in excessive
misses. A popular solution involves oversampling the minority class by adding either random
replicates or synthetic samples to bolster feature space representation (Chawla et al., 2002; He
& Garcia, 2009). These methods are useful when training data are limited, although image
analysis benefits from the ability to train additional samples as needed to reach a prescribed
class ratio. Stumpf & Kerle (2011) proposed a routine by which the degree of landslide over-
sampling is iteratively adjusted until a balance is reached between errors of omission and
commission.

OBIA and machine learning algorithms have previously been proven as viable methods
for the detection of landslides from VHR imagery. However, uncertainty remains as to both the
limits of applicability of the method and the ideal framework for image pre-processing, classifier
determination, sample selection, and parameter settings for specific test applications. This study

explored two broad objective questions. First, how reasonable is application of the OBIA,



machine learning classification task to the following: (1) broad scales of analysis, (2) an extended
imagery time step and non-ideal environmental conditions, and (3) an operational and practical
test case? Second, which scenarios result in optimal classifier performance, considering: (1)
random forests versus support vector machines, (2) multispectral versus fused image resolution,
(3) binary versus multi-class class structure, and (4) variation in sample size? A study area was
selected involving challenging image composition and an extended image capture window in
order to test the robustness of the method to non-ideal conditions. The results build on
previous applications of the machine learning landslide detection task that have involved both
random forests (Stumpf & Kerle, 2011) and support vector machines (Chang et al., 2011). The
insights gained into performance capabilities and limitations will assist in both guiding real-

world applications and determining appropriate directions for future research.



STUDY AREA
2.1

Site and Situation

The study area encompassed Silverado and Modjeska Canyons, at the eastern edge of

Orange County, California (Fig. 1). Rugged terrain includes both publicly and privately owned

lands situated between the Santa Ana Mountains of Cleveland National Forest and the historic
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Fig. 1. Overview of study area, with location inset. Inset: Location within California; Urban regions
highlighted in gray. Overview map: Imagery bounding box is outlined, with publicly administered lands

in gray.
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canyon rangelands of Irvine Ranch. An arid, Mediterranean climate results in dry summers and
seasonal winter precipitation, averaging 88 mm vyearly. Parent materials are predominantly
Jurassic to Quaternary sedimentary, volcanic, and shallow intrusive formations, including
complex layering of sandstone and shale variants (Fritsche & Behl, 2008). The region is
susceptible to soil erosion and mass wasting due to a combination of unconsolidated,
sedimentary geology, steep hillslopes, and inconsistent vegetation cover. Landscape formation
is dominated by mass wasting and fluvial erosion, resulting in dissected canyons with 20° to 45°
hillslopes and arroyos with considerable depth of accumulated alluvium. In addition to
widespread landslide occurrence (Fig. 2), there are numerous cross-correlated features present
in the image scene, including gullies, fire roads, streambeds, and urban interface. The study area
remains predominantly rural despite urban density in the vicinity. The eastern half falls under
jurisdiction of the Irvine Company and Orange County Parks, and is closed to public access,
whereas the western half is mostly privately-owned in-holdings within the Cleveland National
Forest administrative boundary.

From 21 October to 8 November 2007, the 115 km? Santiago Fire severely reduced
already sparse vegetation cover within the southern two-thirds of the study area, prompting
treatments to mitigate sediment yield (USFS, 2007). Later, from 18 December to 22 December
2010, a severe storm delivered 55 cm of rainfall to the area’, resulting in flooding and
emergency evacuation. The storm event was accompanied by widespread mass wasting along

destabilized hillslopes (Fig. 2).

! http://www.intercanyon.org/winter-storm-2010
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Fig. 2. Destabilized hillslopes (a) with delineated landslides (yellow outlines). False color imagery
overview provided for reference (b), with contour lines in meters and angle of view indicated.

2.2 Imagery
Suitable WorldView-2 satellite imagery was acquired from swaths captured on 7 April
2010 and 28 April 2012 (Table 1). Potential imagery was available immediately after the winter

storm (captured 24 December 2010), but did not reflect all landslides. Over the next month,
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additional slope failures occurred as antecedent soil moisture accumulated and increased
positive pore pressure. A single annum time step would have been ideal to minimize vegetation
growth within failure tracks while maintaining consistent phenology, however no imagery was
available during the same season in 2011. Owing to obscured signals of mass wasting and
numerous cross-correlated features, the scene and situation posed a significant challenge to any
classification method. Both scenes were received as 1-band panchromatic and 4-band
multispectral, level 1-B GeoTIFF products, resampled by the vendor to the required subset using
a modulation transfer function (MTF) kernel, with at-sensor geometric distortion corrections
included.

Table 1
Overview of attributes for study area, imagery, and data.

Coordinate (UL)

Coordinate (LR)

33°45'34.9" |at.
-117° 40' 21.0" lon.
33°41'28.7" lat.
-117°36'52.7" lon.

Study Area (km?) 40

Sensor Worldview-II
Sensor Bands Pan, B-G-R-NIR
Sensor Resolution (m) 0.5/2.0 (pan./multi.)
Imagery Date 1 07 April 2010
Off-Nadir Look Angle (°) 10.5

Sensor Zenith (°) 21.9

Sensor Azimuth (°) 238.0

Solar Zenith (°) 29.9

Solar Azimuth (°) 149.5

Imagery Date 2 28 April 2012
Off-Nadir Look Angle (°) 16.8

Sensor Zenith (°) 19.0

Sensor Azimuth (°) 213.0

Solar Zenith (°) 21.1

Solar Azimuth (°) 152.2

DEM Source (base data)
DEM Resolution (m)

USGS NED (contour line)
10
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METHODS

3.1 Imagery Pre-processing

Imagery was first processed to approximate absolute surface reflectance values, with
radiometric corrections applied to account for sensor gain and bias as well as atmospheric
transmittance. The WorldView-2 imagery was delivered with detector variation adjustments
included (Updike & Comp, 2010), and an at-sensor correction was calculated per pixel for each
spectral band. At-satellite radiances were then converted to surface reflectance by the dark
object subtraction (i.e. DOS3) method (Song et al., 2001), with additive effects removed by
global subtraction of values sampled from water bodies and shadow (Chavez, 1996).
Multiplicative effects were approximated by radiative transfer modeling, assuming simplified
Lambertian surfaces and a cloudless Rayleigh atmosphere with zero aerosol optical depth.
Estimates were made for optical thickness according to Kaufman (1989), and for atmospheric
downwelling according to the 6S model (Vermote et al., 1997), generalized to the “US Standard
62" profile.

The multispectral bands were pan-sharpened, or ‘fused,” in order to maximize the
precision of discernible features while retaining a majority of spectral response. Potential
negative impacts from fusion were considered, such as confusion of spectral signature and
introduction of noise or artifacts at feature edges (see Karathanassi et al., 2007). However,
analysis by Mondini et al. (2011b) found that the magnitude of noise and artifacts introduced by
fusion are an order of magnitude less than the difference in pixel values between landslide and

non-landslide classes. Several fusion methods were tested, including PCA (Chavez et al., 1991),
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Gram-Schmidt (Laben, 2000), wavelet (NUfiez et al., 1999), and high-pass filter (HPF; Gangkofner
et al., 2008). As also observed in previous studies (Gupta & Dey, 2012; Karathanassi et al., 2007;
Yuhendra et al., 2012), objective measures of accuracy between methods did not agree with
observation, such that HPF fusion was empirically superior despite statistical shortcomings.
Under visual assessment, the HPF algorithm provided the most consistent radiometric quality
and stable results from which fine-scale features could be discerned.

Precise orthographic registration to ground geometry is critical for landslide detection
(Barlow et al., 2006; Chang et al., 2011; Lahousse et al., 2011; Lu et al., 2011; Martha et al.,
2011), and was achieved by a rational function model transform, built from vendor-supplied
coefficients. A 10 m digital elevation model (DEM) was acquired from the USGS National
Elevation Dataset, derived as an interpolation of archive stereoscopic contours (Gesch et al.,
2002). As per Toutin (2004), calibration to ground geometry was applied with 7 ground control
points acquired from GPS field survey (Fig. 3), with less than 0.1 m horizontal and vertical
accuracy on all readings. Ortho-rectification was achieved using ENV/ 5.0 software and validated
against independent test points, arriving at 1.1 m and 1.6 m for 95% circular error probable
(CE95) for the 2010 and 2012 images, respectively (Table 2). Cubic convolution was applied for
all image resampling, despite the traditional preference for nearest neighbor on the basis of
radiometric matching of reference spectra. In this case of sub-meter imagery over steep terrain,
radiometric concerns were outweighed by the potential for spatial error introduced from pixel

displacement by the nearest neighbor model (Toutin, 2004). Furthermore, an OBIA approach
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Table 2

Imagery ortho-rectification statistics.
Image 2010 2012
Adjustment GCPs 7 7
Independent GCPs 9 10
Independent Plan. RMSE (m) 0.6 1.0
Independent Plan. CE95 (m) 11 1.6

generalizes the radiometric response (Blaschke, 2010), mitigating the need for absolute pixel-to-

pixel comparison.

Fig. 3. Study area overview with 2012 imagery basemap. Distribution of adjustment (triangles) and
validation (points) GCPs and classification test plots (hatched circles) are shown. The outline
demarcates the final pre-processed imagery footprint. Letters (a-d) indicate test plot locations
corresponding to Figures 4-6 & 9.



16

Due to multi-temporal inconsistencies in sun angle and phenology, the 2010 image was
additionally adjusted to match the radiometric response of 2012 (Hall et al., 1991). Relative
normalization was achieved by modeling a linear regression from a selection of pseudo-invariant
features (PIF) between captures (Yang & Lo, 2000). PIF selection and normalization was fully
automated by the multivariate alteration detection (MAD) method, a statistical ordination
procedure based on canonical correlation (Canty et al., 2004; Nielsen et al., 1998; Schroeder et
al., 2006). Because the MAD algorithm requires co-registration of image pixels, relative
normalization was forestalled until after ortho-rectification.

Several image and topographic derivatives were calculated (Table 3). The first was
normalized difference vegetation index ratio (NDVI), defined as (NIR — R)/(NIR + R), which
highlights greenness and indicates vegetation cover in regions of low to medium biomass (Huete
et al.,, 2002). Measures of image texture were derived from gray level co-occurrence matrices
(GLCM; Haralick et al., 1973). GLCMs offer improvement to VHR classification, particularly for
anthropogenic or directional features (Puissant et al., 2005), and have been applied in previous
object-based landslide analyses (Martha et al., 2010; Moine et al., 2008; Stumpf & Kerle, 2011;
Wang & Niu 2010). However, GLCMs carry a heavy computational burden, thus only the filters
contrast and correlation were computed (Stumpf & Kerle, 2011). Multi-temporal image
differences and transforms also are a benefit to change detection (Lu et al., 2004) and landslide
identification (Lu et al., 2011; Nichol & Wong, 2005). Principle component analysis is a linear,
orthogonal transformation of the dataset that maximizes variance, and was applied to the full

band stack from both image dates (Deng et al., 2008; Lu et al., 2011). Change in NDVI (NDVI,)
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was also calculated, as was red difference (R,). For the Southwestern United States, Chavez &
MacKinnon (1994) emphasized the use of R, rather than NDVI,. Under arid conditions lack of
precipitation may result in differences in apparent greenness despite equivalent seasonality and
vegetation cover. Alternately, high levels of red and near infrared (NIR) reflectance for sandy

soils tend to obscure the signal of NDVi,.

Table 3
List of feature variables used as classifier input.
Feature(s)
Spectral B-G-R-NIR (2010, 2012)

NDVI (2010, 2012)
Band difference (G-R)
NDVI difference

PCA

PCA (multispectral)*

Shape Compactness
Smoothness
Length / Width

Context / Texture GLCM (cor., con.)

Main direction

Direction minus net mean aspect
Ancillary, Topographic Dlevation

Slope (pct.)

Curvature

Aspect (N-S, E-W, net mean)

Openness (pos., neg.; 30 m, 250 m)
Ancillary, Anthropogenic Roads, euclidian distance

Roads, kernel density (250 m)

Additional ancillary datasets were compiled, including topographic and road-network
derivatives. The 10 m resolution of the original DEM was deemed too coarse to provide
meaningful information for objects derived at or near 0.5 m. That is, considering uncertainty of
one-half cell width for raster values abstracted over polygon boundaries, a 10 m resolution
would result in erroneous statistics for image objects of less than roughly 20 m in any

dimension. Thus, the DEM was generalized to match the panchromatic resolution by four
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progressive applications of bilinear spline resampling to 5 m, 2.5 m, 1 m, and 0.5 m, followed by
a low-pass filter. Although resampling introduced error, following subsequent segmentation this
impact was mitigated by generalization over polygon area. From the result, slope was
computed. Curvature calculation from the resampled DEM was particularly sensitive to artifacts,
and instead was calculated from the original DEM and independently resampled to 0.5 m.
Openness is a topographic derivative that measures enclosure from neighboring terrain
(Yokoyama et al., 2002), providing a useful indication of landscape context for geomorphologic
classification (Anders et al., 2011). Openness is scale-dependent, and thus was derived at 30 m
and 250 m search radii both in positive and negative directions (i.e. above- and below-ground,
respectively). Aspect is another terrain measure that provides context as a result of differing
solar insolation and precipitation patterns on north- and south-facing slopes. Although aspect
calculation is trivial per-pixel, when averaged over polygon boundaries uncertainty results from
modulation between 0° and 360°. Therefore, mean aspect was computed as vector resultant
decompositions of slope into north-south and east-west components (Davis, 2002).
Transportation network data was also utilized (Barlow et al., 2006; Martha et al., 2010, 2011), as
road cuts have a strong anthropogenic link to landslide risk resulting from hillslope
destabilization and concentration of overland flow (Guthrie, 2002; Maharaj, 1993). In order to
represent the abundance of emergency access roads and abandoned Jeep trails, roads were
digitized from the imagery with additional reference to 1988 and 2004 aerial ortho-photos

obtained from the USDA National Agriculture Imagery Program (NAIP). The Kernel Density tool in
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ESRI ArcGIS 10.0 was then applied at a search radius of 250 m (Silverman, 1986), providing an

aggregated measure of potential road impact.

3.2 Image Segmentation and Classification

3.2.1 Image Segmentation
The eCognition software was used to derive objects from pre-processed image pixels.
The segmentation algorithm, titled multi-resolution image segmentation (MRIS; Benz et al.,
2004), is a region-growing routine that merges objects upwards from the pixel level based on a
user-specified balance of shape and spectral measures. Beginning with a pseudo-random set of
pixels, the algorithm compares neighbors and merges if the result minimizes internal
heterogeneity. Mean values are then computed for the newly created regions from selected
input layers. The algorithm continues to merge pair-wise according to a linear weighting
function (Benz et al., 2004):
f= wspectralhspectral + wshapehshape (1)
With Wgpape + Wspectrar =1, Where wgpectrar and Wgpqape are user-defined  weighting
parameters . Respective heterogeneity criteria (h) measure change between the pre- and post-
merge image objects. The spectral heterogeneity criterion measures change in deviation of pixel
values, whereas the shape heterogeneity criterion measures change in object shape according
to metrics referred to as “smoothness” and “compactness.” The scale parameter (f) governs the
size to which objects may grow. Weighting parameters (w) allow for balancing smoothness

versus compactness and spectral versus spatial criteria.
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Segmentation was conducted by trial-and-error parameter refinement of the MRIS
algorithm, independently at the multispectral and fused resolutions. Default MRIS weights were
used (i.e. Wcompr = 0.5, Wspape = 0.1), partially due to the difficulty of objectively determining
optimal values. Regardless, the default weight for shape is justifiable for landslide detection
where strict spectral differentiation and loose shape control are desired (Martha et al., 2011). A
typical implementation of input bands (Benz et al., 2004; Blaschke, 2010) was tested on the
post-event image at both multispectral and fused resolutions, with all channels (blue, green,
red, and NIR [B-G-R-NIR]) weighted equally (i.e. 1-1-1-1). As landslide occurrence is correlated
with image change, an additional scenario was tested, involving replacement of NIR with both
Ga and Ra. The weighting scheme was also adjusted to favor the information provided by the
change ratios, with B-G-R-Gx-Ra weights set as 1-1-1-3-3. Thus, image change was intended to
have twice the contribution as post-event spectral values. The results of the second scheme
involving Ga and R were found to be superior and were used for final classification. At each
respective resolution, the scale parameter was iteratively adjusted until a balance was reached
between over- and under-segmentation of the landslide class (Figs. 4, 5, & 6), with final f-values
of 10 for multispectral and 20 for fused resolutions. Mean zonal statistics were tabulated for all

final objects from image layers, image derivatives, and ancillary data as listed in Table 3.

3.2.2  Reference Inventory & Training Set Preparation
The study area was separated into train and test regions, with test zones as buffered
sample points at 175 m radii (e.g. Moller et al., 2007), derived according to a systematically

stratified unaligned sampling scheme (SSUS; Stehman 1992). This distribution method was
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chosen to provide an even representation of variations in features and terrain. 70 such zones
were defined, representing 6.7 km? or 16.8% of the study area (Fig. 3). Within test regions,
landslide occurrence was manually digitized wall-to-wall by a trained geomorphologist, and the
inventory validated by ground survey conducted April 2013. Manual mapping was conducted
with reference to the pan-sharpened imagery and derivatives, in addition to visualization of the
imagery overlaid on the terrain model. The inventory was interpreted conservatively; there was
no inference of de facto occurrences or boundary limits (Wills & McCrink, 2002), such as

accumulation zones or extended debris tracks within river washes.

Fig. 4. Sample location a, including: a & d) False color images with contour line overlay and elevations in
meters, b & e) Landslide reference inventory (yellow outline) over RGB composite image (R
1-NDVI591,-PCA,); c & f) Segmented image objects over false color images.

Resolutions vary as multispectral (a-c) and fused (d-f).



22

Landslide classification is unique in that there is only one target class, thus either binary
(i.e. single-class) or multi-class learning is possible. RFs are applicable to both approaches,
whereas SVMs are designed for binary tasks but may be extended to multi-class scenarios (Hsu
& Lin, 2002). An empirical review of, for example, Statnikov et al. (2008) indicates that the multi-
class approach provides greater accuracy, and Stump & Kerle (2011) suggested that additional
classes may allow the learner to better differentiate between cross-correlated predictive values.
Thus, multiple non-landslide classes were discerned from the image scene, with particular
attention to likelihood of confusion with landslides (Table 4). For several classes, there was
sufficient variation of predictor variables within a set of image objects that it was necessary to
further distinguish between changed and non-changed samples. For example, dirt roads were
subdivided into examples that had either remained barren or had experienced vegetation re-

colonization.

Table 4

Class definitions as sampled from segmented image objects.
Class Sub-class
Landslides

Barren (Bare Soil, Gully, Rock, etc.)

Grasses Phenology Consistent
Grasses Phenology Changed
Shrubs & Trees

Arroyos & River Plains Stable

Arroyos & River Plains New or Altered

Dirt Roads Stable

Dirt Roads Re-colonized by Vegetation

Paved Roads
Buildings
Shadow
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There is some discussion of pixel-based training for machine learning in the literature
(e.g. Foody & Mathur, 2004b), yet little is known of robust methods for sampling image objects.
Furthermore, although semi-automated sampling schemes involving active learning are in
development (Stumpf et al., 2012), refinement and validation are still required. An approach
was adopted involving manual selection of training samples from segmented image objects
outside of the test zones. In an effort to minimize bias from spatial clustering and user
preference, point locations were generated according to a pseudo-randomized SSUS grid within
the training region, 200 each per target class. These points did not necessarily overlay on their

intended objects. Within 175 m, each point was manually repositioned to the nearest polygon

Fig. 5. Sample location b, including: a & d) False color images with contour line overlay and elevations
in meters, b & e) Landslide reference inventory (yellow outline) over RGB composite image (R
2-NDVI501,-PCA,); ¢ & f) Segmented image objects over false color images.

Resolutions vary as multispectral (a-c) and fused (d-f).
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corresponding wholly to the intended target at both the multispectral- and fused-resolution
segmentations. If no appropriate location was found within the search window, the point was
discarded. This approach yielded 40-120 samples per class. A final target of minimum 120
samples per class was fulfilled, at a compromise of reduced operator burden, by augmenting the
initial sample pool with points chosen opportunistically from the image scene. For the landslide
class only, 480 total samples were taken to allow for oversampling without exhausting

representation from the sample pool.

Fig. 6. Sample location c, including: a & d) False color images with contour line overlay and elevations
in meters, b & e) Landslide reference inventory (yellow outline) over RGB composite image (R
2-NDVI5p1,-PCA,); ¢ & f) Segmented image objects over false color images.

Resolutions vary as multispectral (a-c) and fused (d-f).
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3.2.3  Machine Learning Classification

Point samples were used to select and code training objects by class, and keyed tables
were then exported to the R software (R Core Team, 2013). To test the sensitivity of
classification to variation in sample size, each class sample was selected randomly from the full
training set, by sets of 30 with replacement, to reach 30, 60, 90, and 120 observations total. For
the binary case, all non-landslide classes were then combined. This approach was intended to
explore the accuracy expected if a similar classification were initially trained at only a particular
sample size.

Prior to classification, feature elimination was performed to reduce cross-correlation
and improve the fit of the models, with top-ranked variables across all replications listed in
Tables 5 & 6. SVMs require such a variable selection routine (Guyon et al., 2002; Statnikov et al.,
2008), although the same is not consistently true for RFs. Although Diaz-Uriarte & Alvarez de
Andrés (2006) recommend variable selection, RFs are robust to correlated variables with
complex interactions such that an independent elimination step may limit the predictive power
of the algorithm for imbalanced data (Blagus & Lusa, 2010; Cutler et al., 2007; Strobl et al.,
2007). Nonetheless, feature elimination was performed for both models to allow for an
equivalent and objective treatment (Statnikov et al., 2008). For the RF case, the R package
varSelRF was applied (Diaz-Uriarte & Alvarez de Andrés, 2006), which builds random forests and
iteratively removes 20% of the features based on importance measures calculated from initial

out-of-bag (OOB) error. The ultimate set of selected features were those that produced the RF
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Table 5

Multispectral resolution: Top-ranked features by classifier.
RF (binary) RF (multi-class) SV (binary)
Name Count Importance Name Count Importance Name Count  Rank
Red Diff. 100 0.078 Red (2012) 100 0.119 Blue (2012) 79 4.808
Green Diff. 100 0.050 Road Euc. Dist. 100 0.111 Slope 100 5.190
PCA 4 100 0.044 NDVI (2012) 100 0.100 PCA3 78 6.577
Slope 100 0.037 NDVI (2010) 100 0.092 Red (2012) 71 7.076
NDVI Diff. 100 0.029 Blue (2012) 100 0.078 Red (2010) 38 7.463
Road Euc. Dist. 99 0.023 NDVI Diff. 100 0.078 NDVI Diff. 72 7.564
PCAS5 93 0.022 Red (2010) 94 0.055 Direct. - Aspect 78 7.882
Green (2010) 23 0.016 Green Diff. 97 0.049 Blue (2010) 44 8.377
PCA 3 78 0.013 Blue (2010) 100 0.049 PCA 6 25 8.456
Green (2012) 10 0.011 NIR (2012) 100 0.049 PCA 4 15 8.893
NDVI (2012) 24 0.010 PCA 4 100 0.048 PCAS5 14 9.286
PCA 2 35 0.010 Green (2012) 100 0.048 GLCM Corr. 0 13 9.462
PCA 6 43 0.010 PCA1 96 0.048 Length / Width 25 9.624
NDVI (2010) 47 0.009 PCA 2 100 0.044 Open. (Neg 250) 12 9.983
Red (2012) 32 0.009 Red Diff. 100 0.042 Road Kern. Dens. 14 10.343
Red (2010) 5 0.008 NIR (2010) 96 0.042 Open. (Pos 250) 21 10.371
Blue (2010) 18 0.006 Open. (Neg 250) 100 0.041 GLCM Con.0 22 10.618
Blue (2012) 11 0.005 Open. (Pos 250) 98 0.034 Compactness 9 11.022
NIR (2012) 7 0.005 PCAS5 99 0.033 Aspect (NS) 17 11.024
Smoothness 15 0.005 Slope 92 0.024 Aspect (EW) 12 11.333

Table 6

Fused resolution: Top-ranked features by classifier.
RF (binary) RF (multi-class) SV (binary)
Name Count Importance Name Count Importance Name Count Rank
Red Diff. 100 0.054 Road Euc. Dist. 100 0.125 Red (2012) 84 5.426
Length / Width 74 0.052 Red (2012) 100 0.089 Slope 100 5.854
ELEV 15 0.044 Blue (2012) 100 0.085 Length / Width 96 6.604
PCA 3 100 0.039 NDVI (2010) 100 0.077 Blue (2012) 75 6.699
PCA 4 (Multi.) 100 0.034 NDVI (2012) 100 0.075 PCA 3 21 8.019
Slope 100 0.027 Length / Width 97 0.075 Red (2010) 46 8.165
Green Diff. 100 0.024 Green Diff. 99 0.066 PCA 1 (Multi.) 11 8.291
PCA2 (Multi) 20 0.022 PCA 4 (Multi.) 100 0.059 PCA4 (Multi) 26 8.308
Road Euc. Dist. 97 0.019 PCA 2 (Multi.) 100 0.049 PCA 3 (Multi.) 11 8.545
PCAS5 91 0.018 PCA 4 98 0.047 Direct. - Aspect 73 8.658
PCA 4 52 0.016 PCA 2 100 0.045 Blue (2010) 69 8.852
PCA 5 (Multi.) 69 0.014 Red Diff. 100 0.042 NDVI Diff. 26 9.008
NDVI Diff. 60 0.014 NIR (2012) 100 0.042 PCA 6 32 9.400
Red (2012) 27 0.012 Open. (Neg 250) 100 0.041 Green Diff. 15 9.600
Blue (2010) 23 0.010 Blue (2010) 100 0.041 PCAS5 (Multi.) 13 9.615
PCA 3 (Multi.) 27 0.009 NDVI Diff. 99 0.041 NDVI (2010) 11 9.618
NDVI (2012) 23 0.009 PCA1 99 0.038 Green (2010) 20 10.070
NDVI (2010) 28 0.007 Green (2012) 100 0.037 GLCM Con. 135 10 11.240
PCA 6 (Multi.) 27 0.007 PCA 3 93 0.030 PCAS5 9 11.556
NIR (2012) 16 0.005 Open. (Pos 250) 90 0.029 Open. (Pos 250) 7 12.000
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model with minimal OOB error. As per Svetnik et al. (2004), variable importance was not
recomputed at each iteration. varSelRF makes direct use of the randomForest package (Liaw &
Wiener, 2002), from which the only parameters requiring adjustment are mtry, which scales the
number of variables tested at each node; ntree, the number of trees to grow; and nodesize, or
the size of terminal nodes. For each factor, error decreases with increase in value, although
there is generally a plateau beyond which significant performance costs are not justifiably
compensated by gains in accuracy. Diaz-Uriarte & Alvarez de Andrés (2006) found error rates to
stabilize at mtry above 1, ntree above 1000, and nodesize above 1. Here, for variable selection
the initial forest was grown with ntree of 5000 and subsequent forests of 2000, and with mtry
and nodesize of 2 and 1, respectively.

Variables for the SVM case were selected with the mSVM-RFE implementation® (based
on Duan et al., 2005; Guyon et al., 2002), which models support vectors in the e1071 package
(Meyer et al., 2012) with the LIBSVM code (Chang & Lin, 2011). The most meaningful features
were determined across 5-fold outer cross-validation (e.g. Foody & Mathur, 2004a), as follows.
For each fold, top features were ranked according to minimized generalization error, and a grid
search performed over a range of SVM cost and gamma parameters. Initially, value ranges were
{0.01, 0.1, 0.5, 1, 5, 10, 50, 100} for cost and {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} for gamma,
although after inspection of ranges utilized for equalizing class imbalance (see below) these
were curtailed to 1 through 100 and 0.005 through 0.5, respectively. In all SVM models the

radial basis kernel was applied. Optimal parameters from each fold were then used to

! http://www.colbyimaging.com/wiki/statistics/msvm-rfe
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determine the ideal composition and number of features that minimized the generalization
error across all folds. This required determining a local minimum of error values across the
optimal grid search results for each number of features. Because multi-class variable selection is
not supported for SVM, mSVM-RFE was applied to the binary training set and the resulting
features used for the multi-class classification as well.

Following the selection of the optimal number and combination of features, class
prediction was conducted for RFs using the randomForest package and for SVMs using the
e1071 package. In the RF case, the same static parameter values were used as those during
feature elimination. For SVMs, only the selected variables were used to tune the model, again
over a 5-fold outer cross-validated grid search of cost and gamma parameters. Trained models
were then applied to prediction of object class membership for the independent test data.

A common challenge to machine learning is sensitivity to class-imbalance and class-
overlap, leading to over- or under-prediction. Preliminary tests revealed that the dataset was
indeed prone to under-prediction if a natural class balance was used. To correct this imbalance,
a method similar to that demonstrated by Stumpf & Kerle (2011) was implemented. Screening
runs were conducted to determine ideal values for §, with f§ representing the majority- to
minority-class ratio. Beginning at a § of 1, i.e. severe over-sampling, 10 replicate runs were
conducted and averaged, independently for each classifier and combination of resolution and
sample size. Additional replicate sets were performed over 8 values incremented by 2 (i.e. 1, 3,
5, etc.). Accuracy was assessed independently for each run (see method below) and the results

averaged for each [ value. Second-order regressions were fit to the means of user’s and
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producer’s accuracies (i.e. recall and precision). The intersection of the recall and precision
trend lines was used to determine the optimal § value to balance accuracies for each respective
sample size and image resolution (Figs. 7 & 8).

After determining 8 values, and according to the machine learning model as outlined,
individual classifications were conducted. For each combination of classifier, sample size and
image resolution (i.e. fused or multispectral), 100 replications were performed. Accuracy was

assessed at each model run and averaged over all replications.

RF binary RF multi-class SVM binary SVM multi-class

n =30

n =60

90

n=120

0.2

9 13 17 21

W+

1 5 9 13 17 1 5 9 13 17 211 5 9 13 17 1
Fig. 7. Fused resolution: Determination of optimal class balance () to equalize user’s accuracies (blue)
and producer’s accuracies (red). 2"order regressions are indicated as dashed trend lines. Each

plotted data point (solid lines) represents the mean of 10 replications, with variances indicated as
colored bounding plots.
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Fig. 8. Multispectral resolution: Determination of optimal class balance () to equalize user’s

accuracies (blue) and producer’s accuracies (red). 2"-order regressions are indicated as dashed trend
lines. Each plotted data point (solid lines) represents the mean of 10 replications, with variances

indicated as colored bounding plots.
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Both the classified objects and the reference inventory landslides were mapped to the

pixel level by converting to raster at 0.5 m resolution. Accuracy was then assessed pixel-by-pixel,

allowing for an approximate comparison of classification results by area. Both user’s and

producer’s accuracies were computed within the buffered test areas (Table 7), along with

Table 7
Classification accuracies, f3 -values, and processing time. Each row indicates the mean of 100 replications.
Sample User’s Producer’s Processing
Size B-value  AUC-ROC (%) F-score (%) accuracy (%) accuracy (%) Time (s)
RF Multi- 30 4.1 74721 53.1+1.7 50.2 £ 4.4 57.0+3.7 17+1
(binary) spectral 60 43 75.5+1.5 543+1.2 51.7+3.1 57.5+3.1 36+1
90 4.1 76.4+1.2 55.0+0.9 53.6+2.4 56.6 2.2 58+1
120 43 76.4+1.0 55.1+0.8 53.7+2.0 56.7 2.0 80+1
Fused 30 45 77.1£2.2 57.1+2.2 54.9+4.6 60.3+5.2 201
60 4.2 783+ 1.4 59.1+1.8 57.4+3.0 61.3+4.5 41+1
90 43 78.6+1.3 59.6+1.5 58.0+2.8 61.7 +4.1 63+1
120 43 79.2+1.2 60.1+1.3 59.1+2.4 61.4+3.9 88+1
RF Multi- 30 11.5 75.6+2.5 51.4+2.1 52.3+5.2 51.3+4.7 301
(multi-  spectral 60 13.6 75.9+16 523+1.1 52.8+3.4 52.1+3.2 58+1
class) 90 15.0 76.4+1.3 52.7+1.0 53.8+2.8 51.8+2.6 88+1
120 20.8 74.0+1.3 51.8+1.4 48.9+2.7 55.4+2.7 116+ 1
Fused 30 11.4 77.8+2.5 55.3+2.5 56.5+5.1 54.6 +4.2 40+ 1
60 13.3 78.2+2.0 56.5+2.0 57.3+4.0 56.1+3.9 711
90 16.0 77.8+16 56.5+1.7 56.5+3.3 56.9 £ 3.4 103+1
120 16.5 78.9+1.4 57.2+15 58.7+2.8 55.9+2.9 136+ 1
SVM Multi- 30 5.5 72.8+4.4 455+8.5 47.0+8.8 46.7+10.9 146+ 8
(binary) spectral 60 6.6 742 £33 495+4.2 49.4+6.8 50.9 £ 6.4 342+ 19
90 7.4 74.5+2.2 49.6+4.2 50.0 £ 4.0 49.9+7.0 600 + 32
120 7.2 74.5+2.0 48.4+5.1 50.1+4.0 47.8+8.7 986 + 49
Fused 30 6.3 74.4£5.0 49.9+9.6 50.9+9.9 51.6+12.1 14147
60 7.1 76.2£3.2 54255 53.3+6.6 56.5+8.3 32423
90 6.7 77.5+2.8 54.6 7.4 56.0 £ 5.4 54.3+10.2 646 + 42
120 7.3 77.7£2.0 54.9 5.4 56.4 4.0 54.2+83 987 + 53
SVM Multi- 30 12.3 70.1£6.5 403+11.8 41.7+13.1 42.0+136 112+ 4
(multi-  spectral 60 15.7 71.3+4.6 42.7+9.0 43.8+9.3 43.1+11.0 22414
class) 90 20.5 69.3+4.1 39.6+86 40.0+8.2 40.6+10.8 353+ 19
120 23.1 69.0+3.9 38.0£9.1 39.6+7.5 38.0+12.0 518 +31
Fused 30 14.5 69.6 £6.3 412+12.2 415+13.4 457+15.8 113+ 4
60 16.1 73.0£6.2 458+12.4 475+11.8 46.8+15.0 23013
90 17.0 73.8+4.1 45.8+10.1 49.2+75 44.8+13.0 39122
120 17.0 74.6+2.6 452+7.4 50.9 5.0 41.9+10.0 620 + 40
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F-score and the area under the curve of the receiver operating characteristic (AUC-ROC). The F-
score is a statistic that provides the harmonic mean of precision and recall (i.e. user's and
producer's accuracies).

Best results were consistently achieved using the random forest classifier. The optimal
parameter combination was ultimately observed at 120 samples using a binary class structure
and fused resolution (e.g. Fig. 9), with an average F-score of 60.2 + 1.3. Comparatively, the best
SVM result was achieved with the same parameter set, at an F-score of 54.9 + 5.4. As shown in
Table 7, RF classifications consistently reached ~3-5% higher accuracy versus SVM when
comparison was made between specific parameter combinations. RFs also demonstrated higher
stability run-to-run, both in terms of consistency of spatial prediction and lower variance in
accuracy. Finally, RF processing was faster than SVM by roughly an order of magnitude.

A comparative review of results between other parameter options also revealed
systematic performance trends. For both classifiers and with all other settings held constant,

increases from multispectral to fused resolution resulted in a ~2-4% increase in average
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Fig. 9. Sample location d, including: a) False color image with contour line overlay and elevations in
meters, b) Landslide reference inventory (yellow outline) over RGB composite image (R
2-NDVl,0;-PCAy); c) Segmented image objects over false color images, d) . All resolutions are fused (i.e.
0.5 m).
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accuracy, as well as an increase in variance. Classification run over a binary setup rather than
against 12 target classes resulted in a ~2-3% increase in accuracy for RFs and a ~8-10% increase
for SVMs. This observed performance offset was sufficient such that binary learning consistently
exceeded the potential of the multi-class case despite increases in variance. The response of
classifier performance to variation in sample size was less dependable. Although average
accuracies fluctuated by ~2-4% across the range of 30 to 120 samples, the direction of change
was inconsistent.

The feature elimination strategies used for RF and SVM resulted in a set of preferred
features across runs (Tables 5 & 6). Although all learning strategies for RFs and SVMs tended to
favor certain, similar features, results for the binary class structure were highly variable
compared to the run-to-run stability of the multi-class scenario. Basic spectral values, ratios and
transforms were chosen often by all routines, as were slope and measures of proximity to roads.
Notably missing from the subset of meaningful features were both curvature and metrics

derived from GLCMs.
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DISCUSSION

5.1 Image Segmentation & Accuracy Assessment

Considering the preliminary step of the eCognition MRIS segmentation algorithm, the
time delay from event to post-image capture posed a challenge to achieving optimal object
delineation. Signal response within failure tracks was obscured by erosion, weathering of
exposed materials, and vegetation regrowth. As a result, direct application of default MRIS
parameters to the multispectral and fused products failed to consistently delineate landslide
boundaries, even when strongly over-segmented. After multi-temporal change in both green
and red bands was added to the algorithm, the extents of segmented objects, although over-
segmented, were better constrained to landslide boundaries. Such an application of band-
difference ratios may be well suited only to arid or semi-arid environments (Chavez &
MacKinnon, 1994). It should be noted that the final scale parameter values as used cannot be
reliably reapplied to diverse test environments.

Previous object-based landslide studies have not presented a standardized method of
accuracy assessment. This stems from the fact that there is rarely absolute correspondence
between segmentation boundaries and landslide occurrence as mapped in the reference
inventory, and therefore direct comparison is not possible. The method used by Stumpf & Kerle
(2011) involved generalization of the reference inventory to the object level based on a
proportional cut-off value. However, the generalization error introduced was not appropriate
for direct comparison of differing object boundary results at the multispectral and fused

resolutions. Instead, the method of rasterizing the inventories and comparing at the pixel level
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provided a precise gauge of performance, albeit at a greater processing cost. A point that
deserves future study is development of an automated procedure for vectorized delineation of

individual landslides from the resulting clusters of segmented image objects.

5.2 Class Balance & Sample Size

The preliminary model runs to equalize class-imbalance over f values provided useful
insight into the relative performance of each classifier and combination of parameters (Figs. 7 &
8), particularly in regard to class structure. The highest degree of stability was observed for RFs
in general, and specifically for multi-class runs. However, consistently higher § values were
required in the multi-class case to equalize the user's and producer's accuracies. In effect, use of
a multi-class approach reduced the importance of the landslide class in the classification model,
and required additional constraint to avoid over-fitting. As a consequence, in the binary case the
sample pool was consistently larger, providing the classifier with increased information content.
Therefore, it is inconclusive if the higher accuracy observed for binary resulted from an inherent
advantage over multi-class learning or from a sensitivity to sample size. For future research,
more robust sampling should be targeted for multi-class prediction to prevent under-
representation.

The manual sampling test sizes of between 30 to 120 samples per class represent a
standard range for traditional applications of unsupervised, pixel-based classification. In the case
of machine learning, however, commonly the true membership of the entire dataset is known a
priori, and a full 20% is sampled as a training set (Blagus & Lusa, 2010; Mondini et al., 2011b;

Statnikov et al., 2008; Stumpf & Kerle 2011). By limiting the sample size, this study induced
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effects similar to those of so-called “small n large p” learning situations (Strobl et al., 2007), in
which the number of representative samples (n) is insufficient in comparison to the number and
complexity of interaction of predictor variables (p). A further limitation on learning potential
resulted from unique replication sets being simulated by random selection from the original
sample set, which may explain curtailed performances for the 90- and 120-sample cases (Table
7).

Although SVM results exhibited lower accuracy and higher variability, this may reflect a
higher sensitivity to limited training knowledge. It remains to be seen if a similar study using
extensive sample sets would also favor RFs. The need persists for an efficient and preferably
automated approach for selection of sufficiently large sample sets before machine learning
algorithms can be operationally applied to the landslide identification task over broad scales of
imagery. For example, continued research into active learning approaches may provide a

solution (e.g. Stumpf et al., 2012).

5.3 Feature Selection

From the results of feature elimination given in Tables 5 & 6, it is uncertain if the high
run-to-run variability observed in the binary cases (i.e. for both RF and SVM) resulted from
selection procedures or limited training knowledge. Comparatively, for multi-class models of the
RF classifier, the variables selected were consistent across all replications. In theory, the SVM
algorithm of recursive feature elimination is the more robust approach, in which the final
predictors have been objectively cross-validated to achieve a minimum of error. In contrast, the

RF strategy is naive in that features are only known to be meaningful for prediction of an
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individual hold-out sample. The SVM routine demonstrated higher variability between
replications, but it is not empirically apparent whether the approach arrived at a less correlated
subset on average. In all cases, top-ranked features agreed with those meaningful to human
interpretation, such as spectral bands, simple band ratios and transforms, and slope. Other than
slope, the low importance accorded to topographic descriptors was expected, considering the
coarse resolution of the elevation model relative to the imagery, and therefore the diminished
information content of derivative data. Future research would benefit from highly accurate and

precise topographic data such as from LiDAR scanning.

5.4 Classifier Comparison & General Trends

Although there was variability in individual classification results, systematic trends were
observed across the run-specific spatial outputs (Fig. 10). Areas predicted by SVMs tended to
fluctuate inconsistently between gross over- or under-estimation, whereas RF results were
relatively stable over repetition. For both classifiers and at all parameter settings, a systematic
source of error was poor prediction of landslide occurrence in cases of shallow translational
complexes. Typically these locations involved pre-existing disturbance that served to obscure
the signal of fresh scars. Another common false alarm was for regions of bare soil, particularly in
the case of gully complexes that included areas in shadow. In these locales classification was
challenging even for a trained interpreter, and only after fieldwork was the reference inventory
validated. In addition, over steep topography such as gullies the learning algorithms were
sensitive to false examples of image change that stemmed from image parallax during ortho-

rectification. Other, less pervasive blunders included misappropriation of streambeds, buildings,
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and managed fields, all of which were sporadic and resulted from particular objects that had
changed between image dates (e.g. cut bank erosion, new construction, fire suppression
management, etc.). Notably, roads were effectively differentiated in all learning scenarios. This
was likely a result of effective learning from the road network input, and suggests the potential
for other accurate semantic datasets to positively improve the landslide detection task (e.g.

building footprint records, etc.) .

Fig. 10. Representative classification results for locations a-c (i.e. Figs. 4-6), showing best-case
classifications at 120 samples for binary RF (red, 45° hatching) and binary SVM (blue, -45° hatching).
The reference inventory is highlighted in white. Resolutions vary as multi-spectral (a-c) and fused (d-f).
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CONCLUSION

In the past decade, methods for delineation of landslides from VHR satellite imagery
have seen rapid advancement. Although object-based routines have been proven to provide
viable and consistent results, such methods continue to rely on a user-driven approach to
analysis that limits tractability across broad-scale application environments of diverse
composition. Stumpf & Kerle (2011) demonstrated a method to increase the automation of
landslide detection by implementing the random forest machine learning classifier. However,
uncertainty remains as to an optimal framework for image pre-processing and for selection of
both classifier and requisite parameter settings.

This study extended OBIA and machine learning landslide detection methods by
comparing the use of classifiers, new image resolutions, class structures, and sample sizes. The
random forest classifier was objectively compared to support vector machines and found to
outperform under all scenarios. These findings free future analysts from uncertainty regarding
optimal framework, while highlighting the need for future research, including automation of
sample selection, as well as further refinement of the image segmentation task. The need also
persists for optimization of image transform algorithms to enhance subtle landslide signals in

challenging test environments.
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