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Water hyacinth (Eichhornia crassipes) and water primrose (Ludwigia hexapetala) are 

aggressive invasive floating aquatic vegetation (FAV) species that cause severe economic 

and ecological impacts to the Sacramento-San Joaquin River Delta in California. These 

two invasive FAV occupy the same ecological niche within the delta ecosystem and form 

large floating vegetation mats made up of a mixture of both hyacinth and primrose. Remote 

sensing methods have proven to be successful in mapping and identifying invasive 

freshwater aquatic vegetation compared to traditional surveying methods. Using three 

different types of imagery (multispectral 2019 PlanetScope at 3.7m, multispectral 2018 

WorldView-2 at 1.8m, and hyperspectral 2007 AVIRIS at 2.4m) four different remote 

sensing classification methods were performed to mapping invasive FAV - maximum 

likelihood (ML), support vector machine (SVM), object-based image analysis (OBIA), and 

spectral angle mapper (SAM) - resulting in six method/imagery combinations (Planet/ML, 

Planet/SVM, WorldView-2/ML, WorldView-2/OBIA, AVIRIS/ML, AVIRIS/SAM). The 

six classifications achieved producer’s accuracies from 83% to 91%. The AVIRIS/SAM 

combination resulted in the highest producer accuracy (91%) and the Planet/SVM 

combination resulted in the lowest producer accuracy (83%). This study revealed that, 

when mapping invasive FAV in a freshwater ecosystem, higher spatial resolution results 

in a higher classification accuracy. This study also revealed that when mapping FAV, 

hyperspectral imagery results in a higher classification accuracy than multispectral 

imagery.  
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1. Introduction 

Invasions of aquatic weeds into freshwater, estuarine, wetland, and floodplain 

habitats decreases biodiversity, threatens critical habitat, alters nutrient cycles, and 

degrades water quality (Toft et al., 2003). An estimated USD $100 million per year is spent 

on control and eradication programs targeting invasive aquatic weeds in aquatic 

ecosystems throughout the United States (Pimentel et al., 2000). Invasive species threaten 

native species directly through competition and hybridization, and indirectly through 

ecosystem impacts, such as changing fire regimes, nutrient cycling, hydrology and energy 

budgets (Mack et al., 2000). Native vegetation in aquatic freshwater environments occupies 

a vital role in overall environmental function and productivity. Aquatic freshwater 

vegetation helps to alleviate floods, filter polluted water, and provide habitat for a diverse 

array of plant and animal species (Zhang et al., 2010). Aquatic freshwater vegetation is an 

excellent early indicator of physical and chemical degradation in wetland environments as 

well (Dennison et al., 1993). Livestock grazing, inundation of habitat by dams, 

groundwater pumping, channelization, and agricultural and urban growth all contribute to 

the loss of aquatic freshwater ecosystems and areas that manage to remain intact are rapidly 

invaded by aggressive non-native species. When these non-native species are not properly 

managed, they out-compete native plants and severely degrade or destroy the wetland 

habitat (Hestir et al., 2008). 

Water hyacinth (Eichhornia crassipes) and Uruguay water primrose (Ludwigia 

hexapetala) are aggressive invasive floating aquatic vegetation (FAV) species that cause 
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severe economic and ecological impacts to the Sacramento-San Joaquin River Delta in 

California. Invasive water hyacinth and invasive water primrose grow along the islands 

within the delta channels. These two invasive FAV species occupy the same ecological 

niche within the delta ecosystem and form large floating vegetation mats made up of a 

mixture of both hyacinth and primrose (Figure 1). Invasive FAV clogs waterways, impedes 

recreational activities such as boating and fishing, increases evapotranspiration, decreases 

biodiversity and changes the functional characteristics of the ecosystem (Toft et al., 2003). 

Invasive FAV hinder the success of native habitat restoration projects within the 

Sacramento-San Joaquin River Delta as well (Bossard et al., 2000). 

 

Figure 1.  This image was taken on 8/9/2019 during the training sample/ accuracy assessment fieldwork. 

This image shows the invasive FAV mats, consisting of a mixture of both the round-leaved water hyacinth 

(right side) and the narrow-leaved water primrose (left side). Photo Credit: Michael Tarantino 
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Water hyacinth is native to Brazil and has successfully invaded almost every region 

in the world that is suitable for its growth including China, India, Southeast Asia, Japan, 

South Africa, Europe, and the United States. Water hyacinth, introduced to the Sacramento 

River in 1904 by horticulturalists now obstructs navigable waterways, degrades water 

quality, fouls water pumps, blocks irrigation channels, and causes significant changes to 

ecological assemblages throughout the Delta (Cohen and Carlton, 1995; Toft et al., 2003). 

Infamously known as one of the fastest-growing plant species in the world, water hyacinth 

grows so fast that it can double in size between 6-18 days (Underwood et al., 2006). Water 

hyacinth floats on top of freshwater as a healthy vegetative canopy with spongy round 

leaves and produces lavender or white flowers (Figure 2) (CA State Parks, 2018). Water 

hyacinth spreads easily when broken apart; it can float downstream and form a new colony 

just from one small clump of separated vegetation (Underwood et al., 2006). Water 

hyacinth can limit the amount of sunlight that reaches other plants below the surface, 

interrupting photosynthesis and killing plants and microorganisms important to wildlife. 

Dead fish have also been seen on top of hyacinth, falling victim to suffocation after jumping 

on top of the green thickets and being unable to return to the water (Hawkes, 2014). 

According to the California Dept. of Boating & Waterways, water hyacinth’s growth 

period is typically from spring to late fall and its bloom period is from June to October. For 

this research study, the analysis time period is the month of August during the peak bloom 

stage (Hestir et al., 2008). 
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Figure 2. This image was taken on 8/9/2019 during the training sample/ accuracy assessment fieldwork. This 

image shows the invasive round-leaved water hyacinth. Photo Credit: Michael Tarantino 

 

Water primrose is the other invasive FAV in the Central Delta that co-occurs with 

water hyacinth and is equally invasive (Khanna et al., 2011). The invasive species of water 

primrose found in the delta is native to Uruguay (Boyer and Sutula, 2015). Water primrose 

has been identified in the Sacramento Delta since the early 2000s and surged after the 

population crash of the native FAV, pennywort (Khanna et al., 2018). Similar to water 

hyacinth, water primrose is also floating aquatic vegetation and has the same growth period 

as water hyacinth (spring - late fall), however during the blooming season (May - 

December), water primrose produces yellow flowers (Figure 3), while hyacinths bloom are 

white or lavender. Younger water primrose has oval-shaped leaves and then develops more 

narrow willow-like leaves as the plant matures (CA State Parks, 2018). It is a perennial 

herb that grows in moist to flooded areas and although rooted, develops a 2-meter vertical 

root system that can draw nutrients directly from the water, allowing water primrose to 



5 

 

form floating canopies extending meters into the channel from the shore (CA State Parks, 

2018). While their distribution is limited to small patches in their native range, they can 

grow aggressively and rapidly in their new environment (Haury et al., 2014). Water 

primrose’s fast sexual reproduction, high seed production, successful germination, and the 

plasticity of morphology contributes to its fast growth rates (Dandelot et al., 2005). These 

characteristics make water primrose an ideal invasive species capable of engineering 

ecosystems to benefit its own growth (Dandelot et al., 2005). Like hyacinth, water primrose 

limits the amount of sunlight that reaches other plants below the surface and interrupts 

photosynthesis, again leading to killing plants and microorganisms important to wildlife. 

Water primrose mats also have detrimental effects on human health by providing habitat 

for mosquitoes transmitting the West Nile virus (Boyer and Sutula., 2015). 

 

 

Figure 3. This image was taken on 8/9/2019 during the training sample/ accuracy assessment fieldwork. This 

image shows the invasive narrow-leaved water primrose. Photo Credit: Michael Tarantino 
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Developing innovative techniques for mapping invasive species is vital to our 

understanding of invasion ecology and helps to inform management decisions on how to 

control and monitor invasive activity (Underwood et al., 2006). Traditional terrestrial and 

aquatic vegetation classification fieldwork requires taxonomic information about 

vegetation species, previous records of data analysis, and the visual estimation of 

percentage cover for each species (Adam et al., 2010). Traditional classification methods 

are labor-intensive, costly, time-consuming, sometimes inapplicable due to the poor 

accessibility, and often requires direct contact with the plant which can result in further 

dispersal. Aquatic freshwater vegetation ecosystems are often difficult for field-based 

mapping methods such as field-based surveying. Due to these restraints, the field-based 

methods are only practical in relatively small accessible areas (Lee and Lunetta 1996; 

Hestir et al., 2008). For this research study, a remote sensing approach to vegetation 

classification is the only way such an assessment can realistically be accomplished, given 

the rapid ability of these invasive FAV to expand and move.  

Mapping invasive vegetation in riparian, wetland, and other freshwater ecosystems 

with the assistance of remote sensing is an efficient, accurate, and cost-efficient alternative 

to traditional field mapping methods (Deloach et al., 2005). Remote sensing utilizes 

satellite imagery to analyze the surface of the earth, providing a synoptic solution for 

mapping wetland and riparian zones over large spatial areas. In order to make an accurate 

map, a remote sensing approach to vegetation monitoring and classification must be 
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accurate, repeatable over space and time, and account for the inherent spatial and 

environmental heterogeneity of an ecosystem (Hestir et al., 2008). 

This invasive FAV identification remote sensing research study uses two types of 

spectral imagery for classification: multispectral and hyperspectral. Multispectral imagery 

contains 4-8 spectral bands depending on the satellite and sensor used. Hyperspectral 

imagery can contain ≥ 200 spectral bands depending on the sensor. Multispectral and 

hyperspectral imagery data can be processed using remote sensing software for image 

analysis and cartography purposes. Both multispectral & hyperspectral imagery are used 

to identify general vegetation classes or to attempt to discriminate invasive vegetation from 

native vegetation at the species level (Adam et al., 2010; Li et al. 2005). Deciding whether 

to use multispectral vs. hyperspectral is dependent on the land cover type or object intended 

for classification, the size of the area of interest, the spatial resolution, as well as the 

availability of the imagery data. 

When classifying vegetation species with remote sensing imagery, a classification 

analysis is performed. This research study utilized the supervised classification analysis, 

which allows the user to manually create training areas of pixels within the image to 

represent the different classification categories. Before a supervised classification is run, 

the classification algorithm is selected and then the classification begins. This remote 

sensing research study compares four different classification algorithms to distinguish the 

most effective algorithm for accurately classifying invasive FAV: Maximum Likelihood 

(ML); Support Vector Machine (SVM); Object Based Imagery Analysis (OBIA); and 
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Spectral Angle Mapper (SAM). The ML, SVM, OBIA algorithms are used for classifying 

multispectral imagery. The ML and SAM classifiers are used for classifying hyperspectral 

images. 

A popular classification algorithm used when performing a supervised 

classification for identifying aquatic freshwater vegetation is the maximum-likelihood. The 

maximum likelihood (ML) classifier is a traditional parametric technique for image 

classification. Because of its widespread and long-time use with established high accuracy, 

the maximum likelihood classifier is an appropriate control classifier. The ML 

classification algorithm has proven successful in both hyperspectral and multispectral 

classifications. This method was utilized when identifying invasive giant reed (Arundo 

donax) along the riverbanks of the Rio Grande in Texas (Deloach et al., 2005). 

The support vector machine (SVM) classifier is a pixel-based classification 

algorithm used when performing a supervised classification for identifying freshwater 

vegetation. The SVM is an advanced machine learning classification method that is able to 

process a segmented raster input or a standard image. The SVM classification algorithm 

yields higher accuracy when using multispectral satellite imagery compared to a SVM 

using hyperspectral imagery (Abdel-Rahman et al., 2014). The SVM classification is less 

susceptible to noise and correlated bands as well. SVM is a particularly appealing 

classification method because of its ability to generalize well even with limited training 

samples, a common limitation for remote sensing applications. However, this classifier also 

suffers from parameter assignment issues that can significantly affect obtained results 
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(Mountrakis et al., 2011). This classification method is performed using multispectral 

remote sensing software like Erdas Imagine, eCognition, and ArcGIS Pro. SVM has been 

used in remote sensing-based estimation and monitoring of vegetation biochemical 

parameters such as chlorophyll concentration, gross primary product, and 

evapotranspiration (Bazi et al., 2007). A 2014 remote sensing study successfully utilized 

the SVM classifier to map woodwasp-infested and lightning-struck pine trees in South 

Africa (Abdel-Rahman et al., 2014). A 2008 study performed a similar SVM-based 

classification to assess in forest classification accuracy (Huang et al., 2008).  

Object-based imagery analysis (OBIA) is another classification method used while 

performing a supervised classification for identifying freshwater vegetation. The OBIA 

method is performed on localized neighborhoods of pixels, grouped together with a process 

called segmentation. The segmentation aspect of OBIA is what makes this classification 

method different than pixel-based classifiers. Segmentation takes into account both color 

and shape characteristics of the input imagery when grouping pixels into segmented 

objects. Since this method uses both shape and color, classified objects resulting from 

segmentation resemble real-world features because the natural boundaries between land 

cover types are used as the classified polygon borders, producing cleaner and smoother 

classification results, which are not pixelated or rasterized. Aquatic freshwater 

environment OBIA classifications can be challenging due to vegetation cover dynamics 

with water fluctuation creating rapid and frequent changes in the type, distribution, and 

density of plant coverage (Belluco et al., 2006). Regardless of the challenges, a 2017 



10 

 

remote sensing study successfully utilized OBIA classification to map wetland vegetation 

in the Eagle Bay wetland area located at the northern side of Lake Okeechobee in South 

Florida (Pande-Chhetri et al., 2017). Another remote sensing study from 2008 successfully 

utilized the object-oriented based classification method to map invasive exotic Australian 

pine trees in South Florida (Johnson et al., 2008). 

Unlike the previous classification methods, the Spectral Angle Mapper (SAM) is 

specifically used for analyzing hyperspectral imagery. This research classification method 

is performed using ENVI remote sensing software. The SAM compares the angle between 

the reference spectra and the pixel, the smaller the angle means the closer the match to the 

endmember. The reference spectra are the reflectance signatures of the specific vegetation 

species. The SAM technique uses endmembers derived from the image data that represent 

different phenological states and geographic locations throughout the dataset, as 

determined from the field data or regions of interest (ROIs). A 2008 invasive FAV study 

applied SAM to a subset of the visible and NIR bands to reduce noise contributed to the 

pixel spectra from mixing with water. The study results revealed that SAM classification 

is appropriate for species-level monitoring at the regional scale (Hestir et al., 2008). 

While there are a number of studies (e.g. Adam et al., 2010; Ashraf et al., 2010; 

Belluco et al., 2006; Deloach et al., 2005; DiPietro et al., 2002; Agjee et al., 2015; Hestir 

et al., 2008; Underwood et al., 2006; Ustin et al., 2006) using remote sensing technology 

and methods to map FAV, there are no studies that specifically compare different satellite 

imagery types as well as different classification methods to determine the most effective 
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and accurate imagery/algorithm combination for identifying a specific FAV species. 

Previous studies either performed multiple classification methods (e.g. Ashraf et al., 2010; 

Deloach et al., 2005; Hestir et al., 2008; Underwood et al., 2006; Ustin et al., 2006) on 

one satellite image, or they would perform one classification method on different types of 

satellite imagery such as (multispectral vs. hyperspectral) (e.g. Adam et al., 2010; Belluco 

et al., 2006; Agjee et al., 2015). Therefore, the objective of this research is to investigate 

the most effective method of classifying invasive FAV by comparing different 

combinations of supervised classification algorithms with different satellite imagery types 

in order to identify the invasive large floating mats that are formed by a combination of 

invasive water hyacinth and invasive water primrose. 
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2. Study Area: Central Sacramento - San Joaquin River Delta 

The Sacramento–San Joaquin River Delta is formed by the confluence of the 

Sacramento and San Joaquin Rivers and drains into the Pacific Ocean through San 

Francisco Bay. The San Francisco Bay-Delta is the largest estuary in the western United 

States and its watershed drains over 160,000 km2 of California. The hydrodynamic 

heterogeneity of the delta system is constructed in a wide range of salinities, tidal fluxes, 

water depths, and freshwater inflows with extreme seasonal and inter-annual variability 

(Hestir et al., 2008). Unfortunately, the delta may have the largest number of invasive 

species of any estuary in the world (Cohen and Carlton, 1998) and is the focus of a massive 

coordinated ecosystem restoration program, with direct expenditures exceeding USD $1 

billion beginning in the mid-1990s (Lund et al., 2007). 

The study area for this invasive FAV identification research study focuses on the 

Central Sacramento Delta. This region is composed of a maze of meandering channels and 

inundated delta islands which were created by land reclamation and building of levees in 

the early 1900s. This has created a diverse system of channels and large expanses of water 

with varying bathymetry and water velocity (Khanna et al. 2018). The 14.39 km2 study 

area for this research project encompasses three major inundated island groups (Figure 4) 

within the central delta: Sandmound Slough Islands; Little Mandeville Islands; Upper 

Mildred Islands.  



13 

 

 

Figure 4.  Site map of the 14.39 km2 clipped extent thesis study area within the Central Sacramento Delta, 

approximately 90 km NE from San Francisco, CA. GPS fieldwork on these 3 island groups was conducted 

on 8/9/2019 from 8:30 - 11:30. 

 

The vegetation communities in the Central Delta are characterized by submerged, 

emergent, floating and riparian communities (Khanna et al., 2011). Submerged aquatic 

vegetation (SAV) includes native species, such as coontail (Ceratophyllum demersum L.), 

common waterweed (Elodea canadensis Michx.), sago pondweed (Stuckenia pectinata (L.) 

Boerner), American pondweed (Potamogeton nodosus L.), and non-native plants, such as 

Brazilian waterweed (Egeria densa Planch.), Eurasian watermilfoil (Myriophyllum 

spicatum L.), Carolina fanwort (Cabomba caroliniana Gray) and curly-leaf pondweed 
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(Potamogeton crispus L.) (Khanna et al., 2018). The one native species of floating aquatic 

vegetation (FAV) in the Sacramento–San Joaquin River Delta is pennywort (Hydrocotyle 

umbellata L.) However, after the population crash of pennywort in the early 2000s, the 

majority of FAV within the central delta are aggressively invasive water hyacinth 

(Eichhornia crassipes) and water primrose (Ludwigia hexapetala) (CA State Parks, 2018). 

The native emergent vegetation found in the Sacramento–San Joaquin River Delta includes 

tule (Schoenoplectus spp.), common reed (Phragmites australis) and cattail (Typha spp.) 

(Khanna et al., 2011). Native riparian vegetation species in the Central Delta include 

willow (Salix spp.), live oak (Quercus spp.), cottonwood (Populus fremontii), sycamore 

(Acer pseudoplatanus), alder (Alnus spp.) and elderberry (Sambucus spp.). Invasive 

riparian species within the Central Delta are giant reed (Arundo donax L.), perennial 

pepperweed (Lepidium latifolium L.) and blackberry (Rubus armeniacus Focke) (Khanna 

et al., 2011).  

The California Department of Boating and Waterways is the management agency 

responsible for the abatement of invasive FAV and other weeds in the Sacramento Delta, 

which is done through the application of chemical herbicides, hand removal, and 

mechanical removal (Cohen and Carlton, 1995; CA State Parks, 2018). Recreational 

boating activities generate about half a billion dollars worth of business in Northern 

California and boating clubs and guide fishing, particularly in the delta region, have been 

particularly hit the hardest by the effects of invasive FAV. In late fall 2014, invasive FAVs 

had inundated downtown Stockton and strangled the port to such an extent that it clogged 
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shipping lanes and forced the city to cancel the 35th annual Delta Reflections Lighted Boat 

Parade (Hawkes, 2014). Water hyacinth was chemically controlled by California State 

Park’s Division of Boating and Waterways, but the state did not have permission to spray 

water primrose until 2018 (CA State Parks, 2018). Figure 5 shows the area of interest for 

this research study occupying areas of very high (red) and high (orange) FAV priority 

zones. 

 

Figure 5.  This map shows CA’s Division of Boating and Waterways floating aquatic vegetation site 

prioritization map for 2019. The blue rectangle represents the thesis study AOI (CA State Parks, 2019). 
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3. Methods & Materials 

3.1 Image Classification Methodologies 

 This research study investigated the most effective remote sensing method of 

classifying invasive floating aquatic vegetation species by comparing three different types 

of satellite imagery data: high resolution multispectral 4-band; very high resolution 

multispectral 8-band; and hyperspectral; as well as four different classification methods: 

maximum likelihood; spectral vector machine; spectral angle mapper; and object-based 

imagery analysis. Out of the four classification algorithms, the maximum likelihood is the 

default algorithm used for most supervised classifications. This classification method has 

proved effective, regardless of satellite imagery sensor type. Because of this, the ML 

method was used to compare the accuracy between the three satellite imagery types. The 

other three methods are unique classification algorithms, one unique classification per 

satellite imagery type (Table 1). This research study produced six invasive FAV 

classifications. The accuracy assessments & confusion matrices were produced using 

ArcGIS Pro. 
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Table 1.  The six algorithms/ imagery combinations investigated throughout this master's thesis.  

Classification 

Algorithm 

Spatial Res. / Flight 

Date 

Satellite Sensor Spectral Info #of 

Bands  

ML 3.7m  -   8/8/2019 PlanetScope Multispectral  4 

SVM 3.7m   -  8/8/2019 PlanetScope Multispectral  4 

ML 1.8m - 8/21/2018 WorldView 2 Multispectral  8 

OBIA 1.8m - 8/21/2018 WorldView 2 Multispectral  8 

ML 2.4m   -  8/4/2007 AVIRIS Hyperspectral 224 

SAM 2.4m   -  8/4/2007 AVIRIS Hyperspectral 224 

 

3.2. Invasive FAV Multispectral Classification Analysis (PlanetScope) 

         In order to classify invasive FAV within the central Sacramento Delta, 

multispectral satellite imagery from Planet.com was utilized as the 4-band multispectral 

image option. Planet’s multispectral imagery library contains imagery with spatial 

resolutions between 3.7 m to 1.5 m resolution. Compared to WorldView-2 and AVIRIS 

imagery, the advantage of using Planet is its up-to-date imagery. Typically, new imagery 

for a specific area of interest is updated every two to three days. WorldView-2 and AVIRIS 

imagery are updated once a year to every 5 years depending on the location of the study 

area. The imaging sensor used was the PlanetScope scene 3.7m resolution sensor, which 

has the following bands: blue (Band 1, 455–515 nm), green (Band 2, 500–590 nm), red 

(Band 3, 590–670 nm) and near infrared (Band 4, 780–860 nm). It should be noted that an 

8-band version has been announced to be available soon. The multispectral image from 

Planet was flown on 8/8/2019, has 0% cloud cover, off-nadir angle of 1o, and has a sun 

elevation angle of 46.4o. The hyperspectral image and the higher-resolution multispectral 
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images are older images, and both are taken in August as well, that way all six 

classifications are temporally equally. Since the hyperspectral image has the smallest delta 

coverage out of the three images, the hyperspectral image’s extent was used as the clipping 

feature for the Planet image (Figure 6). 

 
Figure 6. Clipped extent of PlanetScope 3.7m (8/8/2019) displayed in false-color infrared (4, 3, 2). 

 

 

3.2.1 Training & Validation Fieldwork for Planet Imagery 

The Planet imagery was flown on Thursday, August 8th, 2019. Training area 

samples and accuracy assessment samples for the Planet imagery analysis were collected 

on Friday, August 9th, 2019 from 8:30 am - 11:30 am. In order to access the delta island 

groups, a motorboat was rented from Sugar Barge Marina Bethel Island, CA (38.026693, 

-121.612340). A Trimble Juno GPS receiver was used to acquire training and validations 

points. The original plan was to position the boat as close to the FAVs to select training 

and validations points on top. After consulting the boat rental employees, it was advised to 

keep a safe distance (>10ft) from FAVs at all costs in order to avoid the plants. FAV has a 

tendency of wrapping around boat propellers as well as getting the FAVs stuck in the 
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engine intake. If the invasive FAV are broken up by boating activities, the broken piece 

can drift downstream and form new FAV colonies. 

A total of 400 points were acquired; 200 training samples and 200 accuracy 

assessment points. 80 training samples of FAV (both water primrose and water hyacinth); 

40 native vegetation training samples; 40 water training samples; 40 bare soil training 

samples; 110 FAV accuracy assessment points; 30 native vegetation accuracy assessment 

points, 30 water accuracy assessment points; 30 bare soil accuracy assessment points. 

These 400 points were used for both the SVM and ML Planet classifications. 

3.2.2 ML & SVM PlanetScope Preprocessing 

Before the classifications begin, a 14.39 km2 mask of inner delta islands (Figure 6) 

was used to raster clip the Planet image, which allowed only vegetation within the delta 

channels and not agricultural fields to be classified. The clipping boundary between the 

delta and land are the levee roads, in order to ensure that any invasive FAV along the levee 

walls can be identified. Inner delta islands such as Little Mandeville and Mildred islands 

are not excluded from the classification. 

3.2.3 Maximum Likelihood Classification 

         The maximum likelihood classification was run on the clipped PlanetScope image 

using 3 out of 4 available bands: 4 (infrared); 3 (red); 2 (green). This classification method 

is the control classifier to test variability between the three satellite images. This 

classification method is performed using Erdas Imagine remote sensing software using 

default parameters. The Planet image training samples and accuracy assessment points 
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were chosen based on ground-truthed GPS from fieldwork. The Planet ML accuracy 

assessment and confusion matrix were post-processed using ArcGIS Pro. 

3.2.4 Support Vector Machine Classification 

The SVM classification was run on the clipped PlanetScope image using the false-

color infrared band combination: RBG 4,3,2. The advantage of the SVM method compared 

to the other four algorithms its ability to successfully handle small training data sets, often 

producing higher classification accuracies than the traditional methods (Mantero et al., 

2005). The SVM classification used the same 200 training samples as the maximum 

likelihood. This classification method was performed using ENVI remote sensing software. 

The classification parameter of 800 maximum pixels per classification class was used. The 

value of 800 was chosen because it produced the best SVM classification results. The 

Planet SVM accuracy assessment and confusion matrix were post-processed using ArcGIS 

Pro. For the Planet SVM classification, the same 200 ML ground-truthed validation points 

were used. 

3.3 Invasive FAV Multispectral Classification Analysis (WorldView-2) 

The second type of satellite imagery being used to classify invasive FAV is high-

resolution multispectral imagery from WorldView-2 (WV2) satellite. Compared to the 

Planet and AVIRIS imagery, the advantage of using WorldView-2 imagery is its high 

spatial resolution and its eight multispectral bands. This satellite sensor has a spatial 

resolution of 1.8m and has eight multispectral bands: coastal (band 1, 400-450 nm), blue 

(band 2, 450-510 nm), green (band 3, 510-580 nm), yellow (band 4, 585-625 nm), red 

(band 5, 630-690 nm), red edge (band 6, 705-745 nm), near-infrared 1 (band 7, 770-895 
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nm), near-infrared 2 (860-1040 nm). The image was flown on August 21st, 2018; cloud 

cover of 0%; off-nadir 18.9o; and sun elevation of 60.42o. Before segmentation and 

classification, a 14.39 km2 mask of inner delta islands (Figure 7) was used to raster clip the 

WorldView-2 image, which allowed only wetland vegetation and not agricultural fields to 

be classified.  

Figure 7. Clipped extent of WorldView-2 1.8m (8/21/2018) displayed in false-color infrared (8, 5, 3). 

 

3.3.1 WorldView-2 Maximum Likelihood Classification 

The maximum likelihood classification was run on the clipped WorldView-2 image 

using the false-color infrared band subset: 8 (near-infrared 2); 5 (red); 3 (green). The 

WorldView-2 ML classification method was performed using Erdas Imagine remote 

sensing software. 200 new training samples and 200 new validation points are used. These 

are not the same points as the Planet imagery, since WV2 is older imagery, these points 

were acquired based on the imagery itself (Figure 8), not through GPS fieldwork. The WV2 

maximum likelihood classification used 200 training samples: 80 training samples of 

invasive FAV; 40 native vegetation training samples; 40 water training samples; 40 bare 

soil training samples. The WorldView-2 ML accuracy assessment and confusion matrix 
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table were processed using ArcGIS Pro using 200 validation points: 110 invasive FAV 

points; 30 native vegetation points; 30 water points; and 30 bare soil points. 

 

 
Figure 8. This snapshot from the WorldView-2 image flown on 8/21/2018 shows the distinct spectral 

differences between the bright green invasive FAV floating mats, the surrounding delta water, and the darker 

green native vegetation.  

 

 

3.3.2 WorldView-2 Object-Based Imagery Analysis  

The OBIA classification method was performed using eCognition remote sensing 

software with the WV2 image displayed in false color infrared band subset: 8 (near infrared 

2); 5 (red); 3 (green). The multiresolution segmentation used a scale parameter of 20, as 

well as a shape value of 0.2 and a compactness value of 0.5. The scale parameter of 20 

allowed for smaller clumps of invasive FAV to be segmented, a larger scale parameter 

wouldn't separate the FAV from native vegetation, but instead, the smaller FAV segments 

would be grouped into the native vegetation segments. A higher color value of 0.2 resulted 

in the most accurate segmentation, instead of the default 0.1. After segmentation, training 

areas were assigned to the newly segmented polygons. The imagery is from 8/21/2018 and 
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therefore training segment polygons and accuracy assessment points were acquired based 

on the imagery itself, not from GPS fieldwork (see Figure 8). Keeping the proportions used 

in the previously described methods and imagery, 200 training segment polygons: 80 

training polygons of invasive FAV; 40 native vegetation training polygons; 40 water 

training polygons; 40 bare soil training polygons. The nearest-neighbor algorithm was used 

to classify during the OBIA. The WorldView-2 OBIA accuracy assessment and confusion 

matrix table were processed using ArcGIS Pro using 200 validation points: 110 invasive 

FAV points; 30 native vegetation points; 30 water points; and 30 bare soil points.  

3.4 Invasive FAV Hyperspectral Analysis (AVIRIS) 

Airborne remotely sensed hyperspectral imagery for the Central Sacramento-San 

Joaquin Delta Region was acquired using the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) sensor by the Jet Propulsion Laboratory (JPL, Pasadena, 

California, USA). This hyperspectral sensor does not have a fixed altitude like a satellite, 

but instead, this sensor is flown using a plane. This means that the spatial resolution for 

AVIRIS depends on the flight altitude. For this imagery, the flight elevation resulted in a 

spatial resolution of 2.4m. The AVIRIS image was flown on 8/4/2007 from east to west 

and has a solar elevation of 66.56o. The AVIRIS image has the smallest spatial coverage 

out of the three remote sensing images, the hyperspectral is used as the 14.39 km2 study 

area extent for the 6 invasive FAV classifications (Figure 9). Because this image is from 

12 years ago and is not current, the training samples and regions of interest (ROI) were 

acquired based on the imagery itself. 
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Figure 9. Clipped extent of AVIRIS hyperspectral 2.4m (8/4/2007) displayed in band combination (11, 9, 7) 

which is from a MNF 100 band subset, reduced from 224 bands. 

 

The advantage of using AVIRIS hyperspectral imagery, compared to multispectral 

WorldView-2 (8-bands) and Planet imagery (4-bands), is its amount of spectral bands, its 

narrowness of spectral bands, and its spatial resolution. Hyperspectral imaging systems 

have made it possible for the collection of several hundred spectral bands in a single 

acquisition, thus producing many more detailed spectral data (Govender et al., 2007; 

Kokaly et al., 2003). AVIRIS has a spectral range from 360 - 2500 nm with a total of 224 

bands. The higher number of bands creates a greater potential for identifying the specific 

wavelengths that correspond with the reflectance of invasive FAV.  However, with the 

advances in hyperspectral technologies, practical issues related to increased image 

resolution, data volumes, and data-processing costs and times, are considered. 

Hyperspectral imagery may be expensive and hard to acquire; however, NASA’s JPL 

operates the AVIRIS sensor and offers a free data portal of previously flown hyperspectral 

data.  

 

3.4.1 Spectral Angle Mapper Classification Analysis    

The SAM invasive FAV classification was performed using ENVI hyperspectral 

imagery software and the classification workflow tool. The first reduction of 
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dimensionality was performed by manually selecting good bands from bad bands. A bad 

band contains no spectral information - which is caused by sensor malfunction - or contains 

static noise. The manual reduction resulted in 206 out of 224 bands as good bands. The 

second reduction of dimensionality used the Minimum Noise Fraction (MNF), reducing 

the 206 spectral bands to a 100-band subset. Out of the 100 MNF bands, the MNF band 

subset of 11, 9, 7 resulted in the best contrast display between invasive FAV and native 

vegetation (see Figure 9).  ROIs were acquired using this band display. The 100 MNF 

subset was reduced a second time by selecting clean vs noisy bands, resulting in a 20-good 

band MNF subset. The spectral angle mapper algorithm was performed using the 20-band 

subset with an angle of 1.57 radians. This specific angle was determined through trial and 

error. The ROI tool was used to create reflectance signatures for the classification 

categories based on the AVIRIS image itself (Figure 10): 80 ROIs samples of invasive 

FAV; 40 ROIs of native vegetation; 40 ROIs of delta water; and 40 ROIs of levee / bare 

soil. Each ROI sample is 4 (2.4m2) pixels. The reflectance values for the four classification 

categories are displayed graphically in Figure 11. ArcGIS Pro was used to produce the 

accuracy assessment and confusion matrix table for the SAM classification. 200 validation 

points were displayed on top of the AVIRIS SAM layer: 30 native vegetation; 110 invasive 

FAV; 30 delta water; 30 levee / bare soil. 
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Figure 10. This snapshot from the AVIRIS Hyperspectral 2.4m (8/4/2007) displays the distinct spectral 

difference between the bright green invasive FAV floating mats and the surrounding delta water and native 

vegetation. Due to this distinction, accurate training and validation sites were chosen based on the imagery 

itself.  

 

 
Figure 11. This graph displays the reflectance values of the four ROI classes used for the SAM and ML 

hyperspectral classifications. Invasive FAV: red, native vegetation: green, bare soil: gray, water: blue.  

 

 

3.4.2 Maximum Likelihood Classification  

The maximum likelihood classification for the AVIRIS hyperspectral image was 

classified using ENVI remote sensing software. The classification workflow tool was used 
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to conduct the maximum likelihood classification. The AVIRIS ML classification used a 

MNF three band subset of (11, 9, 7). The same SAM ROIs were used to produce the 

invasive FAV AVIRIS maximum likelihood classification: 80 ROIs samples of invasive 

FAV; 40 ROIs of native vegetation; 40 ROIs of delta water; and 40 ROIs of levee / bare 

soil. Same as the AVIRIS spectral angle mapper, 200 validation points were displayed on 

top of the AVIRIS maximum likelihood layer using ArcGIS Pro: 30 Native Veg; 110 FAV; 

30 Water; 30 Bare Soil. 
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4. Results  

4.1 Multispectral Planet Classifications 

 The results of the PlanetScope invasive FAV maximum likelihood and support 

vector machine classifications are displayed below in full extent (Figure 12) The invasive 

FAV are represented by the red polygons, the native delta vegetation are represented by 

green polygons, the delta water is represented by blue polygons, and the levee roads / bare 

soils are represented by gray polygons. The ML confusion matrix results are displayed in 

(Table 4) and the SVM confusion matrix results are displayed in (Table 5). 

 

 
Figure 12. Full extent of PlanetScope 3.7m (8/8/2019) ML & SVM Classifications. 
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The Planet multispectral (3.7m) resolution maximum likelihood invasive FAV 

classification resulted in a producer accuracy of 0.85 and a user accuracy of 0.99, and an 

overall accuracy of 0.91 (Table 4). Classification errors were along the boundary between 

the islands and the delta water. This classification method resulted in a thin polygon of 

native vegetation between the invasive FAV and delta water. This is most noticeable in the 

Sandmound Slough Islands (Figure 13) sub-study site along the rims of the islands within 

the slough. The classification errors were likely caused by the reflectance signature of the 

water / island boundary being similar to the reflectance of the native vegetation. The Planet 

imagery does not sufficiently create a well-defined boundary between the vegetation and 

water, which is caused by the coarse resolution of the image. Therefore, displaying a drastic 

color gradient which creates a likely source for error.  

 

 

Table 4. Planet (8/8/2019) Maximum Likelihood Classification Confusion Matrix 

ClassValue NativeVeg FAV Water BareSoil Total U_Accuracy Kappa 

NativeVeg 29 15 0 0 44 0.66 0 

FAV 1 94 0 0 95 0.99 0 

Water 0 1 30 0 31 0.97 0 

BareSoil 0 0 0 30 30 1 0 

Total 30 110 30 30 200 0 0 

P_Accuracy 0.97 0.85 1 1 0 0.91 0 

Kappa 0 0 0 0 0 0 0.87 

 

 

 

 

 

 

 

 

 



30 

 

 
Figure 13. Planet (8/8/2019) Maximum Likelihood Invasive FAV Classification: Sandmound Slough Islands 

study site. The area within the yellow ellipse highlights the misclassification of the boundary between the 

water and the invasive FAV, classifying this boundary as a thin strip of native vegetation between the FAV 

and water. 
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The PlanetScope multispectral (3.7m) resolution support vector machine invasive 

FAV classification resulted in a producer accuracy of 0.83, a user accuracy of 0.99, and an 

overall accuracy of 0.9 (Table 5). Like the Planet maximum likelihood, the SVM 

classification resulted in errors mainly along the boundary between the islands and the delta 

water. This classification method resulted in a thin polygon of native vegetation between 

the invasive FAV and delta water. This is evident in each of the three-study area sub-

groups; however it is most noticeable in Sandmound Slough Islands (Figure 14) sub-study 

area. The Planet support vector machine classification error was likely caused by the 

reflectance signature of the water / island boundary being similar to the reflectance of the 

native vegetation. The strength of the SVM classifier is its ability to have success with an 

unevenly distributed amount of training samples. To fix the SVM classification errors, 

more training samples of invasive FAV and less training samples of native vegetation, 

water, and bare soil might help reduce misclassification. 

 
Table 5.  Planet (8/8/2019) Support Vector Machine Classification Confusion Matrix 

ClassValue Native Veg FAV Water Bare  Soil Total U_Accuracy Kappa 

Native Veg 29 19 0 0 48 0.61 0 

FAV 1 91 0 0 92 0.99 0 

Water 0 0 30 0 30 1 0 

Bare Soil 0 0 0 30 30 1 0 

Total 30 110 30 30 200 0 0 

P_Accuracy 0.97 0.83 1 1 0 0.9 0 

Kappa 0 0 0 0 0 0 0.85 
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Figure 14. Planet (8/8/2019) Support Vector Machine Invasive FAV Classification: Sandmound Slough 

Islands study site. The area within the yellow ellipse highlights the misclassification of the boundary between 

water and invasive FAV, incorrectly classifying this boundary as a thin strip of native vegetation between 

the FAV and water. 
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4.2 Multispectral WorldView-2 Classifications 

The results of the WorldView-2 invasive FAV maximum likelihood and object-

based image analysis classifications are displayed below in full extent (Figure 15) The 

invasive FAV are represented by the red polygons, the native delta vegetation are 

represented by green polygons, the delta water is represented by blue polygons, and the 

levee roads / bare soil are represented by gray polygons. The ML confusion matrix results 

are displayed in Table 6 and the OBIA confusion matrix results are displayed in Table 7. 

 

 
Figure 15. Full extent of WorldView-2 1.8m (8/21/2018) ML & OBIA Invasive FAV classifications. 
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The WorldView-2 multispectral high resolution (1.8m) maximum likelihood 

invasive FAV classification resulted in a producer accuracy of 0.90, a user accuracy of 

0.94, and an overall accuracy of 0.91 (Table 6). The classification errors that occurred 

during this ML classification were mainly the misclassification of invasive FAV as native 

vegetation. The two horseshoe shaped islands in the Little Mandeville Island (Figure 16) 

sub-group had the most intense misclassification of invasive FAV as native vegetation. In 

these islands, the invasive FAV clogs the entire inside of the inundated levee islands, 

creating an island filled with invasive FAV with a horseshoe shaped native vegetation outer 

boundary. This error was likely caused by the reflectance value of the invasive FAV 

towards the interior of the horseshoe islands being too similar to the reflectance value of 

the native vegetation, which created patches of classified native vegetation in the middle 

of the horseshoe. To try and eliminate sources of error, more training samples of both 

invasive FAV and native vegetation would need to be acquired. 

 

Table 6.  WorldView-2 (8/21/2018) Maximum Likelihood Classification Confusion Matrix 

ClassValue NativeVeg FAV Water BareSoil Total U_Accuracy Kappa 

NativeVeg 28 11 4 0 39 0.71 0 

FAV 2 99 0 0 105 0.94 0 

Water 0 0 26 0 26 1 0 

BareSoil 0 0 0 30 30 1 0 

Total 30 110 30 30 200 0 0 

P_Accuracy 0.93 0.90 0.87 1 0 0.91 0 

Kappa 0 0 0 0 0 0 0.87 
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Figure 16. WorldView-2 (8/21/2018) Maximum Likelihood Invasive FAV Classification: Little Mandeville 

Islands study site. This sub-study site contains many horseshoe-shaped inundated levee islands, these islands 

are perfectly shaped to trap invasive FAV mats. The areas within the yellow ellipses show the 

misclassification of native vegetation inside the horseshoe islands where there is only invasive FAV. 
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The WorldView-2 multispectral high resolution (1.8m) OBIA invasive FAV 

classification resulted in a producer accuracy of 0.86 and a user accuracy of 0.97, and an 

overall accuracy of 0.89 (Table 7). The classification error that occurred during the OBIA 

classification were mainly the misclassification of smaller FAV mats as small islands of 

native vegetation. The OBIA classified some of these small invasive FAV mats as tiny 

islands of native vegetation, instead of invasive FAV. It is most noticeable in the Little 

Mandeville Island (Figure 17) sub-group in the center of the study area. When this imagery 

was flown in August 2018, there was a large presence of small invasive FAV mats floating 

in the open delta water that had broken off of the upper inundated levee island. This error 

was likely caused by the reflectance value of the smaller invasive FAV being too similar 

to the reflectance value of the native vegetation. In order to fix this misclassification, more 

native vegetation training samples would need to be acquired.  

 

Table 7. WorldView-2 (8/21/2018) OBIA Classification Confusion Matrix 

ClassValue Native Veg FAV Water Bare Soil Total U_Accuracy Kappa 

Native Veg 27 15 3 0 45 0.60 0 

FAV 3 95 0 0 98 0.97 0 

Water 0 0 27 0 327 1 0 

Bare Soil 0 0 0 30 30 1 0 

Total 30 110 30 30 200 0 0 

P_Accuracy 0.90 0.86 0.90 1 0 0.89 0 

Kappa 0 0 0 0 0 0 0.84 
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Figure 17. WorldView-2 (8/21/2018) OBIA Invasive FAV Classification: Little Mandeville Islands study 

site. The main error resulting from the OBIA classification were the misclassification of smaller FAV mats 

as small islands of native vegetation. These misclassified small FAV mats are highlighted by the yellow 

ellipse.  
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4.3 Hyperspectral AVIRIS Classifications 

The results of the AVIRIS hyperspectral invasive FAV maximum likelihood and 

spectral angle mapper classifications are displayed below in full extent (Figure 18). The 

invasive FAV are represented by the red polygons, the native delta vegetation are 

represented by green polygons, the delta water are represented by blue polygons, and the 

levee roads / bare soil are represented by gray polygons. The ML confusion matrix results 

are displayed in Table 8 and the SAM confusion matrix results are displayed in Table 9. 

 

 
Figure 18. Full extent of AVIRIS Hyperspectral 2.4m (8/4/2007) ML & SAM Invasive FAV classifications.  
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The AVIRIS hyperspectral maximum likelihood invasive FAV classification 

resulted in a producer accuracy of 0.87, a user accuracy of 0.86, and an overall accuracy of 

0.85 (Table 8). The AVIRIS hyperspectral maximum likelihood classification errors were 

mainly along the boundaries between the islands and the delta water, classifying invasive 

FAV in areas where there was no FAV present. This is evident in each of the three-study 

area sub-groups but most noticeable in the Upper Mildred Island sub-group (Figure 19). 

The upper levee island has a large over-classification of invasive FAV along the entire rim 

of the inundated levee, but in reality, the invasive FAV is not as constant as represented by 

the classified image. The FAV classification error is likely caused by the reflectance 

signature of the water / island boundary. In order to fix this misclassification, more training 

samples of both invasive FAV and native vegetation would need to be acquired. 

 

Table 8. AVIRIS Hyperspectral (8/4/2007) Maximum Likelihood Confusion Matrix  

ClassValue Native Veg FAV Water Bare Soil Total U_Accuracy Kappa 

Native Veg 25 12 1 0 38 0.66 0 

FAV 5 96 10 0 111 0.86 0 

Water 0 2 19 0 21 0.90 0 

Bare Soil 0 0 0 30 30 1 0 

Total 30 110 30 30 200 0 0 

P_Accuracy 0.83 0.87 0.63 1 0 0.85 0 

Kappa 0 0 0 0 0 0 0.76 
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Figure 19. AVIRIS Hyperspectral (8/4/2007) Maximum Likelihood Invasive FAV Classification: Upper 

Mildred Islands study site. The yellow ellipse highlights an area of misclassified invasive FAV along levee 

roads. 
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The AVIRIS hyperspectral spectral angle mapper invasive FAV classification 

resulted in a producer accuracy of 0.91, a user accuracy of 0.90, and an overall accuracy of 

0.89 (Table 9). In the central delta research study area, AVIRIS SAM classification resulted 

in the highest invasive FAV producer accuracy. Similar to the AVIRIS maximum 

likelihood classification, the spectral angle mapper also resulted in errors of over 

classifying invasive FAV, but not as many as the AVIRIS ML. Instead of a thin strip of 

invasive FAV along the levee roads, small patches of invasive FAV were classified inside 

large delta islands, areas where there would only be native vegetation present. The invasive 

FAV would only be present on the outer perimeter of the islands, being that they are 

floating mats of aquatic vegetation. An example of these classification errors can be seen 

on the levee roads on the left side of the Upper Mildred Island sub-group (Figure 20). These 

errors were likely caused by the SAM’s endmember collection process. SAM compares the 

angle between the endmember spectrum vector and each pixel vector. If the AVIRIS sensor 

was flown at a lower altitude creating a finer spatial resolution, this might allow for a better 

endmember angle comparison, resulting in a more accurate classification.  

 

Table 9. AVIRIS Hyperspectral (8/4/2007): Spectral Angle Mapper Confusion Matrix 

ClassValue Native Veg FAV Water Bare Soil Total U_Accuracy Kappa 

Native Veg 25 9 0 0 34 0.73 0 

FAV 5 101 6 0 112 0.90 0 

Water 0 0 24 1 25 0.96 0 

Bare Soil 0 0 0 29 329 1 0 

Total 30 110 30 30 200 0 0 

P_Accuracy 0.83 0.91 0.80 0.96 0 0.89 0 

Kappa 0 0 0 0 0 0 0.83 
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Figure 20. AVIRIS Hyperspectral (8/4/2007): Spectral Angle Mapper Invasive FAV Classification: Upper 

Mildred Islands study site. These yellow ellipses highlight the misclassifications of invasive FAV as small 

patches along the levee roads as well as within the Upper Mildred islands. These small patches of 

misclassified FAV are really patches native vegetation. 

 

 

 

 

 



43 

 

4.4 Accuracy Assessment Results 

In order to equally compare the invasive FAV accuracy assessments, all six 

classifications used the same number of accuracy assessments points: 30 native vegetation; 

110 invasive FAV; 30 delta water; 30 levee / bare soil. All validation points were chosen 

based on the reference images (AVIRIS, WorldView-2) or fieldwork (Planet) and then 

compared with their location on the resulting classification layers. Since each image was 

flown during a different year (2007, 2018, 2019), the 200 validation points were selected 

from different locations within the study area, depending on the imagery used.  In addition 

to the differing flight dates, the invasive FAV mats are not stationary. FAV mats slowly 

drift through the delta channels. Even though each image was flown during a different year, 

each image was flown during the same time of year: August. August is the blooming stage 

for invasive hyacinth and invasive primrose, making it the most logical time of the year to 

classify with aerial imagery. If the time of year is the same for the Planet, WorldView-2, 

and AVIRIS images, a comparison of accuracies can be effectively analyzed regardless of 

the differing years.  

 The accuracy assessments were reported using confusion matrix tables (see Tables 

4-9), displaying three accuracy assessment values: overall accuracy; user’s accuracy; and 

producer’s accuracy. This research study is only interested in the comparisons between the 

invasive FAV class accuracy values, not native vegetation, water, or bare soil. In addition, 

this research study is not interested in comparing the area of invasive FAV identified during 

each of the six classifications. Since the three remote sensing images were all flown during 
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different years, the amount of invasive FAV present in each image is different. Because of 

this difference, only accuracy assessment values were compared.  

The overall accuracy value represents, out of all of the reference sites, what 

proportion is mapped correctly. The overall accuracy value is calculated by the number of 

correctly classified sites divided by the total number of reference sites (Table 10).  

The user’s accuracy (U_Accuracy) is the accuracy from the point of view of a map 

user, not the map maker. The user's accuracy represents how often the class on the map 

will be present on the ground (Table 10). The user's accuracy is a complement of the “Error 

of Commission”. If the validation points were acquired from the classified rasters, and then 

compared to their location on the reference image (satellite image), then the user’s accuracy 

value would produce the most reliable accuracy assessment value. The validation points 

for this research study were chosen based on the reference image, not the classified image. 

The accuracy of identifying invasive FAV is represented by the producer’s 

accuracy (P_Accuracy) value. Producer’s accuracy is the classified map accuracy from the 

point of view of the map maker (the producer). This accuracy value represents how often 

real features on the ground are correctly shown on the classified map, or the probability 

that a certain land cover of an area on the ground is classified as such (Table 10). The 

producer's accuracy is a complement of the “Error of Omission.” Since the accuracy 

assessment points for this research study were acquired from the reference image and then 

compared with their location on the classified image, the producer’s accuracy value is the 

accuracy value that best reflects the overall effectiveness of classifying invasive FAV.  
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The different classification method / imagery combination results in a range of 

invasive FAV producer’s accuracy values between 83% - 91% (Table 10). Comparing the 

three maximum likelihood classifications: the PlanetScope maximum likelihood 

classification resulted in an invasive FAV accuracy value of 85%; the AVIRIS 

hyperspectral maximum likelihood classification resulted in an invasive FAV accuracy of 

87%; and the WorldView-2 multispectral maximum likelihood resulted in an invasive FAV 

accuracy of 90%.  

Comparing the three unique classification algorithms: the AVIRIS hyperspectral 

spectral angle mapper classification resulted in an invasive FAV accuracy of 91%, the 

highest producer accuracy percentage of the six invasive FAV classifications; the 

WorldView-2 multispectral object-based image analysis resulted in an invasive FAV 

accuracy of 86%; the PlanetScope multispectral support vector machine classification of 

the Planet multispectral imagery resulted in an invasive accuracy of 83%, the lowest 

producer accuracy percentage of the six invasive FAV classifications. 

 

Table 10. The six algorithms/imagery combinations and their resulting FAV producer’s accuracies, FAV 

user’s accuracies, and overall accuracies.  

Algorithm/Imagery 

Combination 

Invasive FAV Producer’s 

Accuracy Value 

Invasive FAV User’s 

Accuracy Value 

Overall Accuracy 

Planet (ML) 0.85 0.99 0.91 

Planet (SVM) 0.83 0.99 0.90 

WorldView-2 (ML) 0.90         0.94       0.91    

WorldView-2 (OBIA) 0.86 0.97 0.89 

AVIRIS (ML) 0.87 0.86 0.85 

AVIRIS (SAM) 0.91 0.90 0.89 
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5. Discussion 

  Out of the six classification/imagery combinations, the spectral angle mapper 

classification of the AVIRIS hyperspectral image from 8/4/2007 rendered the highest 

producer accuracy for identifying invasive FAV. The PlanetScope support vector machine 

classification delivered the lowest producer accuracy for identifying invasive FAV.  

Even though the results from this research study revealed the spectral angle mapper 

algorithm as the most effective classification option, the three other classifiers are very 

effective as well. All six invasive FAV producer accuracy percentages range from 83% - 

91%. Ideally, the six classifications should have used the ground-truthed GPS training and 

validation points. Unfortunately, since each image is from a different year, the training and 

validation points are different for each of the three aerial images, due to the drifting nature 

of water hyacinth and water primrose.  

For this research study, the ML classifier was used as the control method, allowing 

for a comparison between the three different satellite imagery types. In this specific study, 

the maximum likelihood produced the 2nd (WV2), 3rd (AVIRIS), and 5th (Planet) producer 

accuracies for invasive FAV classifications. The results of the ML comparison show that, 

regardless of multispectral vs hyperspectral, when using the ML classifier, the spatial 

resolution of the imagery does affect the accuracy of the classification. A higher spatial 

resolution allowed for higher classification accuracy. 

The WorldView-2 and the PlanetScope classifications resulted with the maximum 

likelihood as their most accurate classification method, when compared to their unique 
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classifiers. The AVIRIS hyperspectral was the only remote sensing image that resulted 

with the unique classifier as the most accurate classification. Comparing the three unique 

classifiers: SAM resulted in the highest producer accuracy percentage (91%); followed by 

the OBIA producer accuracy assessment (86%); and the SVM had the least accurate results 

(83%). 

         The AVIRIS hyperspectral imagery yielded 91% and 87%, the highest producer 

accuracy value (SAM) and the third-highest value of the classification (ML). The 

hyperspectral classification results support the strength of the spectral angle mapper 

classification algorithm, but they also reveal the maximum likelihood to be a less effective 

hyperspectral classification algorithm for mapping invasive FAV within the specific 

aquatic freshwater environment study area. The SAM classifier’s ability to analyze 20 

bands instead of 3 gave this method an advantage for classifying the distinct pattern of 

invasive FAV areas. The poorer ML results could possibly be caused by the 3 band MNF 

subset used (11, 9, 7). For future studies, a higher resolution hyperspectral image might 

allow for a better hyperspectral ML result. A resolution like the WorldView-2 resolution 

could possibly result in a more accurate classification, specifically along the class 

boundaries. 

The WorldView-2 multispectral imagery yielded 90% and 86%, the second-best 

producer accuracy value (ML) and the fourth-best producer accuracy value (OBIA). The 

high-resolution classification results support the strength of the maximum likelihood 

classification algorithm. Compared to the other five classification combinations, the OBIA 
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is not the most effective and accurate classification algorithm, but also was not the worst 

classification algorithm for mapping invasive FAV within a wetland ecosystem. 

Regardless of being the fourth most accurate method, OBIA’s segmentation ability to 

classify “objects” based on pixel value and most importantly shape, allowed class 

boundaries to be persevered and accurately mapped while using OBIA classifier. 

The PlanetScope multispectral imagery yielded 85% and 83%, the fifth-best 

producer accuracy value (ML) and the worst producer accuracy value (SVM). The high-

resolution classification results support the strength of the maximum likelihood 

classification algorithm. Compared to the other five classification combinations, the SVM 

is not the most effective and accurate classification algorithm for mapping invasive FAV 

within a wetland ecosystem. Like the other less accurate classifiers, this method poorly 

mapped the class boundaries. The low accuracy of the Planet/SVM classification reflects 

the spatial resolution of the PlanetScope sensor as well as the training sample selections 

being too normally distributed.   

Even though all six classifications resulted in producer accuracies between 83% - 

91%, there was still error and uncertainty present in all six classifications. The most 

common classification error that occurred was the misclassification of native vegetation on 

the boundary between the invasive FAV and the delta water. On the satellite images, the 

boundary where the water’s edge and where the FAV begins is not a hard boundary. Since 

the spatial resolution for the three satellite images is 1.8m, 2.4m, and 3.7m, there is a 

gradient from dark black/blue of the delta water to the signature bright red (when using a 
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false-color infrared band combination) of the invasive FAV mats (Figure 21). These 

classification errors occur in these areas of darker red pixels. The darker red pixels have a 

similar reflectance value to the native vegetation that occupies levee islands. This resulted 

in a false classification of native vegetation, a thin strip of native vegetation surrounding 

each classified polygon of invasive FAV. 

 
Figure 21.  Close-up Planet 3.7m (4, 3, 2 band combination) imagery displaying the gradient from invasive 

FAV pixel to delta pixels. The pixel values in the middle have similar reflectance values as the natural 

vegetation. 

 

Out of the four remote sensing classifiers used in this research study, the SAM and 

OBIA classifiers were able to most accurately classify the boundary between delta water 

and the invasive FAV, the SVM and ML classifiers least accurately classified this boundary 

(Figure 22). The WV2 OBIA classification successfully classified the FAV vs. water 

boundary due to segmentation. The segmentation shape value of 0.2 gave greater 

importance to pixel color (0.8) during the segmentation process, allowing for a more 

accurate classification of FAV pixels vs water pixels. The SAM was also able to 

successfully map the class boundary zones. The SAM compares the angle between the 
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reference spectra and the pixel, the smaller the angle means the closer the match to the 

endmember. The small angle of 1.57 radians allowed for the successful classification in 

class boundary zones. 

 
Figure 22. This snapshot from the Planet SVM classification shows the misclassification of native vegetation 

on the boundary between the invasive FAV and the delta water. 

 

 

 Both the maximum likelihood and the support vector machine classifiers 

misidentified native delta vegetation where in reality there were FAV mats in contact with 

open delta water. The WV2 and AVIRIS ML classifications were able to more accurately 

classify this boundary compared to the lower resolution Planet ML. The higher resolutions 

of the AVIRIS and WorldView-2 (2.4m & 1.8m) allowed for the gradient between the 

water and invasive FAV mats to not have as an intense gradient color change, which 

allowed a more accurate classification result. The Planet ML had similar misclassification 

errors as the Planet SVM. These errors were likely caused by the 3.7m resolution of the 
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imagery. Implementing more training sites or increasing spatial resolution could help 

reduce classification error for the ML and SVM classifiers.  

The CA Department of Boating and Waterways contracts out their mapping of 

invasive FAV in the delta to a commercial environmental consulting firm called BioBase. 

BioBase creates their classification maps of floating aquatic vegetation using a cloud-based 

mapping algorithm called EcoSat. EcoSat is a semi-automated processing of high-

resolution satellite images to map floating aquatic vegetation in wetlands and waterbodies 

greater than 25 kilometers squared. EcoSat algorithms are calibrated for Digital Globe 

WorldView (2, 3, and 4), Airbus Pléiades, and European Space Agency (ESA) Sentinel 2 

satellite sensors (BioBasemaps, 2018). BioBase’s EcoSat uses algorithms, similar to the 

OBIA method, to define discrete areas and boundaries of different vegetation communities. 

These polygon “objects” are automatically given unique classification numbers. BioBase 

allows their customers to have control over what to name the objects or whether to delete 

or lump classifications and reprocess the image and data with the new classifications. 

Shapefiles and raw imagery, that are often hundreds of megabytes, are uploaded and 

processed by BioBase’s cloud-based servers. BioBase’s average turnaround time from 

imagery tasking order to delivery of results is 60 days. Comparing BioBase’s EcoSat 

method with the six imagery/methods combinations used in this invasive FAV research 

study, the EcoSat and OBIA classification methods resulted with the best preservation of 

landcover boundaries for both BioBase and this research study. The results from this 

invasive FAV research study support BioBase’s decision to use an object-based 
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classification method combined with high resolution multispectral aerial imagery for 

mapping multiple vegetation landcover.  

In order to more thoroughly research the most effective imagery/classification 

combination for mapping and identifying invasive FAV within an aquatic freshwater 

ecosystem, future studies should acquire different satellite imagery from the same year. If 

all three images of the central delta study area were flown during the same month and year, 

there would only be one set of ground-truthed GPS training and validation points for all 

six classifications/ imagery combinations. This would have allowed for more precise and 

comparable classifications and producer accuracy assessments. Unfortunately, for this 

research study, WorldView-2 multispectral and AVIRIS hyperspectral satellite imagery 

from August 2019 were not available, only the multispectral PlanetScope imagery was 

available. PlanetScope’s multispectral imagery is the most up-to-date imagery out of the 

three satellite images used. Planet usually releases new imagery on a weekly basis. 

WorldView-2 imagery is updated annually. The only available image that was flown during 

the invasive FAV bloom period, and was within the study area boundary, was from August 

of 2018. For the AVIRIS hyperspectral imagery, available images for download are only 

posted to the free JPL data portal if a past research project contracts out an AVIRIS flight. 

For this research study, the only image that was within the central delta study area and fit 

within the FAV bloom time frame was from a 2007 delta research project. Contracting out 

new flights for both WorldView-2 and AVIRIS would become extremely costly. 
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For this research project, with a limited budget for satellite imagery, the decision 

was made to acquire imagery from different years, but to choose imagery within the same 

temporal time frame of August. Due to this decision, the differences between the three 

satellite imagery types used for this research study affect the overall accuracy assessment 

comparison.  

 

6. Conclusion  

This research study investigated the most effective remote sensing method of 

classifying invasive floating aquatic vegetation species by comparing three different types 

of satellite imagery data: high resolution multispectral; very high resolution multispectral; 

and hyperspectral; as well as four different classification methods: maximum likelihood; 

spectral vector machine; spectral angle mapper; and object-based imagery analysis. This 

comparison of methods / imagery type would be more accurate and truly comparable if 

instead all three images were flown during the same month/year, using the same training 

samples and accuracy assessment samples. This decision accounts for the possible effects 

of variation in classification method accuracies.  

The spectral angle mapper classification / hyperspectral AVIRIS imagery resulted 

in the most effective imagery type / classification algorithm combination for accurately 

identifying and classifying invasive FAV in the Central Sacramento Delta. The support 

vector machine classification / multispectral PlanetScope satellite imagery resulted in the 
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least effective satellite imagery classification algorithm combination for identifying and 

classifying invasive FAV in the Central Sacramento Delta.  

Based on the ML classifier comparison, very-high resolution multispectral 

WorldView-2 (1.8m) imagery is the most effective for the identification of invasive FAV, 

followed by the high resolution AVIRIS hyperspectral (2.4m) imagery, and finally the high 

resolution multispectral Planet (3.7m) imagery. These results revealed that spatial 

resolution does affect classification accuracy, meaning the higher the resolution, the better 

the results will be. 

The results from this research study revealed the decision between using 

hyperspectral vs multispectral may be a more important than deciding between different 

classification algorithms. If hyperspectral imagery is available, the most effective remote 

sensing classification algorithm for identifying invasive floating vegetation in Central 

Delta aquatic freshwater ecosystem is the spectral angle mapper classifier, followed by the 

maximum likelihood. If only multispectral imagery is available, the most effective 

supervised classification remote sensing algorithm for classifying invasive vegetation in 

central delta aquatic freshwater ecosystem is the maximum likelihood classifier, followed 

by the OBIA, then SVM.  

In terms of errors and misclassification, this research study revealed that the spatial 

resolution of an image is an important factor for minimizing error. This research study also 

concluded that the OBIA may be the best classification algorithm for minimizing boundary 
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errors in multispectral analysis, and the spectral angle mapper may be best for reducing 

boundary misclassifications for hyperspectral analysis. 
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