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An accelerating trend of global urbanization and subsequent environmental impacts 
makes frequently updated land use and land cover (LULC) maps critical. LULC maps 
have been widely created through classification of remotely sensed imagery. Maps of 
urban areas have been both dichotomous (urban or non-urban) and entailing of discrete 
urban types. This study incorporated multispectral built-up indices designed to enhance 
satellite imagery to develop new urban classification schemes. The indices examined are 
the New Built-up Index (NBI), the Built-up Area Extraction Index (BAEI), and the 
Normalized Difference Concrete Condition Index (NDCCI). Landsat Level-2 data 
covering the city of Miami, FL, USA was leveraged with geographic data from the 
Florida Geospatial Data Library and Florida Department of Environmental Protection to 
develop and validate new methods of supervised and unsupervised classification of urban 
area. NBI was found to be useful for classifying urban features through object-oriented 
image analysis. BAEI was utilized to visualize and track urban development as a low-
high gradient. NDCCI was composited with NBI and BAEI as the basis for a robust 
urban intensity classification scheme superior to that of the urban intensities featured in 
the 2016 USGS National Land Cover Database. BAEI, implemented as a shadow index, 
was incorporated in a novel infill geosimulation of high-rise construction. The findings 
suggest that the proposed classification schemes are advantageous to the process of 
creating more detailed LULC maps in response to the rising global demand for them. 
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1. Introduction 

Today, the world’s rapidly developing trend of urbanization has made frequently 

updated surface maps critical (Guan et al., 2011; Rahimi, 2016; Seto et al., 2012; Sun et 

al., 2007). Land use and land cover (LULC) maps are advantageous for purposes of 

government planning, environmental management, disaster management, and education 

of the general public on the status of global development. The impacts of urbanization for 

the environment include triggering potentially harmful feedback such as climate change, 

reducing water quality, and replacement of nature by human construction (Mohan & 

Kandya, 2015; Nelson et al., 2009; Zia et al., 2015). The link between urbanization and 

environmental impacts can be analyzed by mapping their extent and severity in relation 

to urban expansion (Han & Xu, 2013; Pei et al., 2018; Tang et al., 2015). LULC maps 

may serve as tools of emergency response to disasters such as fires, earthquakes, and 

floods where the extent and severity of the disasters can be displayed and analyzed to 

support response measures. The problem of producing the detailed urban LULC maps on 

a large scale can be solved with satellite remote sensing. 

Satellite remote sensors typically feature multiple spectral bands for use in 

analysis, where each band may be advantageous given the properties of materials 

identifiable in different parts of the light spectrum (Bouzekri et al., 2015; Jieli et al., 

2010; Samsudin et al., 2016; Zha et al., 2003). Satellite remote sensors take a bird’s-eye 

view of LULC changes related to urban growth. While high-resolution (~1m2) remote 

sensing has proven to be very useful for mapping the extent of urbanization as well as for 
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mapping the presence of individual building footprints, the research presented here 

focuses primarily on satellites of moderate resolution (10-30m2) (Bouzekri et al., 2015). 

Moderate-resolution data may be sufficient for mapping urban extent and is typically 

available for free in large time-series volumes compared to high-resolution data, which is 

expensive to acquire and making it unsuitable for institutions with limited budgets. 

Typically, satellite image analysts take a dichotomous approach to LULC 

mapping, classifying image cells as either urban or non-urban (As-syakur et al., 2012; 

Benkouider et al., 2019; Bouzekri et al., 2015; He et al., 2010; Jieli et al., 2010; Rasul et 

al., 2018; Waqar et al., 2012; Xu, 2008; Zha et al., 2003). LULC maps often depict the 

encroachment of urban sprawl expanding into the natural landscape. Still, some cities do 

not grow outwardly because of physical constraints (other cities, terrain, water bodies, 

etc.) or should not grow outwardly because of planning regulations. The world population 

is expected to increase from ~8 billion currently to 10 billion in three decades, driving the 

impact of problems associated with urbanization to new levels (Seto et al. 2012; UN 

DESA, 2017). In response, governments are enacting smart growth policies meant to 

limit outwardly expanding cityscapes into compact, walkable urban areas with higher 

populations (Rahimi, 2016). Smart growth implies that environmental impacts are 

lessened by condensing urban infrastructure (Rahimi, 2016). Therefore, the drawing of 

infill development policies is a foremost solution to the problems associated with the 

outward expansion of cityscapes against the natural landscape (Rahimi, 2016). The term 

infill development refers to the rededication of urban land to new construction. Simply, 
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urban growth within the confines of the cityscape, such as the development of vacant lots, 

redevelopment of run-down neighborhoods, and conversion of parks to construction.  

An inventory of urban land can be obtained through field methods as well as the 

classification of aerial photographs and satellite imagery and cataloged as data in a 

geographic information system (GIS). Classifying every land use plot specifically as 

possible may take a long time, where the necessary geographic view can be achieved 

more efficiently through a large-scale remote sensing classification. Numerous attempts 

to classify urban land use by discrete types are on record in scientific journals. Among 

the methods that may be implemented to create such maps include supervised 

classification requiring class training sets such as parametric Gaussian maximum 

likelihood (GML) or non-parametric Support Vector Machine (SVM), iterative 

unsupervised classification such as k-means and ISODATA, and object-oriented image 

analysis (OBIA) segmentation (Abbas et al., 2016; Cabral, 2007; Ettehadi et al., 2019; 

Igun, 2017) While classifiers by themselves are used to create maps featuring multiple 

urban types, the process can be refined and simplified using multispectral unsupervised 

classification formulas called spectral enhancements. 

Remote sensing spectral enhancements are formulas used to transform 

multispectral data retrieved from a sensor into indexed quantities useful for analyzing a 

target environment, isolating target features, and indexing those features into identifiable 

classes (Beck et al., 1990; Bouzekri et al., 2015; Jieli et al., 2010; Samsudin et al., 2016; 

Zha et al., 2003). For instance, measurements of solar radiation reflecting from Earth’s 
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surface to a satellite sensor can be manipulated to yield a description of plant biology, the 

presence of bare soil, or a state of urbanization (Bouzekri et al. 2015). For example, Zha 

et al. (2003) introduced a method for extracting urban features from satellite data using a 

spectral enhancement. The Normalized Difference Built-up Index (NDBI) was used to 

extract urban features of Nanjing, China from Landsat 5 Thematic Mapper (TM) 30m2 

satellite data. It enhances the spectral response differences that exist between shortwave 

infrared (SWIR) and near-infrared (NIR) bands to separate urban from non-urban areas in 

an image. The authors reported an accuracy of 92.6% based on an assessment of 68 

randomly distributed points in their study area and assert NDBI increases the 

classification accuracy of urban features compared to the GML classifier. Ettehadi et al. 

(2019) mapped the land cover of Istanbul by classifying enhanced images, derived from 

Sentinel-2A 10-20m2 data, using SVM. The Normalized Difference Tillage Index was 

used to highlight urban features as part of a three-band composite image, including the 

Red-edge-based Normalized Difference Vegetation Index, and the Modified Normalized 

Difference Water Index. They delineate asphalt, industrial land use, and other built-up as 

part of their classification scheme. The reported producer and user accuracies are 85.71% 

and 100% for asphalt areas, 98.28% and 81.43% for industrial areas, and 93.28% and 

92.25% for other built-up. It is of critical notice that differences in environmental factors 

like lighting, the complexity of land cover, etc. that occur between regions will impact 

the performance of spectral enhancements (Bouzekri et al. 2015). 
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In addition to static classification maps, urban growth models, called 

geosimulations, are used to generate land cover maps of predictable conditions by 

assigning transition probabilities and potentials to maps derived from remote sensing 

(Guan et al., 2011; Rahimi, 2016; Sun et al., 2007). An artificial neural network (ANN) is 

a dynamic computerized model that attempts to duplicate human actions and learning 

functions. Multilayer Perceptron (MLP) is the most commonly implemented ANN. A 

backpropagation algorithm, learning based on gradient descent when the network informs 

itself of a prediction error, is useful for predicting complex values (Marius et al., 2009). 

The challenges of operating MLP ANN include configuring its parameters and 

establishing the correct inputs used to calculate a prediction (Marius et al., 2009). 

According to Guan et al. (2011), the Markov Chain is an empirical method of land 

change modeling implemented to generate a transition probability matrix that serves as a 

basis for space-time-series analysis. A first-order Markov Chain model is defined as a 

chain, where the probability of the future state depends only on the present state and not 

on preceding states, and every point in time is the next step. It is appropriate to 

incorporate this technology in modeling urban systems because the transformation 

properties of land change have to do with predictable transitions and steady states (Guan 

et al., 2011). 

Rahimi (2016) utilized a combination of GIS, satellite remote sensing, and an 

MLP ANN in an attempt to map potential infill development for the city of Tabriz, Iran. 

Urban land cover was classified, cell-by-cell, as either urban or subject to infill 
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development. LULC classifications were derived from Landsat 5 data for 1989 and 

Satellite Pour l'Observation de la Terre (SPOT) 10m2 data for 2005. The classifications 

were cross-referenced with geographic predictor variables such as distance from roads 

and population density using an MLP ANN geosimulation, thus predicting urban land 

cover for 2021. Additionally, Sun et al. (2007) modeled the growth of Calgary, Canada, 

using a Cellular Automata/Markov Chain combination model. They predicted change, 

using classified Landsat 5 data from 1985 and 1992, regarding the presence of residential 

and commercial, industrial, transportation, and park development compared to vacant 

areas and water bodies. Suitability maps of Calgary's “Future Conceptual Urban 

Structure” were created for each class, merged, and used as a predictor. The researchers 

were able to achieve favorable results according to a cellular accuracy assessment using 

data of known conditions of the predicted year, 1999. 

The purpose of this paper is to advance our current understanding of the processes 

of leveraging remote sensing to identify discrete urban land use types for incorporation 

into modeling schemes such as static mapping and geosimulations. The research focused 

on feature extraction and classification with the implementation of spectral 

enhancements. The analysis evaluated the unique spectral properties of select remote 

sensing enhancements designed to enhance construction features from the natural 

landscape for the creation of new classification schemes that delineate urban land use 

types. The enhancements analyzed are the New Built-up Index (NBI) by Jieli et al. 

(2010), the Built-up Area Extraction Index (BAEI) by Bouzekri et al. (2015), and the 
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Normalized Difference Concrete Condition Index (NDCCI) by Samsudin et al. (2016). 

Urban intensities published by the USGS in the 2016 National Land Cover Database 

(NLCD) are analyzed for classification errors, and a corrected classification was modeled 

with the NLCD 2016 Percent Developed Imperviousness product in tandem with the 

SVM supervised and Iso Cluster unsupervised classifiers. A novel geosimulation of high-

rise development was performed with land use classifications derived from the BAEI as a 

shadow index. The aim is to propose new schemes based on enhancements for classifying 

urban land using: 

1. Classification by object 

2. Classification by gradient 

3. Classification by intensity 

4. Classification by focalized transition potential 

The research was conducted on a place with satellite coverage, where urban 

growth modeling is highly relevant to environmental sustainability and can be validated 

using a sufficient volume of ground-truth data.  
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2. Method 

 

2.1. Study Area 

Miami, FL, USA is located on the southeastern tip of Florida at 25° 46' 29.8128'' 

N / 80° 11' 9.5604'' W, spans ~143km2, and serves as the Miami-Dade County seat (see 

Figure 1). The land use types comprising the city are primarily residential, commercial, 

and industrial. Miami poses a unique challenge to the science of urban remote sensing. It 

does not grow outwardly because other cities and development border its western 

periphery, and its eastern boundary is the coast. It is a rapidly developing metropolis with 

a recorded population increase of ~350,000 in 1980 to ~486,000 in 2020 (World 

Population Review, 2020). Miami-Dade County has enacted development concurrency 

policies meant to force a compact urban design by slowing sprawl and promoting infill 

development (Kim et al., 2014). For instance, some areas of Miami became hotspots for 

construction of multifamily housing between 1995-2004, after the inception of 

Transportation Concurrency Exception Areas that allow for infill development despite 

traffic and accessibility limits (Kim et al., 2014). A coastal setting containing sensitive 

marine environments makes this city a highly relevant target for an inquisition into 

environmental conservancy by actively managing urban growth. If remote sensing is 

implemented as a means of monitoring Miami’s growth, it should be modeled to account 

for upward growth. A collection of cloud-free Landsat data is available from the USGS in  
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addition to volumes of GIS data provided by the state of Florida and Miami-Dade 

County. 

 

2.2. Data Sources 

Vector GIS data of the study area were retrieved from Miami-Dade County Open 

GIS. That data includes shapes of the Miami municipal boundary in addition to county 

water features and the shoreline. Florida neighborhood shapes were retrieved from Zillow 

Real Estate Listings. Finally, shapes of Florida LULC designations were retrieved from 

the Florida Geographic Data Library (FGDL) and the Florida Department of 

Environmental Protection (FDEP) Geospatial Open Data. The GIS data are used to clip 

and analyze select portions of satellite data from the National Aeronautics and Space 

Administration (NASA) Landsat satellite series. NLCD 2016 data were published by the 

United States Geological Survey (USGS). 

According to the USGS (n.d.), the 30m2 Landsat Surface Reflectance Level-2 

science data that is available free to the public from their EarthExplorer website is 

designed to support the analyses of land change science. Level-2 data is preprocessed 

with both georeferencing as well as atmospheric corrections to normalize every image in 

the dataset for comparison. Level-2 Landsat 5 TM and 7 Enhanced Thematic Mapper + 

(ETM+) data receive atmospheric corrections in the form of 6S (Second Simulation of a 

Satellite Signal in the Solar Spectrum) meant to minimize the influence of water vapor, 

ozone, geopotential height, aerosol, and elevation on spectral returns. Similarly, Landsat 
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8 Operational Land Imager (OLI) data is corrected with an internal satellite algorithm. 

All Level-2 images used for this study are georeferenced to the Universal Transverse 

Mercator (UTM) Zone 17N projected coordinate system. Subsequently, all other data was 

initially projected to this system to facilitate analysis, except for the NLCD products 

(USGS, n.d). 

The imagery used in this study includes Landsat 5 data for the dates of 

11/02/1985, 11/06/1998, 10/24/1999, 11/20/2003, 11/17/2008, 10/19/2009, 11/02/2011, 

Landsat 7 data for the date of 02/05/2000, and Landsat 8 data for the dates of 10/17/2014 

and 10/22/2016. The temporal sequencing of the data was intended to minimize the 

spectral influence of differences that will occur because of seasonal conditions. Due to 

sensor saturation, the data may contain minor errors that pitch some cell values outside of 

the 0-1 range of proper reflectance values. These cells are screened out of each band 

during geoprocessing to preserve analytical accuracy. 

 

2.3. Workflow 

The workflow displayed in Figure 2 emphasizes seamless automation. ESRI’s 

ArcGIS (ESRI, 2020) was the software used in most of the analysis; for geoprocessing, 

geospatial analysis, and cartography. IDRISI TerrSet (Clark Labs, 2015) was used for 

geosimulating future land use using the Land Change Modeler (LCM) module for MLP 

ANN Markov Chain analysis. 
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Figure 2. General workflow diagram. 
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2.4. Evaluation of Published Built-up Indices 

Landsat data were used to evaluate eleven remote sensing spectral enhancements; 

nine designed to extract urban features from moderate resolution data; one designed to 

extract urban features from SPOT data, and one designed to assess the quality of building 

materials with high-resolution data. A list of these enhancements is given in Table 1. 

The three enhancements selected for further analysis were NBI, BAEI, and 

NDCCI (see Figure 3). Upon visual assessment, NBI showed pronounced differences 

between areas of Miami that are known to possess business infrastructure compared to 

those that are known to possess no infrastructure or residential land use. Therefore, it was 

selected for further evaluation regarding its usefulness for serving as the basis of an 

object-oriented urban land use classification scheme.  

Jieli et al. (2010) developed NBI with Landsat 5 data to automate the process of 

mapping residential areas of Changzhou City, China. The researchers report an overall 

accuracy of 90% based on a survey of 50 random points in their study area. An NBI 

raster calculated from the 2016 Landsat 8 data was clipped to the shape of Miami without 

feature extraction thresholding. While visual assessment yielded the conclusion that it is 

easy to spot differences between one type of urban feature and another in the enhanced 

image, the point requires further elaboration. Noticeable differences exist among land 

cover types captured in satellite data between the red, NIR, and SWIR1 bands, and the 

NBI band arrangement yields an unsupervised classification where the brightest features 
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Table 1. Built-up indices found in scientific journals evaluated for unique spectral properties. 

Name of Index Author(s) Formula Accuracy Study Area 
The Enhanced 
Built-up and 

Bareness Index 
(EBBI) 

As-syakur et 
al. (2012) 

(SWIR1-NIR)/10*SQRT 

(SWIR1+THERMAL) 
88.98% 

Densapar, 
Indonesia 

The Built-up Area 
Extraction Index 

(BAEI) 

Bouzekri et al. 
(2015) 

(RED+.3)/(GREEN+SWIR1) 92.66% Djelfa, Algeria 

The Built-up Index 
(BUI) He et al. (2010) 

(SWIR1-NIR)/(SWIR1+NIR)- 

(NIR-RED)/(NIR+RED) 
86.3% 

National Olympic 
Park, Beijing, China 

The New Built-up 
Index 
(NBI) 

Jieli et al. 
(2010) 

(RED-SWIR1)/(NIR) 90% 
Changzhou City, 

China 

The Dry Built-up 
Index (DBI) 

Rasul et al. 
(2018) 

(BLUE-THERMAL)/(BLUE+THERMAL)- 

(NIR-RED)/(NIR+RED) 
93% Erbil, Iraq 

The Normalized 
Built-up Area 

Index (NBAI) & Waqar et al. 
(2012) 

[(SWIR2-SWIR1)/GREEN]/ 

[(SWIR2+SWIR1)/GREEN] 
86.87% 

Islamabad, Pakistan 
The Band Ratio for 

Built-up Area 
(BRBA) 

(RED)/(SWIR1) 85.09% 

The Index-based 
Built-up Index (IBI) 

Xu (2008) 

2*SWIR1/(SWIR1+NIR)-[NIR/(NIR-RED)+ 

GREEN/(GREEN+SWIR1)]/ 
2*SWIR1/(SWIR1+NIR)+ 

[NIR/(NIR-RED)+GREEN/ 

(GREEN+SWIR1)] 

96.77% 
Fuzhou City, South 

China 

The Normalized 
Difference Built-up 

Index (NDBI) 

Zha et al. 
(2003) 

(SWIR1-NIR)/(SWIR1+NIR) 92.6% 
Nanjing City, East 

China 

Index Designed for Extracting Urban Features from SPOT Data 
The Modified 
Built-up Area 
Index (MBAI) 

Benkouider et 
al. (2019) 

[NIR+(1.57*GREEN)+(2.4*SWIR1)]/(1+NIR) 95% & 91% 
Laghouat and 
M’Sila, Algeria 

Index Designed for Determining Material Condition from High-resolution Data 
The Normalized 

Difference 
Concrete 

Condition Index 
(NDCCI) 

Samsudin et 
al. (2016) 

(NIR-GREEN)/(NIR+GREEN) 84.44% 

University Putra 
Malaysia, Seri 
Kembangan, 

Malaysia 
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(typically urban or barren land) have the highest values (Jieli et al. 2010). Thus, NBI 

values for areas that are only urban will show enhanced brightness for features with high 

albedos, such as white concrete or the bare ground of construction sites. Subsequently, 

zonal statistics describing the central tendency of NBI values were calculated for each 

land use type featured in the FGDL data. It must be noted that FGDL data does not 

feature polygon geometries for streets and is advantageous because it contains additional 

details regarding the presence of industrial development compared to the data from 

FDEP. ArcGIS includes the Mean Segment Shift interactive OBIA tool for grouping 

parts of an image with similar properties into segments. 

Phiri & Morgenroth (2017) define OBIA as the automatic digitization of 

homogenous image features. It works by grouping pixels into vectored segments and then 

assigning a class to like segments. Segments are defined by spectral, spatial, and 

geometric properties. Spectral detail refers to color characteristics, such as the difference 

Figure 3. Select spectral enhancements derived from Landsat 8 OLI 10/22/16 data; (a) NBI, (b) BAEI, (c) 
NDCCI. 
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between one type of commercial construction and another. Spatial detail refers to 

identifiable differences in spatial characteristics, such as street lines compared to 

residential blocks. Geometric detail refers to the minimum size of an image segment, 

which can aggregate details on, for example, a pixel, block, neighborhood, or city level. 

The method is useful for avoiding a scattered, “salt and pepper” look typically associated 

with pixel-based classification methods (Phiri & Morgenroth, 2017).  

The 2016 NBI was segmented into object primitives useful for identifying 

enhanced color intensity, object formation, and surface texture. An object encompassing 

industrial land use in the Little Haiti neighborhood of Miami was extracted by 

vectorizing a segment. The object was cross-referenced with the FGDL data to validate 

the usefulness of non-automatic, interactive segment selection as a classification method. 

While discrete urban types can be classified through OBIA feature extraction from NBI, 

there is still an additional need for analysis of the scale of development within classes. 

BAEI provides an enhanced view of the accumulation of construction material as a low-

high gradient. 

BAEI was selected for further evaluation regarding its usefulness for time-series 

change detection of a quantifiable increase in urban development (different grades of 

building presence) because of its range of non-linear values, which may prove useful for 

tracking shifts in urban morphology. In addition to a pronounced gradient, the BAEI 

feature extraction threshold separates high-rise shadows from the rest of the urban area. 
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BAEI is a high-precision, non-linear (the positive range of values extends beyond 

0 to 1) feature extraction index developed with Landsat 8 data by Bouzekri et al. (2015) 

to automate the process of extracting built-up areas of Djelfa, Algeria. They report an 

accuracy of 92.66% based on a survey of 50 random points in their study area. Compared 

to the other built-up indices evaluated, it provides an expanded range of values that may 

be useful for classifying urban states with low-high values. An observable increase in the 

central tendency of BAEI values for an urban area, over a time-series, requires additional 

explanation. 

Chrysoulakis (2003) utilizes NASA’s Advanced Spaceborne Thermal Emission 

and Reflection Radiometer satellite, in combination with in situ data, to develop an 

estimation of the all-wave surface net radiation balance (NRB) for Athens, Greece. NRB 

is defined in the formula: 

NRB = (1 - αshort)E + F ↓ - F ↑ 

Here, αshort is surface total shortwave albedo; E is direct and diffuse shortwave 

irradiance on the surface; F ↓ is atmospheric downward longwave flux; F ↑ is total 

surface radiant exitance. Highly developed areas, such as business and stadiums, should 

possess a lower NRB because the higher albedos of bright construction material typify 

them and therefore absorb less radiation than areas with lower albedos, such as areas of 

medium development or vegetated spaces. Also, urbanization influences the distribution 

of heat fluxes related to NRB with a combination of drivers, including replacement of 

vegetation with construction, reduced surface moisture, and the complexity of urban 
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morphometry. BAEI is an expression of NRB, with low values for highly developed 

areas, mid-ranged values for medium development, and high values for areas that are 

vegetated or comprised of dark asphalt. Where BAEI values increase over time, the 

increase is linked to the influence of human beings on NRB, since NRB will rise for 

reasons linked to human development (Chrysoulakis, 2003). 

To validate BAEI as automatic, unsupervised classification of different grades of 

building presence, an evaluation was made of the usefulness of BAEI to chronicle stages 

of urban growth for Miami using the mean as a measure of central tendency, including 

the influence of vegetation. BAEI was derived for six satellite images in a time-series 

spanning 1985-2016. If thresholds are not applied, BAEI rasters for Miami are 

highlighted by the formation of shadows cast by high-rise infrastructure in downtown 

neighborhoods. The visualizations need to be refined by omitting the formation of 

shadows to display the enhanced gradient visualization of an urban environment 

facilitated with BAEI. 

The BAEI rasters were geoprocessed with conditional thresholds for Landsat 5/7 

and Landsat 8. Note that conditional thresholds of 2.5 and 2.4 were assigned to Landsat 

5/7 and Landsat 8 respectively to enhance BAEI visualizations. Those thresholds were 

determined through a process of raster histogram analysis. A different threshold for 

Landsat 8 is necessary because it possesses different spectral bandwidths and cannot be 

directly cross-referenced with the other two satellites. Cross-referencing can be 
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performed with post-classification image comparison and post-classification change 

detection.  

A visual and statistical comparison was made of the BAEI time-series for the 

entire city. Due to the apparent influence of urban canopy in the southern portion of the 

city on BAEI values in the first time-series, a shape truncating the three southernmost 

neighborhoods was created. Rasters clipped to the truncated area were necessary to 

evaluate how well BAEI tracks the accumulation of constructed features over time as 

opposed to the accumulation of urban arbor. Further scrutiny was given to the truncated 

area concerning the influence of vegetation. 

 The Normalized Difference Vegetation Index (NDVI) has widely proven as useful 

in classifying the presence and vigor of plants visible in remote sensing data (Beck et al., 

1990). NDVI values are linear, -1 + 1, with values in the direction of 1 indicating the 

presence of healthy vegetation. 

NDVI = (NIR – RED) / (NIR + RED) 

NDVI was calculated for the truncated area time-series for statistical and visual 

comparison. Note that Miami-Dade County does not possess significant arbor compared 

to other US urban areas, having 20% tree cover in 2016 (Hochmair et al. 2016). 

Additionally, zonal statistics for BAEI and NDVI were calculated using the truncated 

area for a time series of ten images spanning 1985-2016.  

BAEI, utilized as a shadow index by not thresholding the raster, displays values 

for Miami with a pronounced division between the shadows cast by high-rises and other 
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urban area. Shadows are focalized and further analyzed by establishing a threshold to 

separate cells that highlight shadows. Subsequently, a time-series of urban land use 

classification maps incorporating the extracted shadow highlights was created to depict a 

formation trend. A geosimulation incorporating a 2003 and 2008 image time-series in 

combination with directional land use polynomial transition trends as predictors was 

performed to predict the construction of high-rise infrastructure for 2016 in the Brickell 

neighborhood. Consideration was given regarding how NBI and BAEI may be 

composited to take advantage of the useful properties of both enhancements. 

It is possible to composite enhancements as an image stack, whereby the desirable 

properties of each enhancement can be translated to a single output. NDCCI derived from 

2016 imagery visualized Miami’s urban fabric as a network of streets containing 

pronounced areas of low-development, collections of homes, and varying stages of 

development in areas of business and dense transport. Consideration was given to 

NDCCI as the basis for an enhancement composite with NBI and BAEI based on a 

comparison of zonal statistics with NDVI referencing urban land use types. The 

composite was then classified to identify pronounced spectral groupings based on the 

feature extraction achieved by combining enhancements. That is, differing states of urban 

intensity are delineated according to their unique range within each built-up index. 

NDCCI was developed by Samsudin et al. (2016) with data from the Worldview-

3 satellite to assess the condition of concrete roofs in high-resolution data. Gu et al. 

(2018) considered the usefulness of the index for extracting building shapes from high-
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resolution data. Where NDVI enhances the difference between near-infrared and red 

bands, NDCCI compares the difference between the green band. NDCCI may be 

implemented to assess the presence and quality of construction compared to the ability of 

NDVI to assess the presence and vigor of vegetation. Zonal statistics were calculated 

using the FDGL data to evaluate the way NDCCI groups discrete urban types compared 

to NDVI, both derived from 2016 imagery. Considering an observed homogenization of 

spectral responses within discrete urban types by NDCCI, the index is likely to be useful 

for identifying differences between urban land use types with a classifier when 

composited with NBI and BAEI. 

NBI orders the brightness of urban features from low-high, BAEI gives an order 

to NRB, and NDCCI gives higher values according to the difference in spectral response 

between NIR and green wavelengths (high for vegetated areas and lower according to the 

extent of development). Moreover, it is important to visualize the differences between a 

classification performed with NDCCI to one performed with NDVI to gain a better 

understanding of why it is advantageous to incorporate an index designed to enhance 

construction compared to one designed to enhance vegetation. Therefore, composites 

were created for NDCCI/NBI/BAEI and NDVI/NBI/BAEI with 2016 imagery and 

analyzed with the Iso Cluster unsupervised classifier by Ball & Hall (1965). It must be 

noted that the classifications performed here and henceforward were done to make 

comparisons with and improve upon NLCD 2016 urban intensity data, and the 

enhancements were conditionally processed to only include cells classified as urban by 
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the USGS. That classification contains errors in the study area, where some vegetated 

areas are incorrectly classified as non-urban. 

 

2.5. Classification of a Three-enhancement Composite 

Both the NDCCI/NBI/BAEI and NDVI/NBI/BAEI composites were classified 

with Iso Cluster using the ArcGIS default settings. The classification output was visually 

assessed and reclassified to establish an interpretation of low-to-high urban development, 

in terms of arbitrary classes named Urban 1-5. Areas in classes 1-3 are typically open 

space, vegetated, or residential, whereas areas of intense development are found in 

classes 4 and 5. The maps were compared for the clarity of discrete urban features. An 

unsupervised classification may serve as support data for a more refined supervised 

classification. Based on a visual assessment of the unsupervised NDCCI/NBI/BAEI 

classification, classifying urban development in terms of low, medium, and high is 

straightforward, and further analysis was performed to create a refined classification with 

the SVM classifier by Cortes & Vapnik (1995). 

Pal & Mather (2005) report success using SVM to classify Landsat 7 data for 

Littleport, England into eight cover types: wheat, water, dry salt lake, hydrophytic 

vegetation, vineyards, bare, pasture, and built-up. SVM draws upon statistical learning 

theory to identify decision boundaries to separate classes with an optimal hyperplane in 

feature space (Cortes & Vapnik, 1995; Pal & Mather, 2005). For linearly separable 

classes, SVM will identify the decision boundary that minimizes generalization error: the 
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one that leaves the greatest margin between the points, or “support vectors” of those 

classes closest to the hyperplane (Cortes & Vapnik, 1995; Pal & Mather, 2005). Classes 

that cannot be linearly separated are handled the same way, though the SVM performs a 

minimizing function handling the proportion of cells classified incorrectly (Cortes & 

Vapnik, 1995; Pal & Mather, 2005). 

The NDCCI/NBI/BAEI composite was classified with pixel-based SVM with 

default settings, low-to-high, in terms of arbitrary classes named Urban 1-3 using training 

samples selected by comparing homogenous areas of the composite to high-resolution 

basemap imagery for 2016 available through ArcGIS. GML and Random Trees 

supervised classifiers were also applied with default settings, though they did not yield 

results that were comparable to SVM. Area statistics from the FDEP data were calculated 

to assess features typifying each class. It must be noted that the FDEP data covers Miami 

without breaks between features, which is advantageous since the SVM classification 

should correctly aggregate the entire city. NLCD Percent Developed Imperviousness data 

can be conditionally geoprocessed to select areas possessing a certain intensity of 

development (as defined by the USGS). That selection might then be fused with the SVM 

classification to maximize the amount of detail regarding urban intensity derived from a 

satellite image. 

The USGS publishes NLCD, derived from Landsat data and delineating all land 

in the conterminous US into 21 classes, every five years. NLCD features four classes of 

urban intensity derived entirely from the NLCD Percent Developed Imperviousness 
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product, also released on the same five-year basis. The classes are Open Space, Low 

Intensity, Medium Intensity, and High Intensity. Open Space is typified by mostly 

vegetation (<20% impervious), Low Intensity by single-family homes (20-49% 

impervious), Medium Intensity by single-family homes (50-79%), and High Intensity by 

frequently traversed areas (80-100% impervious) (Jin et al., 2019). 

NLCD urban intensities are based on groupings of developed surface 

imperviousness derived from satellite data, which physically limits the interpretation of 

feature structure. Furthermore, there are shortcomings such as fragments of Open Space 

incorrectly classified as Low Intensity, large patches of Low Intensity incorrectly 

classified as Open Space due to vegetation, High Intensity areas that are saturated and 

overflow into areas of lower intensity, and areas of high development incorrectly 

classified into the lower classes. Referring to Figure 4, the NLCD 2016 urban intensity 

map of Miami displays numerous noticeable errors; four examples are circled in yellow 

and numbered: 1) Fragments of Mount Nebo and Memorial Plan Flagler Memorial Parks 

incorrectly classified as Low Intensity, 2) A vegetated patch of the Coconut Grove 

neighborhoods incorrectly classified as Open Space, 3) An overflow of High Intensity 

along a commercial strip in the Little Havana neighborhood, 4) Marlins Park incorrectly 

classified in lower classes. 

The SVM method identifies urban intensity in three simple classes and features 

corrections to class conflicts found in NLCD 2016. It was conditionally geoprocessed to 

increase detail by replacing any cells with an imperviousness between 50-79% with a  
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Figure 4. USGS NLCD 2016 urban intensities with noticeable errors denoted. 
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new class. The result of the SVM/Percent Developed Imperviousness fusion still 

displayed an incorrect classification for Marlins Park. It was revised with a conditional 

methodology to implement the Iso Cluster classification as a correction.  

The SVM/Percent Developed Imperviousness fusion was conditionally 

geoprocessed to replace any cells classified as Urban 5 in the Iso Cluster classification 

with a new class. To finally amend the NLCD urban intensity classification, the fifth 

class was decomposed into the fourth. Area statistics were calculated from the FDEP data 

for the five-class and four-class maps to assess features that typify each class. Maps 

created for this part of the study were projected to the USA Contiguous Albers Equal 

Area Conic USGS coordinate system and resampled with cubic convolution to match the 

original NLCD products, which are distributed as cubic convolution maps in the Albers 

projection. The semi-automated workflow for creating the new urban LULC maps is 

summarized in Figure 5. 

The urban land use classification methods introduced in this paper have the 

potential to serve as inputs into urban growth geosimulations. The next section will 

describe the creation of a geosimulation of the formation of high-rise infrastructure in the 

Brickell neighborhood incorporating BAEI as a shadow index. 

 

2.6. Land Change Modeler 

The LCM module of TerrSet can operate as a geostatistical Markov Chain 

predictor, utilizing the functionality of MLP ANN. LCM accepts input in the form of  



27 
 

  

Fi
gu

re
 5

. U
rb

an
 in

te
ns

ity
 c

la
ss

ifi
ca

tio
n 

w
or

kf
lo

w
 d

ia
gr

am
. 



28 
 

classified before-and-after rasters and predictor variables. Typical geographic predictors 

of urban development include elevation, distance to transportation, population, and 

income. In addition to these usual predictors, polynomial transition trends can be 

generated within the LCM module from the before-and-after data used to interpolate the 

prediction. Although geosimulations may have difficulty predicting the occurrence of 

isolated features as they appear over time, a novel method for predicting the growth of 

discrete urban features is evaluated (Guan et al., 2011; Rahimi, 2016; Sun et al., 2007). 

A time-series of BAEI rasters without feature extraction thresholding, including 

data from Landsat 5 for 2003 and 2008 and Landsat 8 for 2016, clipped to the Brickell 

neighborhood, captures the formation of shadows. Additional clipping was performed to 

isolate an area of interest. By focalizing the rasters to a one-cell radius circle, the 

shadows were grouped into simple circular features in a new raster, and a threshold that 

set a good visible fit for highlighting the shadows seen in the BAEI images was applied. 

Then, simple four-class land use maps, compatible with the LCM module, were created 

for the 2003 and 2008 data through the manual interpretation of high-resolution 2016 

basemap imagery available through ArcGIS. Class assignment was attributed to the 

polygons of a 30m2 vector fishnet which was rasterized and conditionally geoprocessed 

to include the shadows that overlap business areas. Before initiating the geosimulation, 

polynomial transition trends were mapped in LCM during the module’s model fitting 

routine to determine a series of polynomial transition trends that could serve as effective 

predictors of the transition from “Business” to “High-rise Shadow.” Only polynomial 
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transition trends were incorporated as predictors in this study. The assumption made was 

that the geosimulation need not predict the 2016 focalization exactly and that the 

prediction will, at least, closely outline the area where new high-rise infrastructure has 

been constructed. Default parameter settings, such as automatically assigned transition 

probabilities, were used for the model.  
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3. Results 

 

3.1. The New Built-up Index 

 

3.1.1. Zonal Statistics 

Zonal statistics were calculated for discrete urban land use types for an NBI 

image derived from 2016 Landsat 8 OLI data (see Table 2). Statistically, there appeared 

to be pronounced differences in central tendency between the types listed. The mean 

values range from high, attributable to industrial land, down to commercial and 

institutional land, and down again to residential and recreational land. NBI arranges the 

brightness of urban surface features in linear order. 

 

3.1.2. Object-oriented Image Analysis 

Utilizing the mean shift between urban land use types, NBI can be segmented into 

object primitives. Primitives emphasizing brightness, shape, and texture were visualized 

in Figure 6, where the scaled values represent the brightness captured by each segment. 

Visual assessment of the primitives yields the idea that urban land use types can be 

identified as distinct objects. The properties of a segment extracted from should be cross-

referenced with ground truth data to verify the usefulness of this methodology. 

 

3.1.3. Feature Extraction 
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Table 2. Zonal statistics of NBI derived from 10/22/16 Landsat 8 OLI data, referencing FGDL land use data. 

 

A single object was extracted from NBI by vectorizing a segment created with a 

spectral detail of 15.5, a spatial detail of 15, and a minimum segment size of 1000 (see 

Figure 7). The feature was selected based on a visual assessment of the brightness and 

configuration of surface features. According to zonal statistics referencing FGDL land 

use data, the object is typified by the presence of industrial and commercial land use (see 

Table 3). NBI is useful in the process of OBIA for the identification and potential 

classification of urban land use types. 

 

3.2. The Built-up Area Extraction Index 

 

3.2.1. Change Detection 

Visual and statistical analysis was made of a BAEI time-series, including data  

from Landsat 5, Landsat 7, and Landsat 8, for the entire city (see Figure 8). The time- 

 
1 For instance, utilities. 
2 Religious, educational, social, cultural, healthcare. 
3 Schools, governmental. 

Land Use Area (km2) Min Max Range Mean Std 
Centrally Assessed1 0.33 0.0195 0.2788 0.2593 0.1262 0.0535 

Industrial 1.97 0.0209 0.5135 0.4927 0.1698 0.0663 
Institutional2 2.51 0.0002 0.4243 0.4241 0.0846 0.0639 

Public/Semi-public3 7.99 0.0004 0.7474 0.7470 0.0931 0.0711 
Recreation 0.6 0.0037 0.3645 0.3607 0.0631 0.0564 
Residential 36.78 0.0004 0.4011 0.4008 0.0785 0.0421 

Retail/Office 7.52 0.0044 0.7848 0.7804 0.1356 0.0701 
Vacant Non-residential 2.61 0.0056 0.4932 0.4877 0.1120 0.0754 

Vacant Residential 1.84 0.0035 0.2860 0.2825 0.0607 0.0449 
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Figure 7. NBI-derived object encompassing industrialized land in the Little Haiti neighborhood. 
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Table 3. Area statistics of NBI-derived object, 
referencing FGDL data. 

Land Use Area (km2) 
Centrally Assessed 0.06 

Industrial 0.43 
Institutional 0.05 

Public/Semi-public 0.04 
Residential 0.03 

Retail/Office 0.14 
Vacant Nonresidential 0.05 

 

series corresponds with a population influx and subsequent accumulation of low-albedo 

construction materials due to human development. There appears to be a trend of 

increasing central tendency for the Landsat 5 and 7 data. Image comparison was 

performed between the Landsat 8 data, and they also show an increase in central 

tendency despite the small, two-year time frame between them. 

 

3.2.2. Change Detection II 

A similar time-series analysis, comparing BAEI to NDVI, was conducted with the 

Landsat 5 data for part of Miami truncated of neighborhoods with developed urban 

canopies to minimize the influence of vegetation on BAEI returns (see Figure 9). The 

BAEI time-series possesses an increasing mean, while the NDVI mean is decreasing. 

There is a clear, continual increase in the central tendency of BAEI for areas not 

shrouded by urban canopy. Moreover, zonal statistics were calculated for the truncated 

study area with a time-series of ten images spanning 1985-2016, including data from 
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Landsat 5, 7, and 8. Table 4 displays a trend of increasing BAEI values corresponding 

with decreasing NDVI values, indicating a negative correlation. 

Table 4. Zonal statistics of BAEI and NDVI values derived from 
Landsat 5 TM (1985-1998 & 2003-2011), 7 ETM+ (2000), and 8 OLI data 

(2014 & 2016), referencing the truncated study area. 

Year Mean BAEI Mean NDVI 
1985 1.283 0.3388 
1998 1.304 0.3121 
1999 1.284 0.3142 
2000 1.338 0.2733 
2003 1.332 0.3074 
2008 1.364 0.2945 
2009 1.299 0.2891 
2011 1.377 0.3049 
2014 1.353  0.3900 
2016 1.367 0.3897 

 

3.3. The Normalized Difference Concrete Condition Index 

Building on the measurements achieved with NBI and BAEI, enhancements can 

be composited into a stack that could be utilized for the creation of discrete urban classes 

(Ettehadi et al., 2019). Miami’s urban fabric is rendered with NDCCI as a pronounced 

network of streets within open space, residential, and business areas. An effective 

enhancement composite would emphasize differences that exist between features within 

an urban landscape, where NBI, BAEI, and NDCCI do not yield similar renderings. 

Since NDVI is useful for identifying areas with or without vegetation, zonal  

statistics were derived from urban land use types for both NDCCI and NDVI, both 

derived from 2016 Landsat 8 data. NDCCI possesses less variation within classes,   
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according to the coefficient of variation (CV) statistic, compared to NDVI (see Tables 5a 

and 5b). CV is calculated by dividing the standard deviation by the mean; it gives a 

measure of the amount of statistical variation that exists between classes, allowing for 

direct comparison. 

Table 5a. Zonal statistics of 10/22/16 NDCCI, referencing FGDL data. 

Table 5b. Zonal statistics of 10/22/16 NDVI, referencing FGDL data. 

 

3.4. Three-enhancement Composite 

 

3.4.1. Iso Cluster 

Land Use Area (km2) Min Max Range Mean Std CV 
Centrally Assessed 0.33 0.004 0.701 0.698 0.345 0.124 35.96% 

Industrial 1.97 -0.100 0.649 0.749 0.221 0.106 47.96% 
Institutional 2.51 -0.316 0.881 1.197 0.461 0.190 41.12% 

Public/Semi-public 7.99 -0.136 0.914 1.050 0.439 0.189 42.93% 
Recreation 0.6 -0.177 0.824 1.002 0.515 0.208 40.33% 
Residential 36.78 -0.289 0.915 1.205 0.481 0.138 28.61% 

Retail/Office 7.52 -0.811 0.886 1.697 0.262 0.141 53.98% 
Vacant Non-residential 2.61 -0.462 0.827 1.289 0.392 0.186 47.42% 

Vacant Residential 1.84 -0.185 0.845 1.030 0.535 0.172 32.18% 

Land Use Area (km2) Min Max Range Mean Std CV 
Centrally Assessed 0.33 0.014 0.785 0.771 0.322 0.148 45.80% 

Industrial 1.97 -0.065 0.699 0.764 0.185 0.112 60.48% 
Institutional 2.51 -0.217 0.955 1.171 0.463 0.229 49.45% 

Public/Semi-public 7.99 -0.057 0.972 1.029 0.442 0.225 51.03% 
Recreation 0.6 -0.081 0.904 0.985 0.536 0.247 46% 
Residential 36.78 -0.123 0.958 1.081 0.461 0.162 35.21% 

Retail/Office 7.52 -0.633 0.944 1.576 0.234 0.153 65.41% 
Vacant Non-residential 2.61 -0.296 0.905 1.201 0.384 0.220 57.31% 

Vacant Residential 1.84 -0.117 0.925 1.042 0.550 0.207 37.60% 



39 
 

The possibility of mapping by compositing the three enhancements discussed 

above was also investigated. Iso Cluster classifications for NDCCI/NBI/BAEI and 

NDVI/NBI/BAEI composites were created for visual comparison. The default ArcGIS 

Iso Cluster settings are Maximum Number of Classes: 5, Maximum Number of 

Iterations: 20, Maximum Number of Cluster Merges per Iteration: 5, Maximum Merge 

Distance: 0.5, Minimum Samples Per Cluster: 20, and Skip Factor: 10. These settings 

were not changed. Both composites were assigned arbitrary classes of Urban 1-5. The 

default analysis settings are Maximum Number of Classes: 5, Maximum Number of 

Iterations: 20, Maximum Number of Cluster Merges per Iteration: 5, Maximum Merge 

Distance: 0.5, Minimum Samples Per Cluster: 20, and Skip Factor: 10. These settings are 

not changed. Both composites are assigned arbitrary classes of Urban 1-5, yielding a 

view of development intensities based on respective enhancements. Examining the two 

maps in Figure 10, finer surface features such as Marlins Park, highways, and streets are 

more vividly rendered with the NDCCI/NBI/BAEI classification. The features in the 

NDVI/NBI/BAEI are comparatively saturated, yielding a compromise of less detail. 

Therefore, further analysis was conducted with a supervised classifier to map the spatial 

configuration of Miami’s urban features more accurately. 

 

3.4.2. Support Vector Machine 

A supervised classification was created with the SVM classifier to build upon the 

unsupervised classification of the NDCCI/NBI/BAEI composite. The default analysis 
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setting of Maximum Number of Samples per Class: 500, was not changed. Training 

samples were established to separate open space, residential and vegetated residential, 

and business and transport areas into classes Urban 1-3, indicating the intensity of 

development (see Figure 11a). Zonal statistics were calculated for urban land use types 

to assess the accuracy of the SVM classification. Referring to Table 6, Urban 1 is 

typified by recreation and other low-intensity development, Urban 2 by residential areas, 

and Urban 3 by business and other high-intensity development. Where NLCD features an 

additional class to describe Medium Intensity, further analysis was conducted to fuse that 

class with the SVM classification to increase cartographic detail. 

 

3.4.3. NLCD Percent Developed Imperviousness 

USGS classifies areas identified as possessing 50-79% impervious surface as 

Medium Intensity, and the class is rendered as a detail of streets and well-developed 

buildings in the NLCD classified product. The SVM classification reduces the errors 

related to feature structure found in NLCD 2016. In reciprocal, areas identified by USGS 

as 50-79% impervious were conditionally geoprocessed to overlay the SVM 

classification as a new third class, yielding classes Urban 1-4 (see Figures 11b & 11c). 

  

3.4.4. The Fusion Map 

Upon visual inspection, it was discerned that some well-developed features, such 

as Marlins Park, may still be classified incorrectly into lower classes after fusing the 



42 
 

SVM classification with the NLCD Percent Developed Imperviousness. To correct those 

features, the fifth class of the unsupervised NDCCI/NBI/BAEI classification was overlaid 

as a new class. Upon subsequent visual inspection, the result of adding this fifth class was 

a successful fusion; the brightest features were classified as Urban 5. By decomposing the 

fifth class into the fourth, a new four-class urban intensity map without the pronounced 

errors of NLCD 2016 was created (see Figures 11d-11f). 

Zonal statistics were calculated for the NLCD 2016 Miami urban intensities and 

the NDCCI/NBI/BAEI five-class and four-class fusion maps. Improvements were made 

in the fusion classifications (see Tables 7a-7c). For example, NLCD 2016 Open Space is 

typified by both open areas and urban canopy, and the refined fusion classification 

effectively separates open areas from the urban canopy. The distribution of urban 

intensity classes among land use types is similar between the four-class maps. However, 

NLCD 2016 shows a large amount of residential areas classified incorrectly in the first 

class. Also, NLCD 2016 shows noticeably less area in the fourth class. Having 

established mapping conventions with NBI, BAEI, and NDCCI, further consideration 

was given to the potential for establishing an infill urban growth prediction implementing 

well-known land change geosimulation modeling methodology based on the unexplored 

potential of utilizing the BAEI as a shadow index. 

 

3.5. Multilayer Perceptron Artificial Neural Network Geosimulation 
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Table 6. Area statistics for SVM classification of NDCCI/NBI/BAEI composite derived from 10/22/16 
Landsat 8 OLI data, referencing FDEP data. 

Land Use Urban 1 (km2) Urban 2 Urban 3 
Commercial and Services 0.630 3.480 10.886 

Industrial 0.027 0.460 2.651 
Institutional 0.390 2.156 1.989 
Open Land 0.054 0.070 0.098 
Recreational 0.736 0.671 0.494 

Residential High Density 0.260 5.098 4.091 
Residential Low Density 0.010 0.065 0.000 

Residential Medium Density 1.326 40.167 5.099 
Transportation 0.049 0.854 2.095 

Utilities 0.004 0.044 0.138 

Table 7a. Area statistics of USGS NLCD 2016 urban land use classification, referencing FDEP data. 

Land Use Open Space (km2) Low Medium High 
Commercial and Services 0.546 1.434 5.171 7.932 

Industrial 0.008 0.109 0.663 2.367 
Institutional 0.457 1.047 1.932 1.112 
Open Land 0.033 0.094 0.077 0.022 

Recreational 0.795 0.504 0.434 0.179 
Residential High Density 0.320 2.218 4.984 1.967 
Residential Low Density 0.043 0.032 0.002 0.000 

Residential Medium Density 5.084 22.002 17.768 1.861 
Transportation 0.111 0.444 1.179 1.288 

Utilities 0.000 0.017 0.055 0.113 

Table 7b. Area statistics of five-class fusion of 2016 impervious surface fraction with NDCCI/NBI/BAEI 
SVM and Iso Cluster urban land use classifications, referencing FDEP data. 

Land Use Urban 1 (km2) Urban 2 Urban 3 Urban 4 Urban 5 
Commercial and Services 0.560 1.694 4.271 4.210 4.163 

Industrial 0.020 0.252 0.502 0.916 1.440 
Institutional 0.330 1.162 1.645 0.630 0.717 
Open Land 0.048 0.041 0.058 0.028 0.046 

Recreational 0.669 0.446 0.330 0.170 0.206 
Residential High Density 0.209 2.221 4.577 1.434 0.970 
Residential Low Density 0.009 0.059 0.002 0.000 0.000 

Residential Medium Density 1.204 25.489 17.027 1.526 1.189 
Transportation 0.041 0.455 0.888 0.500 1.083 

Utilities 0.003 0.022 0.041 0.052 0.068 
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Table 7c. Area statistics of four-class fusion of 2016 impervious surface fraction with NDCCI/NBI/BAEI 
SVM and Iso Cluster urban land use classifications, referencing FDEP data. 

Land Use Urban 1 (km2) Urban 2 Urban 3 Urban 4 
Commercial and Services 0.560 1.694 4.271 8.374 

Industrial 0.020 0.252 0.502 2.356 
Institutional 0.330 1.162 1.645 1.347 
Open Land 0.048 0.041 0.058 0.074 
Recreational 0.669 0.446 0.330 0.376 

Residential High Density 0.209 2.221 4.577 2.404 
Residential Low Density 0.009 0.059 0.002 0.000 

Residential Medium Density 1.204 25.489 17.027 2.715 
Transportation 0.041 0.455 0.888 1.583 

Utilities 0.003 0.022 0.041 0.120 
 

3.5.1. Geosimulation Inputs: BAEI as a Shadow Index 

BAEI was calculated using Landsat 5 data for 2003 and 2008, and Landsat 8 data 

for 2016 was clipped to the Brickell neighborhood. Without a conditional threshold, the 

shadows cast by high-rise infrastructure were rendered clearly in higher BAEI values. 

The output rasters were clipped to an area of interest where shadows seem to be 

developing over a time-series for visualization. By focalizing the BAEI rasters with a 

one-cell radius, the formation of shadows was highlighted by a group of high values. 

Each focalization was then conditionally thresholded to assign 1 to areas with high 

values, indicating the presence of shadows, and 0 to areas with low values and 

symbolized with transparency over rasters symbolized with a standard deviation stretch 

and gamma adjustments (see Figure 12). Upon visual inspection, it was assumed that 

attempting to predict the area highlighted in the 2016 data, by referring to the 2003 and 

2008 images, would be best approached by attempting to generalize the prediction by  
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“circling” the area. 

For the 2003 and 2008 data, manual classifications were performed for the 

Brickell neighborhood, assigning each 30m2 cell to either Road, Low Development, or 

Business classes. Conditional focalizations created for Brickell were then integrated into 

the manual classifications to create maps depicting the formation of shadows for each 

year in the time-series. These maps were used as inputs to the TerrSet LCM module. 

From the input maps, LCM can automatically calculate polynomial transition trends for 

use as predictor gradients in the geosimulation. During the LCM model fitting routine, 

where the predictive capacity of every combination of polynomial trends can be 

examined, 2nd and 3rd order polynomial transition trend maps were selected as best fit 

predictors for the visualization (see Figure 13). 

 

3.5.2. Geosimulation Output: Projected Vector 

 The geosimulation was executed with default settings. LCM features an accuracy 

assessment tool that will accept a classification map as input, though the results of this 

analysis were left to visual assessment. The output raster was clipped to the area of 

interest and vectorized. Figure 14 displays the geosimulation output as two maps: the 

predicted land use classification for the area of interest and a simplified vector of the 

output classified as shadows. The predicted vector referencing the 2016 data provides a 

visual fit for the shadows rendered in BAEI. 
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Figure 13. Classifications, created by manual and semi-automated methods, of the Brickell neighborhood 
derived from Landsat 5 TM data used as LCM inputs; (a) 11/20/03, (b) 11/17/08. Polynomial transition 
trends created in LCM; (c) 2nd order, (d) 3rd order. 
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Figure 14. Results of LCM MLP 2016 prediction for Brickell neighborhood area of interest based on 2003 and 
2008 data; (a) predicted 2016 area of interest land cover, (b) vector derived from 2016 prediction referencing 
the formation of shadows in the area of interest. 
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4. Discussion 

Jieli et al. (2010) developed NBI to enhance the scale of the brightness of urban 

features in a satellite image. Value ranges for NBI calculated from 2016 Landsat 8 data 

are found to be descriptive of discrete land use types, according to feature brightness. 

Objects emphasizing the shape of Miami’s urban feature types were visualized, and an 

object delineating an isolated formation of industrial land was successfully extracted. 

Through OBIA, it is possible to create maps that display urban land use as a series of 

classified geometries. Such methodology may entail automated geoprocessing of a large 

series of object settings, and the output rasters can then be reviewed by an operator to 

select the most fitting segments as shapes to map the target urban area. It is proposed that 

NBI be utilized for feature extraction of urban land use types. 

Building upon the potential for identifying discrete urban land use types with 

NBI, the possibility of grading urbanization in terms of collective building presence was 

investigated. Bouzekri et al. (2015) developed BAEI to enhance the brightness of urban 

features in a satellite image. Time-series analyses of Miami visualized with BAEI 

spanning 1985-2016 yields a view of linear increase. Visual comparison with NDVI, 

when the study area was truncated of neighborhoods possessing pronounced urban 

canopy, indicates that BAEI is more useful for tracking shifts in urban morphology. Also, 

the success of a 10-image time-series analysis comparing BAEI and NDVI for the 

truncated area was successful in identifying a negative correlation between the two 

indices. This suggests that BAEI is useful for measuring the extent of large-scale 
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urbanization as a low-high gradient, while NDVI is useful for measuring the vigor of 

plants. It is proposed that BAEI may be utilized during urban surface quality analyses to 

describe the upward scale of development. 

Samsudin et al. (2016) developed NDCCI to enhance the presence and condition 

of construction material. Therefore, despite similar spectral configurations, it was 

suggested that NDCCI might be more useful for urban mapping than NDVI, which is 

designed to enhance the presence and condition of vegetation. A comparison between 

NDCCI and NDVI, derived from 2016 Landsat 8 data, with FGDL Miami land use data 

found NDCCI possesses less within-class variance compared to NDVI. Additionally, a 

visual comparison of Iso Cluster classifications of 2016 NDCCI/NBI/BAEI and 

NDVI/NBI/BAEI composites showed the NDCCI composite rendered Miami with less 

saturation between features of various intensity. Unsupervised classification yields maps 

that, by themselves, may be valuable for the identification of specific surface features and 

for vectorizing those features into point, polygon, or line shapes. 

Furthermore, it was discernable that urbanization can be linearly rendered 

according to three dominant feature types: open space, residential, and business/transport 

areas. Therefore, SVM was used to classify the NDCCI composite in three stages of 

intensity based on training samples derived from a comparison between the composite 

and 2016 high-resolution satellite imagery. The success of this method can be replicated 

globally to provide urban LULC maps that describe development in three classes. In 

addition to functioning as a stand-alone method, it serves as a palette for more detailed 
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cartographic analyses to maximize the amount of information extracted from satellite 

data.  

It was possible to add more detail by fusing the SVM classification with the 

NLCD Percent Developed Imperviousness product. The area of Miami classified in 

NLCD 2016 as Medium Intensity was fused with the SVM classification, in addition to 

the fifth class of the NDCCI composite Iso Cluster classification to correct any residual 

errors. The five-class fusion map does much to divide areas of the highest intensity from 

the fourth class, and the visualization may possess an aesthetic appeal. The four-class 

fusion map is more homogenous compared to NLCD 2016, having misclassification 

errors associated with urban intensities derived only from the Percent Developed 

Imperviousness corrected. 

It is proposed that the process of classifying urban intensity with a satellite image 

in this analysis is effective for creating cartographic products of urban intensity that are 

superior to those currently found in NLCD. Because of the automated workflow, it is 

within reason to assert this methodology, when rigorously applied, may facilitate the 

production of maps on any scale. Challenges include the availability of remotely sensed 

data, fitting the Iso Cluster classification to suitably capture the intensity of features, and 

the establishment of correct training samples when using SVM. While the Iso Cluster and 

SVM maps can be generated globally, it is understood that the fusion maps can only be 

generated if a developed surface imperviousness product exists for the area being 

mapped. 
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There is global consideration for the use of LULC maps, such as those created 

during this research, as inputs into predictive geosimulations (Guan et al., 2011; Rahimi, 

2016; Sun et al. 2007). For example, Sun et al. (2007) simulate the internal growth of 

Calgary, Alberta, Canada utilizing discrete classes derived from city land use data. Object 

maps derived from NBI may be implemented to facilitate this type of geostatistical 

modeling. In this study, BAEI rasters without feature extraction thresholds were focalized 

to magnify the presence of high-rise shadows detected in Miami’s Brickell neighborhood. 

Classifications derived from manual interpretation and focal analysis of 2003 and 2008 

Landsat 5 data were used as inputs for an MLP ANN Markov Chain geosimulation, in 

addition to polynomial transition trends derived from the classifications for predictors. 

The geosimulation generated a land use prediction that closely circled the formation of 

high-rise shadows in 2016 Landsat 8 data. 

Additional model fitting may be useful in refining a prediction, such as the 

implementation of other predictor gradients. It is proposed that this is a novel method for 

simulating the formation of skyscrapers based on the reasonable fit of the projected 

vector, and that this analysis serves as a basic example of effective modeling that can be 

achieved through the proper model fitting of the LCM module. The proposed 

methodology may be replicated to predict the formation of any relevant discrete 

occurrence that may be otherwise difficult to predict, given the isolated nature of the 

occurrence. 
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5. Conclusion 

Rapid urbanization stimulates a high demand for static mapping and 

geosimulations to support legislative and planning purposes. A caveat exists where 

LULC maps should be synthesized through a process of maximizing the amount of 

information that can be acquired from a satellite image. While this is not the first study to 

research the potential for incorporating spectral enhancements in classification processes 

delineating multiple states of urbanization, the paper systematically summarizes specific 

approaches to various aspects of urban analysis. It discusses the advantages and 

limitations of existing indices. The power of remote sensing and GIS were coupled to 

conceptualize new urban land use classification capabilities utilizing the NBI, BAEI, and 

NDCCI spectral enhancements. LULC maps generated without the details that may be 

acquired from these enhancements may be less useful in application. 

Today, the trend of global urbanization has negatively impacted Earth with 

climate change, lowering water quality, and reducing natural landscape, among other 

problems. In response, there is an increased need for frequently updated LULC maps, and 

smart growth policies have been implemented by those responsible for managing the 

development of cityscapes. The principle of infill development, the redevelopment of 

land within a cityscape, will become more important because of the goal of smart growth 

policies to build compact, high population urban areas instead of sprawling outward. 

When combined with the analytical capabilities of GIS, remote sensing data may be 

refined to focus on a specific geography. Miami, a city that exists in a sensitive coastal 
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environment, continues to grow at a rapid pace. We should consider using the city as a 

study area for research on urban geographic information science. Maps derived from this 

research may be advantageous for strengthening all purposes that rely on LULC maps. 

Significant to this study, NBI was demonstrated to possess the unique property of 

identifying discrete urban land use types as segmented objects. Urban LULC maps may 

be created, through the process of OBIA, based on the geometric configuration of 

discrete land use types rendered in NBI. BAEI was successfully implemented to visualize 

and scale the growth of an entire city as well as an area truncated of urban canopy. Such a 

rendering of urban surface quality may be useful for important tasks such as predicting 

stages of development bordering natural areas, where intense development may be 

detrimental to the environment. NDCCI, when composited with NBI and BAEI, can be 

utilized to classify stages of urban intensity effectively.  

The development of urban growth geosimulation models meant to bolster 

management efforts may become the research frontier for all efforts to mitigate human-

driven environmental impacts. Satellite data are generated continuously and serve as an 

excellent basis for the LULC maps necessary for geosimulations to operate. NBI can be 

used to extract predictable geometries, BAEI can be reclassified into value ranges 

describing predictable gradient development, and the NDCCI/NBI/BAEI composite maps 

can be used to facilitate predictions of fluctuating urban intensity. While it is beyond the 

scope of this paper to give further consideration to these ideas, the novel method 

incorporating the BAEI as a shadow index is a clear example of the type of geostatistical 
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model that can be created to monitor a city’s internal growth. Forward, it should also 

serve as a primary example of the type of success that may be gleaned from 

geosimulation models based on focal analysis in general. 
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