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Pitch canker is a fungal disease that threatens the health of Bishop Pine (Pinus muricata 

D. Don) trees at Point Reyes National Seashore (PRNS). Understanding spatial patterns 

of tree mortality is important for land management decisions that aim to protect healthy 

forests. Remote sensing methods have proven to be successful in mapping and 

monitoring forest health. Using two different types of imagery at fine spatial resolution 

(WorldView-2 at 2 m pixel size and unmanned aircraft system (UAS) imagery at 0.05 m 

pixel size), three images (from 2013, 2017 and 2018) were classified with object-based 

image analysis (OBIA). A GIS change detection method was employed to quantify 

changes in pitch canker severity (PCS) from 2013 to 2017. Overall accuracies of 63.8% 

and 81% were achieved for the 2017 and 2018 classified images, respectively. In contrast 

to previous findings, the red-edge (RE) band was found to be a poor predictor of pitch 

canker severity; however, the addition of multiple variables in a stepwise multiple linear 

regression model increased the overall accuracy (81%) and coefficient of determination 

value (0.3562) for the 2018 imagery. We found that pitch canker severity in Bishop Pine 

trees increased between years 2013 and 2017 in over 32 ha. An additional 55 ha of 

Bishop Pine forest was identified in the 2017 classified image as having shown an 

increase in pitch canker severity. This study presents novel methods for successfully 

detecting and classifying pitch canker severity in forest ecosystems. 
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1. Introduction 

Tree mortality rates in the western United States have increased rapidly in recent 

decades (van Mantgem et al. 2009; Allen et al. 2010; McDowell et al. 2016; Abatzoglou 

and Williams 2016; Berner et al. 2017), and many observational and modeling studies 

have identified drought stress in response to global warming as a primary driver 

(Breshears et al. 2005; Bigler et al. 2006; Adams et al. 2009; Williams et al. 2013). 

California experienced consecutive years of severe drought (2012-2016) due to lower 

than average rainfall and hotter temperatures (Diffenbaugh et al. 2015; Byer and Jin 

2017). Throughout the state, the prolonged drought resulted in the death of over 100 

million trees since 2010, of which over 35 million trees died in the summer of 2016 (Byer 

and Jin 2017).  

In addition to drought and extreme climate variability, physiological and biotic 

factors such as xylem impairment after drought events (van Mantgem et al. 2013), insect 

outbreaks (Hicke et al. 2016; Berner et al. 2017) and fungal pathogens (Gordon et al. 

2001; De Chant and Kelly 2009) have been identified as proximal factors that can 

increase the spatial extent and severity of forest mortality. With an increase in dead 

standing wood, this presents the risk of wildfires (Williams et al. 2013). Hot and dry 

conditions increase fuel flammability (Littell et al. 2009; van Mantgem et al. 2013) and 

stressed trees in response to water stress (Holden et al. 2018), insect infestation (Hicke et 

al. 2016; Berner et al. 2017) or infection from forest pathogens (Metz et al. 2011; Chen et 

al. 2015, 2017) are more prone to higher burn and fire severity. 
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Wildfires not only affect forest structure, composition, and carbon sequestration 

(van Mantgem et al. 2009; Hicke et al. 2016) but also have a profound effect on human 

lives. Recently in California, two wildfires simultaneously broke out on November 8, 

2018 (Cal Fire 2019a, 2019b). The Camp fire located in northern California and the 

Woolsey fire located in southern California burned over 150,000 and 96,000 acres, 

respectively (Cal Fire 2018a, 2018b). The Camp fire now stands as the most deadly and 

destructive wildfire recorded in California history, claiming 86 lives and destroying over 

18,000 structures (Cal Fire 2018a). Devastating wildfires like the Camp and Woolsey fire 

highlight the importance and need to monitor forest health in order to contain and prevent 

future uncontrolled wildfires. 

Numerous studies have been conducted throughout California forests to better 

understand the mechanisms that drive tree mortality, with many of these studies focusing 

on tree species such as the Monterey pine (Pinus radiata), Ponderosa pine (Pinus 

ponderosa), Douglas-fir (Pseudotsuga menziesii), Tanoak (Lithocarpus densiflorus), and 

Coast Live Oak (Quercus agrifolia) (Gordon et al. 2001; Kelly et al. 2004; Rizzo et al. 

2005; De Chant and Kelly 2009; Williams et al. 2013). Much less is known about the 

extent of tree mortality events in coastal Bishop pine (Pinus muricata) forests (Fischer et 

al. 2008; Baguskas et al. 2014). Bishop pine population are restricted to a small number 

of stands dispersed along coastal California and northern Baja California (Baguskas et al. 

2014). While coastal regions are assumed to be buffered from extreme climate conditions 

due to maritime influences and coastal fog events, in particular (Fischer et al. 2008), 
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extensive mortality of Bishop pine trees was observed at Point Reyes National Seashore 

(PRNS) during the summer of 2018.  

Bishop pine trees at PRNS are afflicted with pitch canker, a fungal disease caused 

by the forest pathogen Gibberella circinata. A pitch canker infestation in California was 

first recognized in 1986, spreading across 19 coastal counties and has since killed 

hundreds of thousands of trees (Gordon et al. 2001). Typically, the first visible symptom 

of pitch canker is branch dieback. Trees will exhibit branch dieback as a result of lesions 

forming around the first or second whorls of a branch tip that eventually girdles and kills 

the infected branch (Gordon et al. 2001). Infection of individual branch tips is usually 

followed by infection of multiple branches, which results in extensive canopy dieback. 

Another common symptom in response to infection is the production of copious amounts 

of resin and forming cankers in the sapwood, from which the common name “pitch 

canker” is derived (Hepting and Roth 1946). Cankers can develop on branches and main 

stems, are elliptical in shape, usually slightly sunken, and soaked in resin (Correll 1991). 

In most cases, the combination of extensive dieback and stem cankers will ultimately lead 

to tree death (Gordon et al. 2001). 

Subsequent to branch girdling is the swift color change of needles from green to 

red to brown, making the use of remote sensing a potentially powerful tool in the 

detection of tree disease and its progression through the forest. Satellite remote sensing 

provides consistent spatial measurements across the visible and infrared spectrum and has 

proven to be an efficient tool for identifying and mapping various vegetation diseases and 



4 

 

monitoring vegetation health over the past several decades (Coops et al. 2003; Barry et al. 

2008; Devadas et al. 2009; Lausch et al. 2013; Latifi et al. 2014; Lehmann et al. 2015; 

López-López et al. 2016). While many researchers rely on freely available satellite 

imagery to reduce research costs, these images typically have a medium spatial resolution 

(>30 m ground resolution) more appropriate for regional-scale studies (Wulder et al. 

2006; Senf et al. 2015; Olsson et al. 2016). High-resolution imagery (<5 m ground 

resolution) is more costly, however, more researchers have found that high-resolution 

imagery allows for more accurate classification and detailed mapping (Mathieu et al. 

2007; Pu and Landry 2012; Aguilar et al. 2013; Aleksandrowicz et al. 2014). In the field 

of forestry, a growing number of researchers have been utilizing high-resolution imagery 

solely due to the advantage of mapping the health and mortality of individual trees within 

a stand (Kelly et al. 2004; Liu et al. 2006; De Chant and Kelly 2009; Johnson et al. 2013; 

Waser et al. 2014; Murfitt et al. 2016).  

With the high cost of high-resolution satellite imagery, the recent development of 

unmanned aircraft systems (UAS) may offer a new platform for the collection of very 

high-resolution imagery, while also offering the ability to collect data at short intervals in 

a cost-effective manner. Compared to satellite-based remote sensing applications, UAS-

based applications have higher resolution and greater flexibility in selecting suitable 

payloads and appropriate spatiotemporal resolution (Zhang and Kovacs 2012). From low 

altitude flights, UAS’s can capture spatial resolution imagery in the centimeter range at 

which individual trees can be identified (Getzin et al. 2012; Näsi et al. 2015; Dash et al. 
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2017). Depending on sensing payloads, UAS’s can deliver multispectral images ranging 

from the visible (RBG) band to the near-infrared (NIR) through to the thermal infrared 

and microwave (Colomina and Molina 2014).  

Although UAS technology has greatly contributed to the field of remote sensing, 

UAS platforms have yet to rival traditional satellite-based platforms in terms of spatial 

extent. Low altitude flights increase imagery spatial resolution but at the expense of areal 

coverage. Multiple flight paths are also necessary to cover large study areas. Other 

limitations to using UAS platforms include establishing accessible take-off and landing 

sites as well as maintaining UAS visibility during operation. The Federal Aviation 

Administration (FAA) requires that an operating aircraft must be within sight at all times 

(FAA 2018). However, variability in terrain and vegetation can pose a challenge to this 

regulation. Consequently, these are a few considerations that need to be addressed when 

using UAS platforms.  

The red-edge (RE) region between the spectrum of 690 nm to 740 nm has been 

well documented as one of the most informative descriptors of foliar chlorophyll 

concentration and plant stress (Rock et al. 1988; Filella and Penuelas 1994; Coops et al. 

2003; Smith et al. 2004; Li et al. 2012). Biochemical and physiological changes in plants 

(e.g., leaf water content, pigment concentration, and cellular structure) occurs when 

plants become stressed or infected with a disease, which can be captured in the spectral 

signature of leaves (Zheng et al. 2018). The red-edge portion of the spectrum covers the 

region where reflectance increases sharply from the chlorophyll-absorbed red portion of 
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the spectrum (near 680nm) to the strongly reflected near-infrared region of the spectrum 

(Curran and Dungan 1990). Numerous researchers have utilized the red-edge region for 

studies in vegetation leaf area index (Swatantran et al. 2011; Zhu et al. 2017; Xie et al. 

2018), as well as early detection of vegetation stress or the onset of disease (Filella and 

Penuelas 1994; Smith et al. 2004; Eitel et al. 2011; Li et al. 2012). Additionally, the 

sensitivity of the red-edge region makes application of this band highly promising for 

forest health monitoring (Dash et al. 2017, 2018). 

In the early 2000s, object-based image analysis (OBIA) emerged as a sub-

discipline of Geographic Information Science (GISc) designed for extraction and analysis 

of geographic objects (Blaschke 2010). The basic processing units of OBIA are segments 

or image objects generated from segmentation algorithms. Image objects consist of pixels 

grouped on the basis of homogeneity to mimic the human perception of real-world 

objects on the ground (Hay and Castilla 2008). OBIA was developed to handle high-

resolution remote sensing images and overcome the limitations inherent to pixel-based 

methods such as the salt-and-pepper effect (Blaschke 2010). The advantages and 

disadvantages between pixel-based and object-based classification have been addressed 

in numerous reviews and studies (Im et al. 2008; Blaschke 2010; Liu and Xia 2010; 

Ouyang et al. 2011; Whiteside et al. 2011). Previous studies mapping vegetation cover 

types (e.g., hardwood forest, cropland, rangeland) and species composition have 

demonstrated the advantages of OBIA (De Chant and Kelly 2009; Laliberte et al. 2010; 

Pu and Landry 2012; Waser et al. 2014; López-Granados et al. 2016; Baena et al. 2017) 
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In forest studies, object-based classification methods have been shown to significantly 

increase classification accuracy relative to pixel-based methods, in part to the ability of 

OBIA to handle within-object variability (Kelly et al. 2004; Guo et al. 2007). In this 

study, we tested the OBIA method its ability to identify and classify different severity 

levels of pitch canker infection in Bishop Pine trees. 

Treating infected trees and preventing tree mortality induced by the spread of 

pitch canker at a landscape-scale is not feasible with current disease management 

practices (Gordon et al. 2001); however, monitoring the spread of the pathogen and 

health of trees can be addressed with a remote sensing approach. The aim of this study 

was to quantify the spatial pattern of potential pitch canker induced mortality of Bishop 

Pines at Point Reyes National Seashore. Specifically, the objectives of this study were to 

(1) detect and classify pitch canker infected Bishop Pine trees using OBIA, (2) determine 

if the RE band is a suitable tool to predict pitch canker stress in Bishop Pines, and (3) 

map the change in pitch canker spread and severity across the period from 2013 to 2017. 

The outcome of this study improves our ability to identify and monitor the spatial 

patterns of pitch canker using automated and reliable remote sensing techniques. 

 

2. Study Site 

This study was conducted in a Bishop Pine forest at Point Reyes National 

Seashore (PRNS), located in a peninsular area along the Pacific Coast of California, 

approximately 40 km northwest of San Francisco (Figure 1a). PRNS covers 
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approximately 30,000 ha, is bounded on the northeast by the San Andreas Fault, and 

hosts diverse plant communities (Forrestel et al. 2011). The dominant plant communities 

include Bishop Pine (Pinus muricata) forest, Douglas-fir (Pseudotsuga menziesii) forest, 

northern coastal scrub, and blue blossom ceanothus (Ceanothus thyrsiflorus) scrub. Other 

communities include northern coastal prairie dominated by a mix of native and non-

native, annual and perennial, grass species. The study region exhibits a Mediterranean 

climate, characterized by wet winters and cool, dry summers (Forrestel et al. 2011). 

During summertime, PRNS is frequently inundated by coastal fog events that offset heat 

and water stress (Fischer et al. 2016). The average rainfall is between 50 – 75 cm per year 

and the temperature in the summer can range from 10 – 23 °C in the summer and 4 – 17 

°C in the winter (National Park Service, 2018). 

The study site covers approximately 775 ha within PRNS. The Bishop Pine trees 

examined were located along Limantour road where signs of pitch canker infection were 

prominent (Figure 1b). Two smaller sites within the study site were also investigated 

(Figure 1c, d). Site A is approximately 20 ha in size and is located west of Limantour 

road and east of the Muddy Hollow Trail. Site A has both north and northeast facing 

slopes and contains a small drainage depression connected to Limantour road. This site is 

dominated by coyote brush, alder trees alongside riparian zones, Bishop Pine trees, and 

thick patches of poison oak underneath Bishop Pine canopy. Site B is approximately 25 

ha in size and is located east of Limantour road and west of the Coast Trail. This site is 

much drier than site A, with exposed bare soil and steep east and southeast facing slopes. 
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Vegetation present at both sites are similar, however; at site B, coyote brush is less 

abundant, Bishop Pine trees form into smaller clusters, and poison oak can be found 

surrounding the entire hillside. 
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Figure 1.Study area locations. (a) The study area is located approximately 40 km northwest from San 

Francisco within Point Reyes National Seashore. (b) WorldView 2, 2 m spatial resolution image of study 

area. (c) UAS, 5 cm spatial resolution imagery of Site A. (d) UAS, 5 cm spatial resolution imagery of Site 

B. 
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3. Data 

3.1 Remote Sensing Data Acquisition 

High spatial resolution digital images were acquired from the WorldView-2 

(WV2) satellite (DigitalGlobe, Inc., USA) on 27 June 2013 and 18 May 2017. WV2 has a 

spatial resolution of 2 m for 8 multi-spectral bands (MS) (Coastal blue, 400-450 nm; 

Blue, 450-510 nm; Green, 510-580 nm; Yellow, 585-625 nm; Red, 630-690 nm; RE, 

705-745 nm; NIR1, 770-895 nm; NIR2, 860-1040 nm) and a panchromatic (Pan, 450-800 

nm) band with a spatial resolution of 0.46 m. The June 2013 image was captured at an 

average off-nadir angle of 27°, sun elevation of 73.9° and sun azimuth of 153.7°, at 

approximately noon (PST). The May 2017 image was captured at an average off-nadir 

angle of 27.3°, sun elevation of 69.7° and sun azimuth of 153.6°, at approximately noon 

(PST). Both WV2 acquisition dates were chosen considering a cloud-free sky condition 

in late spring and early summer in the study area. In conjunction with the WV2 images, 

airborne data was collected on 31 July 2018 with a 3DR Solo Unmanned Aircraft System 

(UAS). Attached to the UAS was a MicaSense RedEdge camera with 5 MS narrowbands 

(Blue, 475 nm center, 20 nm bandwidth; Green, 560 nm center, 20 nm bandwidth; Red, 

668 nm center, 10 nm bandwidth; RE, 717 nm center, 10 nm bandwidth; NIR, 840 nm 

center, 40 nm bandwidth). The UAS was flown from an approximate altitude of 80 m 

above local terrain at sites A and B resulting in an image spatial resolution of 0.05 m. The 

images will be referred to as the 2013, 2017, and 2018 images going forward unless 

stated otherwise for the purpose of sensor comparison. 
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3.2 Topographic Datasets 

LiDAR data, used to generate a normalized digital surface model (nDSM), was 

acquired from April through July of 2010 by Earth Eye through cooperative efforts made 

by the US Geological Survey (USGS) and San Francisco State University (SFSU) under 

the American Recovery and Reinvestment Act (ARRA) Golden Gate LiDAR project. The 

flight path covered 835 m
2
 of the project area and focused on Marin County, San 

Francisco County, Point Reyes National Seashore, and Golden Gate National Recreation 

Area (Hines 2011). A 3 m digital elevation model (DEM) was generated by the USGS 

using data from the Golden Gate LiDAR project and was obtained from The National 

Map. 

 Using the acquired 3 m DEM, a topographic wetness index (TWI) layer and three 

types of curvature layers were generated to help quantify the spatial variability and extent 

of pitch canker infection severity across the Bishop Pine stand. The TWI describes soil 

moisture variability over a land surface and was calculated as (ln(upslope catchment 

area/slope) (Temimi et al. 2010). A low pass filter was applied to the TWI layer four 

times to remove LiDAR point cloud errors. Baguskas et al. (2014) estimated that values 

within a 4.5 m radius of each tree point best represented the potential water accumulated 

at the rooting zone of the tree. Therefore, the average TWI value within a 4.5 m radius of 

each sample point was extracted for this study. Curvature describes the concavity and 

convexity of a terrain surface and affects the flow path of water. The three measures of 

curvature include the profile, planform, and the standard curvature which combines both 
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the profile and planform curvatures. The profile curvature describes the rate of change of 

slope and affects flow acceleration and deceleration, while the planform curvature 

describes the rate of change of aspect and influences flow convergence and divergence 

(Zevenbergen and Thorne 1987). Similar to the TWI, for each curvature layer, a low pass 

filter was applied four times. Following similar procedures presented by Baguskas et al. 

(2014), the average curvature value within a 3 m radius was extracted from each sample 

point. 

 

4. Methods 

4.1 Field Survey 

Between July and September 2018, physical attributes were collected from 70 Bishop 

Pine trees, including tree height, diameter at breast height (DBH), evidence of beetle exit 

holes, and pitch canker infection severity. In order to locate the position of each tree in 

ArcGIS Pro, GPS coordinates were recorded using a Trimble Juno SB (Trimble 

Navigation Ltd., Sunnyvale, CA, USA) with an accuracy of <5 m. Live trees were 

sampled within accessible areas where the terrain was easily traversable and the 

undergrowth vegetation was thin. 

A pitch canker severity (PCS) ranking system was used to classify the pitch canker 

infection severity of each sampled tree (Owen and Adams 2001; Wikler et al. 2003). This 

rating system has been used to assess PCS and progression in coastal northern California 

Monterey Pine (Pinus radiata) forests. Pitch canker severity of each sampled tree was 
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assessed based on three categories: branch tips, stem cankers and ‘top kill’. Branch tips 

(BT) were considered infected if symptoms of browning and loss of needles on the 

terminal ends were present. Each tree was assigned a rating of 0, 1, 2 or 3 depending on 

the number of infected needles (0, 1-2, 3-10, or >10, respectively) (Table 1). A similar 

rating system was used for stem cankers (SC). Trees with 0, 1-2, 3-4, or >4 stem cankers 

on the main stem were assigned a rating of 0, 1, 2, or 3 respectively. ‘Top kill’ was 

measured as the percent of crown killed by the disease. Rating scores of 0, 1, 2, or 3 were 

assigned to trees with ‘top kill’ of 0%, <10%, 10%-50%, or >50% respectively. After 

assessing each tree and assigning rating scores to each of the three categories, the rating 

scores were summed to a final severity score value. Severity score values classify trees as 

having no (0), low (1-3), moderate (4-6), or high (7-9) signs of PCS (Table 2). To 

improve rating accuracy, each tree sample was viewed from numerous ground vantage 

points.   

 
Table 1. Table of pitch canker severity ranking system adapted from Owen and Adams (2001) and Wikler 

et al. (2003). Each sampled tree was assigned a rating score depending on the number of dead branch tips, 

stem cankers, and top kill present. 

Branch Tips (BT) Stem Cankers (SC) Top Kill (TK) 

Rating Quantity Rating Quantity Rating Quantity 

0 0 0 0 0 0 

1 1 - 2 1 1 1 < 10% 

2 3 - 10 2 2 - 3 2 10 – 50% 

3 > 10 3 > 3 3 > 50% 
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Table 2. Total score value of pitch canker severity based on the sum of dead branch tips, stem cankers, and 

top kill. Results indicate the number of tree samples observed in each PCS category.   

Pitch Canker Severity 

(PCS) 

Total Score Value Sample Results  

Healthy 0 3 

Low 1 – 3 28 

Medium 4 – 6 34 

High 7 – 9 5 

 

4.2 Image pre-processing 

Both WV2 images were sensor and radiometrically corrected by DigitalGlobe. 

Atmospheric correction was performed using ATCOR 3 implemented in Erdas Imagine 

(2018) to reduce atmospheric and topographic influences. The WV2 images were 

registered to a 1 m resolution 2016 National Agriculture Imagery Program NAIP image 

(USDA-FSA-APFO 2016a, 2016b) in Erdas Imagine (2018) using ground control points 

(GCPs). Selecting GCPs in forested areas is somewhat difficult. Typically, invariant 

targets such as road intersections and buildings are chosen as GCPs; however, due to the 

limited invariant targets in the study site, distinguishable trees were used as GCPs. The 

images captured with the UAS were mosaicked and radiometrically corrected using 

multispectral multi-ray photogrammetry methods in Pix4D (Pix4D SA 2018). Before the 

UAS flight campaign was conducted, 13 GCPs (GCPs; 0.6 x 0.6 m black and white 

checkered panels) were laid out around sites A and B and logged with a Trimble GeoXH 

GPS receiver connected to a Trimble Zephyr antenna (Trimble Navigation Ltd., 

Sunnyvale, CA, USA). The established GCPs were easily identified in the multispectral 

imagery and used to georectify all UAS imagery.  
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4.3 Image Segmentation and Classification 

Segmentation of the images was performed with eCognition Developer (Trimble 

Munich, Munich, Germany), an object-based image analysis software. There are several 

segmentation algorithms that create image or grid data objects. The multi-resolution 

algorithm used in this study is a bottom-up region-merging method starting with one-

pixel objects that merge with other objects to become bigger objects (Benz et al. 2004). 

This segmentation is controlled by several user-defined parameters with the scale 

parameter being the most important parameter that controls the maximum heterogeneity 

of image objects (Benz et al. 2004). Color and shape are two mutually exclusive 

parameters, where color refers to spectral homogeneity and shape considers object 

compactness and smoothness (Benz et al. 2004). Spectral heterogeneity is also influenced 

by the addition of weights to band layers, further increasing object complexity (Benz et 

al. 2004). The optimal determination of these parameters is somewhat arbitrary. 

Numerous researchers (Mathieu et al. 2007; Im et al. 2008) have used a systematic trial 

and error approach validated by the visual inspection of the quality of the resulting image 

objects. Moreover, the configuration of the optimal parameter highly depends on the 

scale and nature of the desired image features to be detected.  

Initial segmentation of the 2017 image was executed at a scale of 150, color 

criterion of 0.8 and shape criterion of 0.2 (compactness: 0.8; smoothness: 0.2). All eight 

band layers were utilized in the segmentation with varying weights chosen based on a 

trial and error approach (Coastal blue: 2; Blue: 1; Green: 2; Yellow: 2; Red: 3; RE: 1; 
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NIR: 1; NIR2: 1) A secondary level segmentation process was performed to segment tree 

clusters into individual trees using the superpixel segmentation algorithm. Specifically, 

the SLICO superpixel method was used which generated regularly shaped superpixels 

and achieved better geometric accuracy of individual trees in comparison to other 

segmentation algorithms.  

Identical image segmentation parameters and weights for the 2017 image were 

applied to the 2013 image; however, numerous resulting image objects were 

undersegmented. Instead, the 2013 image was executed at a scale of 125, color criterion 

of 0.9 and shape criterion of 0.1 (compactness: 0.8; smoothness: 0.2). Seven out of the 

eight band layers were utilized and assigned weights that differed slightly from the 

weights applied to the initial segmentation of the 2017 image (Coastal blue: 0; Blue: 2; 

Green: 2; Yellow: 1; Red: 2; RE: 3; NIR: 1; NIR2: 1). The same secondary level 

segmentation process used on the 2017 image was also applied to the 2013 image.  

Since the spatial resolution of the UAS images was much higher than the WV2 

images, a smaller scale parameter of 50 was used to segment the UAS images. A weight 

of 0.1 was assigned to the color criterion and the remaining weight of 0.9 was assigned to 

the shape criterion (compactness: 0.1; smoothness: 0.9). All five band layers of the 

MicaSense RedEdge camera (Blue: 1; Green: 1; Red: 1; NIR: 3; RE: 3) were utilized in 

the initial segmentation, in addition to the nDSM layer generated from the acquired 

LiDAR data. A weight of 3 was assigned to the nDSM layer and proved highly conducive 

in segmenting and classifying objects based on height. A secondary level segmentation 
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process was applied to the UAS image objects according to size. Image objects of less 

than 260,000 pixel size were segmented at a scale of 30, color criterion of 0.9, shape 

criterion of 0.1 (compactness: 0.5 ; smoothness: 0.5), and four band layers with various 

weights (Blue: 3; Green: 0; Red: 1; NIR: 3; RE: 3; nDSM: 0). Image objects greater than 

260,000 pixel size were segmented at a scale of 40, color criterion of 0.3, shape criterion 

of 0.7 (compactness: 0.5; smoothness: 0.5), and with all weighted band layers including 

the nDSM layer (Blue: 2; Green: 1; Red: 3; NIR: 1; RE: 2; nDSM: 1). The occurrence of 

over and under-segmentation of individual trees was reduced by separating the class into 

two groups and using different segmentation parameters. 

After the initial image segmentation of the images, a hierarchical classification 

process was carried out to create two classes (Trees and Mask) by exploiting spectral, 

geometric, and relational features (Table 3). Image objects classified as Mask represented 

non-tree objects. At the second segmentation level, individual trees in the 2017 image 

were classified into two sub-classes using the nearest neighbor (NN) classifier. The NN 

classifier allows for quick and straightforward classification using a variety of variables 

related to spectral, textural, and/or contextual properties of image objects  (Mathieu et al. 

2007). Four classes were originally created; however, due to under-sampling of the 

healthy and high-severity classes, the four classes were binned to create two equally 

sampled classes of healthy-low severity and medium-high severity. Samples receiving a 

pitch canker severity total score value of less than four were classified as having healthy-

low pitch canker severity and samples receiving a total score value of four or greater 
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were classified as having medium-high pitch canker severity. Half of the collected 

samples were used to train and classify the image, whereas the remaining samples were 

used for validation. Since more extensive ground truthing was not possible due to dense 

vegetation and steep terrain, there was concern that the few numbers of selected training 

samples would not accurately represent all the trees in the image. Rather than creating 

one classified image, a more robust approach was to classify the 2017 image five times 

using randomly selected training and validation samples to determine classification 

accuracy. 

Similar classification procedures used for the 2017 image were applied to the 

2013 image. However, since training samples were not available for 2013, a multiple 

linear regression model using 2017 WV2 band values was used to predict the PCS of the 

same existing trees that were sampled during the summer of 2018, followed by a NN 

classification. A multiple linear regression model and the NN classifier were also used to 

predict and classify the Bishop Pine forest in the 2018 images. 

 
Table 3. Overview of object features used to classify WV2 and UAS image objects. The mean layer values 

include all eight bands from the WV2 satellite and all five bands from the UAS MicaSense RedEdge 

camera. 

Type Object Features References 

Mean Layer Values Blue, Brightness, Coastal 

Blue, Green, nDSM, 

NIR(UAS), NIR1, NIR2, RE, 

Red, Yellow 

 

Vegetation Index 
       

     ed

     ed
 

Rouse et al. 1973 

Geometry Area, Length/Width, Elliptic 

fit 

 

Position Distance  

Class-Related Features Relations to neighbor objects  
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4.4 Statistical Modeling and Analysis 

All statistical modeling and analysis for this study were conducted in the 

statistical software package R (R Core Team 2018 version 3.5.1). Linear regression 

models were used to assess the relationship between field observations of pitch canker 

severity and remotely sensed observations of tree health from the WV2 bands as well as 

vegetation indices (Table 4) using the ‘lm’ function. The coefficient of determination (R-

squared or R
2
) was generated to verify the strength of the linear relationships tested. To 

determine the utility of the RE band in this study, a RE linear regression model was 

applied to sampled trees in the 2017 and 2018 imagery using the ‘predict’ function to 

predict PCS. 

 

 itch  anker  everity    .1   0.12   

 

In addition to simple linear regression models, multiple linear regression models 

were fitted. Multiple linear regression analysis was conducted to examine the relationship 

between field assessments of pitch canker severity and multiple predictor variables within 

a single model. Band layers, vegetation indices, geomorphic variables, and physical tree 

attributes were tested as the predictor variables (Table 4). To determine the best fit 

model, an automated forward and backward stepwise variable selection method was used 

with the Akaike Information Criterion (AIC) as the criterion for model fit. Similar to the 
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RE linear regression model, the best fit multiple linear regression model was applied to 

the sampled trees in the 2013 and 2018 imagery to predict PCS.  

 
Table 4. Overview of predictor variables used for statistical modeling and analysis. Band layers include all 

eight bands from the WV2 satellite and all five bands from the UAS MicaSense RedEdge camera. 

Type Variables References 

Band Layers Blue, Coastal Blue, Green, 

NIR(UAS), NIR1, NIR2, RE, Red, 

Yellow 

 

Vegetation 

Index 
       

      ed 

      ed 
 

 

       
    1    

    1    
 

 

    2   
    2    

    2    
 

Rouse et al. 1973; 

Viña and Gitelson 

2005; Nouri et al. 

2013  

Geomorphic TWI, Curvature (Profile), Curvature 

(Planform), Curvature (Standard) 

Temimi et al. 2010   

Physical 

Characteristics 

Height, Diameter at Breast Height 

(DBH), Beetle Exit Hole 

 

 

4.5 Accuracy Assessment 

To evaluate the performance of the image classifications, accuracy assessments 

were performed (Congalton 1991; Congalton and Green 2009). User’s accuracy details 

error of commission, whereas producer’s accuracy details the error of omission. Low 

error of commission and error of omission results are favorable for better accuracy. User 

accuracy is a good parameter for classifier assessment as it provides the accuracy of the 

method from the perspective of the user of the classified map (Murugan et al. 2017). 

Furthermore, overall accuracy is calculated by dividing the number of correctly classified 

objects by the total number of objects. Finally, the Kappa statistic incorporates 



22 

 

misclassification information, resulting in a more robust accuracy assessment than overall 

accuracy measures (Congalton 1991). Categories proposed by Landis and Koch (1977) 

were incorporated to assess the performance of the statistics: poor (<0.41), moderate 

(0.41-0.61), good (0.61-0.81), and excellent (>0.81). The manually detected classes in the 

2017 image were compared to field validation samples to determine classification 

accuracy. This was repeated for each of the five classification trials. An accuracy 

assessment was not performed on the 2013 image in consequence of having no ground 

truth data from 2013. Although the 2018 images represent only a small region of the 

study site and contain less than 25 sample locations, an accuracy assessment was 

performed. 

 

4.6 Pitch Canker Change Detection   

 A baseline map depicting the change in PCS was created by comparing the model 

predicted 2013 classified image to the highest overall accuracy 2017 classified image in 

ArcGIS Pro. The intersect tool was used to create a new layer where the polygon features 

of the two images overlapped. An extraction query was performed to identify polygons 

representing Bishop Pine trees that had changed from healthy-low pitch canker severity 

in 2013 to a medium-high pitch canker severity in 2017.  

 

5. Results 

5.1 Assessment of 2017 Classification Trials 
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Accuracy assessments for the five 2017 image classification trials were compared 

(Table 5). Approximately 180 ha of the study site were classified as Bishop Pine trees. 

The classified area size of the healthy-low pitch canker severity class ranged between 60 

and 77 ha, whereas the medium-high pitch canker severity class ranged between 100 and 

118 ha. Classification trials B, C, and E showed poor statistical performance with Kappa 

values of less than 0.41. Classification trials A and D showed moderate statistical 

performance with Kappa values of 0.44 and 0.49, and overall accuracy classification of 

72% and 7 % respectively. User’s accuracy and producer’s accuracy were satisfactory 

for trials A and D. A classified image was created using random training samples from 

trial D (Figure 2). The average overall accuracy of the five classified images was 63.8% 

with an average Kappa statistics value of 0.26.  
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Figure 2. Trial D 2017 classification results depicting areas of healthy-low and medium-high PCS. 

Approximately 66 ha were predicted as Healthy-Low PCS and 113 ha as Med-High PCS.  

 

5.2 Statistical Models and Analysis 

5.2.1 Linear Regression Models 



26 

 

A weak, yet positive, relationship was found between PCS and remotely sensed 

data (Table 6). The NIR and vegetation index models had the strongest relationship. The 

blue model was also statistically significant. The RE linear regression model was applied 

to the 2017 and 2018 images resulting in overall accuracies of 57% and 24%, 

respectively with an identical R
2
 value (0.028). 

 
Table 6 Resulting R

2
, slope and p-values of the 2017 WV2 bands and vegetation indices used for statistical 

modeling and analysis. 

Band Layer or Index R
2 

Slope p-value 

Coastal blue 0.046 0.802 >0.05 

Blue 0.066 0.689 <0.05 

Green 0.041 0.425 >0.05 

Yellow 0.012 0.208 >0.05 

Red 0.03 0.034 >0.05 

RE 0.028 -0.121 >0.05 

NIR1 0.091 -0.129 <0.05 

NIR2 0.093 -0.122 <0.05 

NDVI 0.092 -6.684 <0.05 

NDRE 0.104 0.104 <0.01 

NDRE2 0.117 -18.094 <0.01 

 

5.2.2 Multiple Linear Regression Model for 2013 Imagery 

Initial image classification resulted in an estimated 164 ha classified as Bishop 

Pine trees, approximately 16 ha less than the 2017 classification. The best fit model 



27 

 

utilized two MS bands and two vegetation indices (AIC = 73.08; R
2
 = 0.276; p-value = 

<0.001). 

 

 itch  anker  everity   1 .    2.1 lue   2.1 ellow   23.1    2    .      

 

Physical tree attritubes and geomorphic variables had little influence in predicting PCS in 

Bishop Pines. The addition of both normalized difference RE indices greatly improved 

the prediction model and although the NDVI vegetation index and NIR bands were found 

to be significant, the addition of these variables did not improve the model. The predicted 

PCS levels and spread of pitch canker in 2013 was approximately 67 ha as healthy-low 

PCS and 97 ha as medium-high PCS (Figure 3). 
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 Figure 3. Predicted PCS classification results for 2013. Approximately 67 ha were predicted as healthy-

low PCS and 97 ha as medium-high PCS. 

  

5.2.3 Multiple Linear Regression Model for 2018 Imagery 

Sites A and B had a combined area of approximately 8.3 ha classified as Bishop 

Pine trees. The best fit model utilized three MS bands, one vegetation index and two of 
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the physical tree attributes (i.e., DBH and evidence of beetle exit holes) (AIC = 66.64; R
2
 

= 0.356; p-value = <0.001).  

 

 itch canker severity    .    1.8 reen   1.2 ed – 0.3   – 13.       

  0.07      0.  eetle 

 

Geomorphic variables also had little influence in predicting PCS in Bishop Pines for the 

2018 image. Similar to the 2013 multiple linear regression model, the NDVI vegetation 

index and NIR bands were excluded from this model, as the addition of these variables 

would have increased the AIC value. Classification of PCS in Bishop Pines resulted in 

approximately 3.2 ha as healthy-low PCS and 5.1 ha as medium-high PCS (Figure 4). 
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 Figure 4. Predicted PCS classification results for sites A and B. Approximately 3.2 ha were predicted as 

healthy-low PCS and 5.1 ha as medium-high PCS. 

 

Assessment of the classification revealed an overall accuracy of 81% and 

according to the categories suggested by Landis and Koch (1977), the overall statistical 

performance is categorized as moderate (Table 7 . User’s accuracy and producer’s 

accuracy values were higher for the med-high severity class with 14 of 16 trees classified 

correctly. User’s accuracy and producer’s accuracy values for the low severity class were 

slightly lower than the med-high severity class with only 3 of 5 trees classified correctly. 
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The lower error of commission and error of omission values for the med-high severity 

class indicated better accuracy in comparison to the low severity class.  

 
Table 7 Accuracy assessment of the 2018 classified image. 

  

Healthy-

Low 

Severity 

Med-High 

Severity Total 

User's 

Accuracy 

Error of 

Commission 

Low Severity 3 2 5 0.6 0.4 

Med-High Severity 2 14 16 0.875 0.125 

Total 5 16 21   

Producer's Accuracy 0.6 0.875   

Error of Omission 0.4 0.125   

  
Overall Accuracy (%) 81 

Kappa Statistic 0.475 

 

5.3 Change Detection 

Change detection was performed on the 2013 and 2017 trial D classified images 

resulting in Figure 5. Approximately 124 ha of Bishop Pine forest overlapped in the two 

images, 32 ha of which showed an increase in severity from healthy-low to medium-high. 

An additional 55 ha were also identified in the 2017 classified image as newly classified 

Bishop Pine forest. These areas were classified as part of the mask class in the 2013 

classification. Of the 55 ha, 25 ha were classified as healthy-low severity and the 

remaining 30 ha as medium-high severity.  
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Figure 5. Change detection results depicting areas of the study site that had increased in PCS over a four 

year period starting in 2013. Approximately 32 ha increased in severity from healthy-low to medium-high. 

An additional 55 ha of Bishop Pine forest was identified in 2017, 25 ha were predicted as healthy-low 

severity and 30 ha as medium-high severity. 
 

6. Discussion 

6.1 Classification of PCS Using OBIA 
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Application of the OBIA method performed well in detecting Bishop Pine trees 

with varying classification accuracy results depending on the type of prediction method 

used and sensor for image acquisition. An average overall accuracy of 68.3% was 

obtained for the 2017 WV2 image using training samples to predict PCS. Classification 

of the 2018 UAS image using a multiple linear regression model proved to be more 

accurate than the classified 2017 image with an overall accuracy of 81%.  

There are two possible explanations for the improved accuracy of the 2018 

classification. First, fieldwork was completed shortly after UAS image acquisition. The 

accuracy of the 2017 classification is lower potentially due to the amount of time that 

passed between image acquisition and completion of fieldwork. Trees that were healthy 

or showed low signs of infection severity in 2017 when the image was acquired may have 

become infected or increased in infection severity by the time fieldwork was completed. 

Classifying pitch canker severity using older remote sensing data would result in 

misclassification as the remote sensing data would not be in accordance with in-field 

severity assessments. However, for the 2018 classification, the time-lapse from image 

acquisition to fieldwork completion was not long enough to cause drastic changes in tree 

health and spectral signatures. 

Moreover, it should be noted that the rapid spread of pitch canker has been 

observed in several studies (Correll 1991; Schmale and Gordon 2003; Wikler et al. 2003; 

Gordon et al. 2011). Within a three year period of monitoring pitch canker in Pinus 

radiata trees, Wikler et al. (2003) found that pitch canker severity had increased from 
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29.9% in 1996 to 48.9% in 1999. In the pitch canker inoculation study conducted by 

Schmale and Gordon (2003), 200 Bishop Pine trees were inoculated in July 2000, 

September 2000 and February 2001. Treated branches were collected 10-13 weeks 

following the initial inoculation. In less than three months, many of these inoculated trees 

developed lesions. Due to the dynamic nature of pitch canker, the presented results would 

suggest that remote sensing and ground data need to be collected in tandem to obtain 

accurate results.  

Second, the increase in accuracy may possibly be due to the finer spatial 

resolution of UAS imagery. Many studies have compared the applications of UAS and 

satellite data (Murugan et al. 2017; Dash et al. 2018; Iizuka et al. 2018; Khaliq et al. 

2019).  Results from these studies corroborate that UAS data has the capability of 

outperforming satellite data. For instance, using UAS and satellite imagery to monitor 

Pinus radiata forest health, Dash et al. (2018) established that UAS data was more 

sensitive to physiological changes than satellite data and could detect stress down to the 

level of individual trees. In a landscape analysis study of post-mining sites in Indonesia, 

Iizuka et al. (2018) generated three classified maps, one derived from satellite data with a 

ground resolution of 7.5 m and the other two from UAS data with resolutions of 0.05 m 

and 0.1 m. The satellite-based map showed an overall accuracy of 78.1% whereas the 

UAS based maps had an average overall accuracy of 92.3%. For tree disease monitoring 

applications, our results support that UAS data is more advantageous than satellite data. 



35 

 

Although OBIA allows for intuitive segmentation there are caveats to 

classification. Image classification can be less straightforward especially for discerning 

vegetation of different species that possess similar spectral signatures. A majority of the 

trees (e.g., Bishop Pine, Douglas-Fir, Alder) identified in the 2013 image were healthy 

and had similar spectral signatures which made classification difficult and resulted in 

misclassifying several Douglas-Fir and Alder trees as Bishop Pine trees. In the 2017 

image, there was more variability in tree health which made distinguishing Bishop Pine 

trees less difficult; however, issues with classifying shadows were more prominent. Great 

improvements to the OBIA method have been made over the last decade (Im et al. 2008; 

Blaschke 2010; Liu and Xia 2010; Ouyang et al. 2011; Whiteside et al. 2011); however, 

there is still a strong need to develop and simplify classification techniques to accurately 

classify complex environments.    

 

6.2 Predicting PCS Using the RE Band 

We hypothesized that the RE band would be a significant indicator of PCS due to 

its sensitivity to physiological changes; however, this study showed that better statistical 

and classification results were achieved when the RE derived indices were used in 

combination with additional predictor variables. The low R
2
 value generated from the RE 

linear regression model (i.e., 0.028) indicated that the RE band was a poor predictor of 

PCS in Bishop Pine trees. However, this may also indicate that the relationship between 

PCS and the RE band is not linear. Further research in utilizing other types of models 
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may better explain this relationship. Classification of the 2017 and 2018 images using the 

RE linear regression model resulted in low overall accuracies (i.e., 57% and 24%, 

respectively). When multiple variables were combined to generate the best fit model for 

the 2018 image, the R
2
 value increased from 0.028 to 0.3562 and classification accuracy 

increased from 24% to 81%. Additionally, four out of the five classified 2017 images that 

were classified using training samples had higher accuracies than the 57% achieved from 

the RE linear regression model.  

Our finding is consistent with past studies that showed increase in classification 

accuracy when multiple predictor variables are utilized (Meentemeyer et al. 2008; Rumpf 

et al. 2010; Ju et al. 2014; Smigaj et al. 2019). For example, Rumpf et al. (2010) obtained 

97% classification accuracy for differentiating infected beets from healthy plants by 

using a multivariate stepwise regression model. This model was established by using red-

edge parameters with vegetation indices related to physiological parameters. Analysis 

confirmed the multivariate model performed better than the single-variable linear model 

on the early identification and discrimination of plant disease on sugar beet leaves. More 

recently, Smigaj et al. (2019) had combined hyperspectral and LiDAR data to detect red 

band needle blight in Lodgepole Pine (Pinus contorta) trees. Stepwise analysis identified 

Enhanced Vegetation Index, Normalized Green Red Difference Index, percentage of 

ground returns, and the height-normalized 50th percentile to be the best predictors for 

changes in the canopy as a result of red band needle blight. An accuracy of 96.7 was 

achieved using a combination of these variables. Moreover, these studies support the 



37 

 

observations we made in our study that the application of multiple variables can 

potentially lead to better classification results. 

 

6.3 Spread and Increase in PCS 

The change detection results showed that in addition to the increase in PCS of 32 

ha of Bishop Pine forest, the 2017 classification identified 55 ha of new Bishop Pine 

forest with varying PCS. The majority of these newly identified areas were located along 

the edges of existing Bishop Pine forests. There is the possibility that these newly 

identified forest areas are in fact not new but areas in which existing forests had 

expanded. As trees grew during the four year period, areas that were once classified in 

the mask class in 2013 are now occupied by tree canopy in 2017. In some areas, it is 

possible that as the trees grew so did the spread of pitch canker. Scale is another potential 

explanation for the observed increase in Bishop Pine forest. In the 2013 image 

classification, many of the isolated trees were too small to discern but were detected in 

the 2017 image classification. This was the case for four of the sampled trees in this 

study. These particular trees were faintly visible in the 2013 image resulting in 

oversegmention and misclassification during image classification. In the 2017 image, 

these trees became much more discernible and were segmented and classified correctly. 

This spatial display potentially points to the phenomena of spatial autocorrelation, 

i.e., features close to one another exhibit more similar values than those further apart. 
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Future spatial autocorrelation analysis could reveal if and where clustering of PCS is 

occurring and provide more insight to the spread of the pitch canker disease. 

 

7. Conclusion 

The Bishop Pine (Pinus muricata) tree is a rare and endemic tree species located 

along the coastal regions of California. Tree mortality has affected different parts of the 

species range, which threatens the persistence of the species as a whole (Baguskas et al. 

2014). This study improved methods for detecting tree mortality in a coastal forest by 

analyzing fine-spatial resolution imagery using advance remote sensing techniques. Three 

high-resolution images were classified with object-based remote sensing methods for 

semi-automated detection and classification of pitch canker infected Bishop Pine trees; 

followed by a GIS change detection method to quantify the spread and severity of the 

disease.  

The results suggest that object-based classification of UAS data offers greater 

accuracy for pitch canker severity classification than satellite data. The classification of 

the finer resolution UAS imagery resulted in an overall accuracy of 81% compared to the 

68.3% obtained for the WV2 2017 imagery. Predictive modeling using multiple predictor 

variables also lead to higher accuracy results. A multiple linear regression model 

combining three MS bands, one vegetation index, and two physical tree attributes, was 

applied to the UAS imagery and achieved an overall accuracy of 81%. In contrast, the RE 

linear regression model achieved an overall accuracy of 24%. The GIS change detection 
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method was successful in identifying 32 ha of overlapping trees from the 2013 and 2017 

images as increasing in disease severity and 55 ha as newly classified trees with varying 

disease severities. 

Further research can improve our understanding of the spatial pattern of pitch 

canker induced tree mortality at PRNS. Monitoring efforts can be improved by utilizing 

accurate up-to-date assessments of tree healthy and remote sensing data. Additional 

research is also needed to identify environmental variables influencing disease 

distribution. Curvature and the topographic wetness index (TWI) were the environmental 

geomorphic variables used in this study and neither had a significant influence on disease 

presence. Collecting data on temperature extremes and duration of fog cover as well as 

performing spatial autocorrelation analysis could also provide greater insight into disease 

dispersal. Furthermore, continuous monitoring of the study sites presented in this study 

may yield a better understanding of the spatial distribution of pitch canker. 

There are numerous factors that can contribute to the increase in severity and 

distribution of pitch canker seen at Point Reyes National Seashore, e.g., drought, insect 

infestation, proximity to infected trees, environmental factors as well as interactions 

between these various variables. A greater understanding of the spatial patterns of pitch 

canker is crucial for the National Park Service and other land management agencies. The 

successful application of remote sensing technologies to accurately assess the intensity 

and extent of pitch canker can allow these agencies to properly manage forests for 

biodiversity protection and fire risk management. 
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