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A B S T R A C T   

Understanding potential disparities in community compliance with the Safe Drinking Water Act (SDWA) will 
help managers effectively and fairly allocate funding for improving drinking water systems. Environmental 
justice is experienced at the scale of the individual, the household, the neighborhood, or the water service 
provider and is too fine-grained a scale for spatial analysis with most available state datasets. This research 
represents an effort to ascertain which spatial analysis method selected to estimate the demographics of water 
service areas best supports environmental justice analysis at the state scale. To understand whether there are 
disparities in compliance with the SDWA, this study specifically investigated the relationship between socio
economic status and race as well as other water system variables, and violations to the SDWA of community 
water system (CWS) in the state of Pennsylvania. The sociodemographic characteristics of the water systems were 
estimated using three different CWS-level spatial analysis methods (areal weighting, dasymetric mapping, areal 
interpolation) and a county-level spatial analysis method. Negative binomial regression was used to evaluate 
whether these sociodemographic characteristics, and other water system variables, including size of the water 
system, ownership, and water source, are associated with SDWA violations. This research demonstrates that the 
spatial analysis method selected for an environmental justice study can affect the results and conclusions of the 
research. Evidence that SDWA violations were associated with race or socioeconomic status was not found; 
however, this study did determine that small CWSs (<200 connections) and CWSs serving rural areas are less 
likely to be compliant with the SDWA.   

1. Introduction 

1.1. Background – Safe Drinking Water Act 

Environmental justice research that investigates potential disparities 
in unequal access to safe drinking water based on race and/or socio
economic status (SES) has increased since 2014 as a result of the 
drinking water crisis in Flint, Michigan. Due to the corrosive quality of 
its new water source and the lack of appropriate corrosion control, the 
lead levels in Flint’s drinking water spiked, resulting in an increase in 
blood lead levels of the community’s children (Campbell, Greenberg, 
Mankikar, & Ross, 2016). Several case studies have concluded that 
environmental injustice played a role in authorities’ slow response to 
evaluate and address this crisis (Butler, Scammell, & Benson, 2016; 

Campbell et al., 2016). These studies highlight the need to conduct 
environmental justice analyses of public utility water systems’ compli
ance with the Safe Drinking Water Act (SDWA). While compliance with 
the SDWA does not ensure safe drinking water quality as there may be 
contaminants detected that are not currently regulated, it does suggest 
safer drinking water, and data on health-based and non-health-based 
violations to the SDWA is the best nationally available public data to 
use to predict the drinking water quality of public water systems. 

Under the SDWA, enacted in 1974 (amended in 1986, reauthorized 
in 1996) the U.S. Environmental Protection Agency (EPA) is required to 
identify and develop rules related to harmful contaminants in drinking 
water distributed by public water systems (PWSs) (U.S. EPA, 2017a).1 

Although the SDWA was enacted to protect drinking water in the U.S., it 
does not guarantee Americans clean water (Balazs, 2011). The EPA 
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regulates certain contaminants, including nitrate, arsenic, and lead, for 
which it has determined a maximum contaminant level goal (MCLG) 
where there would be no expected health risk over a lifetime of exposure 
on a daily basis (U.S. EPA, 2004; 2017b). For most contaminants, the 
EPA then sets the maximum contaminant level (MCL), the determined 
enforceable limit of the contaminant allowed to be distributed by PWSs, 
as close to the MCLG as possible, taking treatment cost into consider
ation (U.S. EPA, 2004; 2017b). If there is no reliable method of detecting 
contaminants, or if the EPA does not consider it economically or tech
nically feasible to set an MCL, a required treatment technique is then 
used by the PWS (U.S. EPA, 2004; 2017b). The EPA is required to 
reassess its regulations of all contaminants under the SDWA every six 
years; however, it has not established a regulatory standard for a new 
contaminant in approximately 20 years (Environmental Working Group, 
2017; Fedinick, Wu, Pandithartne, & Olson, 2017). 

If a PWS does not comply with an existing SDWA standard, it is cited 
for a violation. Not all SDWA violations indicate a contaminant was 
found above its MCL; a violation could mean an administrative SDWA 
rule was violated (U.S. EPA, 2017c). Health-based violations consist of 
exceedances of MCLs, exceedances of disinfectant concentration 
thresholds, and improper water treatment (U.S. EPA, 2017c). 
Non-health-based violations include failure to monitor regularly or 
report results on-time, failure to notify the public that there is a serious 
health problem with drinking water, and failure to publish annual 
consumer confidence reports (U.S. EPA, 2017c). Even seemingly 
non-health-based violations, such as failure to monitor and report, can 
mask an underlying health-based issue (Fedinick et al., 2017; Wallsten & 
Kosec, 2008). Thus, it is important to look at disparities across all SDWA 
violations. 

Quantitative environmental justice studies have examined the rela
tionship between sociodemographic factors and socioeconomic status 
(SES) of communities and nitrate and arsenic concentrations as in
dicators of drinking water quality. A recent nationwide environmental 
justice study on nitrate concentrations by community water system 
(CWS) found that the percentage of the population served by a CWS that 
is Hispanic was positively correlated with nitrate concentrations, while 
the percentage of low-income residents and black residents were both 
negatively correlated (Schaider, Swetschinski, Campbell, & Rudel, 
2019). Balazs, Morello-Frosch, Hubbard, and Ray (2011) compared ni
trate concentrations at points of entry into each CWS in California’s San 
Joaquin Valley to the sociodemographic characteristics of the popula
tion potentially exposed, and found that CWSs with less than 200 service 
connections had greater nitrate concentrations in communities with a 
higher Latino population (Balazs et al., 2011). Balazs, Morello-Frosch, 
Hubbard, and Ray (2012) found that smaller CWSs in San Joaquin 
Valley serving areas with higher home ownership rates (an indication of 
economic security) had lower arsenic concentrations, and the inverse 
was true for CWSs serving more people of color (Balazs et al., 2012). 

Recent studies have analyzed national trends in drinking water vi
olations with respect to environmental justice indicators. The Environ
mental Justice Coalition (EJC) assessed disparities in access to safe 
drinking water at the county level in California between 1995 and 2000, 
and found that counties with the greatest number of drinking water 
violations had the highest percentage of people of color, people living 
below the poverty line, and Latinos (all calculated separately) (The 
Environmental Justice Coalition for Water, 2005). Switzer and Teodoro 
(2017) investigated the impact of race, ethnicity, and SES on compliance 
with the SDWA on a national scale, with a focus on health-based regu
lations. They concluded that the racial and ethnic composition of the 
community served by a PWS is a predictor of drinking water quality, and 
that violations to the SDWA in low-SES communities are strongly pre
dicted by the percentage of the population that is black and Hispanic 
(Switzer & Teodoro, 2017). Allaire, Wu, and Lall (2018) analyzed spatial 
and temporal trends in Safe Drinking Water Information System 
(SDWIS) data by county and by CWS between 1982 and 2015 at the 
national level, assigning each CWS census information of the county in 

which it was located. They found rural CWSs were more likely to have 
violations, and that CWSs serving low-income communities of color 
were more likely to receive total coliform violations (Allaire et al., 
2018). McDonald and Jones (2018) also conducted a national environ
mental justice study on SDWA violations at the county level 
(2011–2015) and found that initial violations were more prevalent in 
smaller systems, and that systems serving communities of color with low 
SES had a greater chance of initial and repeat violations. 

1.2. Spatial environmental justice analysis 

Analyzing the sociodemographic characteristics and SES of pop
ulations potentially exposed to environmental harms is critical to envi
ronmental justice and health equity research. Geographic Information 
Systems (GIS) are useful for quantitative environmental justice analysis 
(Holifield, Chakraborty, & Walker, 2017). Typically, geospatial envi
ronmental justice analysis identifies an environmental “bad” (e.g., a 
polluting facility) or an environmental “good” (e.g., a park) and evalu
ates the sociodemographic and socioeconomic characteristics of the 
community affected by the target feature, often with the use of a defined 
buffer of impact (Chakraborty, Maantay, & Brender, 2011). Since these 
discrete or continuous areas do not usually coincide spatially with 
available geospatial population data, researchers must identify a 
method that will best estimate the characteristics of a population within 
the exposure area (Holifield et al., 2017). Commonly used methods in 
the related literature include areal weighting, dasymetric mapping and 
areal interpolation described below: 

� Areal weighting: This method assigns a proportion of the popula
tion to the affected area relative to the percent of the geographic unit 
within the discrete affected area boundary (e.g., a buffer) (Holifield 
et al., 2017). This method assumes equal distribution of the popu
lation within the census tracts.  
� Dasymetric mapping: This advanced analysis technique utilizes 

additional ancillary data, such as land use or zoning data, to better 
estimate the population distribution within a given geographic unit 
(Mennis, 2003). 
� Areal Interpolation: This geostatistical kriging-based method cre

ates a continuous prediction surface from polygon data that can be 
reaggregated to new polygons (Krivoruchko, Gribov, & Krause, 
2011). 

Previous research on drinking water disparities did not include 
complete datasets of the digital boundaries of the water systems studied 
so these standard methods of estimating populations within a given 
buffer could not be applied. Cory and Rahman (2009) averaged the 
contaminant levels of arsenic for every PWS within a given zip code, and 
then compared that average concentration of arsenic to the de
mographic characteristics of the zip code. Balazs et al. (2011) compared 
two techniques of estimating the demographics of the population served 
by each CWS for their analysis of nitrate contamination in drinking 
water in San Joaquin Valley, California. The first method used areal 
weighting with the use of digitized CWS boundaries, the second included 
averaging the demographic characteristics of every census block that 
contained a CWS source (well field, surface water intake, and treatment 
plants). The second approach was found to be adequate and utilized for 
their analysis. Given the range of methods currently used and important 
implications for CWSs, there is a critical need to determine whether the 
spatial analysis method selected for an environmental justice study on 
safe drinking water can affect the results and conclusions of the research. 

This study is an environmental justice analysis of water system 
compliance with the SDWA and focuses on the following research 
questions:  

1) Are there socioeconomic disparities in CWS compliance with the 
SDWA? Are there more violations (total and health-based) in low- 

Z. Statman-Weil et al.                                                                                                                                                                                                                          



Applied Geography 121 (2020) 102264

3

income communities, communities with a higher proportion of 
people of color, and/or rural communities?  

2) How do the results differ depending on the spatial analysis method 
used to estimate the demographic characteristics of the population 
served by the CWS?  

3) Are there additional characteristics of the CWS such as size of the 
water system, public versus private ownership, and water source 
parameters that influence compliance with the SDWA? 

This is the first time multiple spatial analysis methods have been 
used through the entirety of an environmental justice study on SDWA 
compliance in order to assess how the analysis method affects the 
results. 

1.3. Environmental justice parameters 

Percent below poverty line will be used as the proxy variable for SES 
in this study. The percentage of non-Hispanic whites within the popu
lation is the second demographic variable, one used frequently in 
environmental justice studies (Balazs et al., 2011; Cory & Rahman, 
2009). The type of CWS ownership (i.e., private vs. public) may have an 
effect on SDWA compliance and has been included in several previous 
studies (Allaire et al., 2018; Balazs et al., 2012, 2011; Konisky & Teo
doro, 2016; Wallsten & Kosec, 2008). Publicly owned public water 
systems have been found to have more violations than privately owned 
public water systems (Konisky & Teodoro, 2016). However, one study 
that focused primarily on the effects of ownership on the number of 
SDWA violations found ownership type did not affect compliance 
(Wallsten & Kosec, 2008). Smaller systems generally have less technical 
managerial and financial capacity (TMF) for proper regulation and 
enforcement of the SDWA, and thus system size is a key variable (Na
tional Research Council, 1997). As noted above, Balazs et al. (2011) 
found evidence of environmental injustice in small systems with less 
than 200 connections but not in larger systems. Other studies have 
included size of the water system as well (Konisky & Teodoro, 2016). 
SDWA violations or drinking water contamination have also been found 
to be higher in rural areas compared to urban areas (Allaire et al., 2018). 

Water source parameters, both groundwater vs. surface water and 
purchased vs. unpurchased water, are also included variables in drink
ing water quality studies (Allaire et al., 2018; Balazs et al., 2011, 2012; 
Switzer & Teodoro, 2017). Other covariates related to the characteristics 
of the CWS will also be factored into the statistical model based on the 
literature and are described in greater detail in the methods section. 

2. Study area 

Pennsylvania was selected as the study area as it is one of a few states 
that have publicly available PWS or CWS boundary data. It is the sixth 
most populous state in the U.S. (12.8 million people) and ranks ninth in 
population density (286 people/square mile). The two largest cities are 
Philadelphia (1.6 million people) and Pittsburgh (305,000 people) 
(Cedar Lake Ventures Inc., 2018). 

Pennsylvania has a higher percentage white population than the rest 
of the U.S., with 77.7% white non-Hispanic, approximately 15% higher 
than the U.S. as a whole. The largest minority populations are black 
(11.0%) and Hispanic (6.1%), both smaller than their respective pro
portions in the U.S. Rural Pennsylvania is heavily white non-Hispanic 
(Cedar Lake Ventures Inc., 2018). The mean income in Pennsylvania is 
similar to the mean in the U.S., at $54.9 thousand annually (Cedar Lake 
Ventures Inc., 2018). The percentage of households on food stamps 
(13.0%) ranks Pennsylvania 26th in the U.S. in this poverty metric 
(Cedar Lake Ventures Inc., 2018). 

3. Methods 

3.1. Description of data 

The source of each dataset is identified below, followed by a 
description of any data processing that was conducted, including the 
criteria used for selection or categorization. 

The Pennsylvania Department of Environmental Protection (PA DEP) 
has produced a near-complete GIS shapefile of the active state CWS 
boundaries (Pennsylvania Department of Environmental Protection, 
2017).2 The dataset contains 1853 CWS boundaries, which represent 
over 90% of the states’ CWS boundaries. Review of the dataset deter
mined that 20 of the water systems were either not CWSs or were 
inactive. These were removed and 1833 active CWS boundaries 
remained. This PWS data was used to identify the area served by each 
CWS. 

SDWA violation data was queried and downloaded from the online 
SDWIS database (U.S. Environmental Protection Agency, 2018) for 
January 1, 2012 to December 31, 2016, a five-year period, to assess the 
operation of the CWSs. Following the methods of Allaire et al. (2018), 
the time period in which a violation occurred was defined by the 
compliance period begin date. It is assumed that a violation did not 
occur within the time period of interest if a CWS did not have a violation 
entry in the SDWIS database for the years selected. Since the PA DEP 
geospatial public water supply boundary data only includes active CWS 
data, “CWS” was selected as the PWS Type and “Active” as the activity 
status. These data were processed to produce a dataset that includes the 
number of total violations and number of health-based violations within 
the time period of interest. The data were then joined to the PA DEP CWS 
boundary shapefile, and all CWSs that did not have any corresponding 
SDWIS violation data were identified as having zero violations. 

The population served by each CWS was estimated based on census 
tract-level data using a 2017 geodatabase containing census tract and 
county boundaries from the U.S. Census Bureau (U.S. Census Bureau, 
2017). Census tracts were selected as the unit of analysis as data asso
ciated with census tracts reflect a larger number of survey respondents 
and a smaller margin of error than census block groups, and thus provide 
a more reliable estimate of the population (Ogneva-Himmelberger & 
Huang, 2015). 

Population and demographic characteristics of the Pennsylvania 
census tracts and counties from the U.S. Census Bureau were also 
included in the analysis (U.S. Census Bureau, 2016a). Total tract pop
ulation, percent population below the poverty level and percent people 
of color (including the Hispanic population) were compiled from the 
2011–2015 American Community Survey (ACS) 5-Year Estimates. The 
census tract data contained 3218 tracts, and the county data contained 
67 counties (U.S. Census Bureau, 2017). A threshold of >0.24 km2 was 
used for census tract size to allow for application of the areal interpo
lation method, resulting in 3166 census tracts. 

Delineated urban areas in Pennsylvania were also obtained from the 
U.S. Census Bureau (U.S. Census Bureau, 2016b). For the CWS-level 
analysis, a CWS was classified as urban when 50% or more of its ser
vice area was located within an urban area; otherwise it was classified as 
rural. The percentage of the CWS within an urban area was determined 
to be the best available method to estimate whether the water system 
was primarily urban or rural. 754 of the CWSs were classified as urban 
and 1079 were classified as rural. 

Alternatively, counties were classified as rural or urban based on the 
percentage of the population living within a rural or urban area in a 
given county according the U.S. Census. The classification method was 

2 Although the data is titled “Public Water Supplier’s (PWS) Service Areas,” 
the metadata states that all non-transient noncommunity water systems and 
transient noncommunity water systems are excluded (Pennsylvania Department 
of Environmental Protection, 2017), leaving only community water systems. 
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different for the county-level analysis compared to the CWS-level anal
ysis because the county rural/urban demographics are readily available 
from the U.S. Census Bureau (U.S. Census Bureau, 2010). If 50% or more 
of the county’s population was defined as urban, then the county was 
classified as urban. Of the 67 counties, 37 were classified as urban and 
30 were classified as rural. 

Land cover data obtained from the U.S. Geological Survey helped 
estimate the population served by each water system. A shapefile 
identifying residential land was created by selecting the land classified 
in the 2011 National Land Cover Database (NLCD) (U.S. Geological 
Survey, 2011) as developed at low, medium, and high intensity, which 

consists of areas with 20%–100% impervious surface land cover ac
cording to the NLCD metadata. These three NLCD classes are all defined 
as residential in the NLCD; they include single-family housing units, and 
areas where people live and work at a high density, such as apartments, 
row houses, and commercial and industrial areas. Some studies have 
used the same classification techniques to identify residential land cover 
(Ogneva-Himmelberger & Huang, 2015). 

3.2. Spatial environmental justice analysis 

Four different spatial analysis methods were selected to estimate the 

Fig. 1. Visual display of the steps of areal interpolation: A) percent below the poverty line by census tract; B) continuous prediction surface of the percent below the 
poverty line; and C) estimates of percent below the poverty line reaggregated to the CWS boundaries. 
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demographic and socioeconomic characteristics of the population 
served by each CWS. These estimates were then compared to the total 
violations and health-based violations of each CWS. The first three 
methods were areal weighting, dasymetric mapping, and areal inter
polation (the “CWS-level analyses”). The last method used the de
mographic characteristics of the county in which the CWS is located (the 
“county-level analysis”). The city or cities in which the CWS is located 
were not used to estimate demographics of the community served 
because like counties, the city boundary does not necessarily match up 
with the water system boundary and Pennsylvania’s PWS are missing a 
“city served” designation in the SDWIS database. 

Areal Weighting: An areal weighting model was developed in GIS 
(ArcMap 10.5.1) to estimate the population served by a given CWS 
based on the proportion of the intersecting census tracts that lie within 
the CWS boundary. Several of the smaller CWSs had estimates of zero 
people served (n ¼ 82), and these were excluded from the analysis. 

Dasymetric Mapping: The areal weighting model was modified 
such that the population served by each CWS was estimated based on the 
proportion of the intersecting census tracts’ residential land within the 
CWS boundary, based on NLCD data. Dasymetric mapping is the most 
detailed and provides a more realistic distribution of the population 
(Holifield et al., 2017); it is used as the standard for comparison in this 
paper. CWSs where the model estimated zero people served were 
excluded from the analysis (n ¼ 84). 

Areal Interpolation: The population of a given characteristic within 
each CWS was estimated using the binomial areal kriging model, which 
is designed to be used for rate data. Using the visual variography tools 
available in the Geostatistical Wizard (ArcMap 10.5.1), a kriging inter
polation model was fit to a plot of covariance versus distance. A Stable 
model was used for the percent below the poverty line data and a 
Spherical model was used for the percent people of color data. The 
model parameters, such as lattice spacing, lag size, and number of lags, 
were adjusted with the goal of achieving a standardized root mean 
square as close to 1.0 as possible. The result was a continuous prediction 
surface of the population characteristics, including percentage of the 
population below the poverty line. This data was then reaggregated to 
the CWS boundaries. Fig. 1 shows a visual display of the steps of this 
method. 

County-Level Analysis: The last method assigned the percent peo
ple of color and the percent below the poverty line of the surrounding 
county to each CWS. Although some CWSs serve more than one county, 
the primary one was determined based on the county listed in the SDWIS 
database. The rural or urban classification of the county was also 
assigned to the CWS. 

Since CWSs had to be excluded from the areal weighting and dasy
metric models, these same CWSs were excluded from all four analyses to 
make the results comparable. A total of 1694 CWSs were assessed. 

3.3. Statistical analysis 

A negative binomial regression model was used to determine which 
characteristics of the water system and population served by the water 
system best predicted the number of violations. A univariate linear 
regression analysis was first conducted to evaluate each variable across 
the spatial analysis methods. Since the dependent variable is a count of 
SDWA violations, a Poisson model was determined to be more appro
priate than a linear regression model (Switzer & Teodoro, 2017; Wall
sten & Kosec, 2008). However, a Poisson model requires the variance 
and the mean of the dependent variable to be equal, and the variance of 
the SDWA violations is much greater than the mean of the violations, a 
situation referred to as overdispersion (NCSS Documentation, 2018; 
Switzer & Teodoro, 2017; Wallsten & Kosec, 2008). Thus, negative 
binomial regression, a model similar to Poisson which allows for over
dispersion, was used (NCSS Documentation, 2018; Switzer & Teodoro, 
2017; Wallsten & Kosec, 2008). Negative binomial regression was 
applied to all four spatial analysis results for both health-based 

violations and total violations. 
Characteristics of water systems are often included in environmental 

justice studies on drinking water quality as they are considered poten
tially confounding variables, but also can provide insight into the op
erations of CWSs. The covariates used in the model were selected based 
on the related literature. For this study the following variables were 
included in the regression model: 1) percent below the poverty line; 2) 
percent non-Hispanic white; 3) rural/urban; 4) private/public; 5) pur
chased/not purchased; 6) size of the system (simplified to include sys
tems with less than 200 and more than 200 connections); and 7) 
groundwater/surface water source. The multicollinearity was tested 
using the variance inflation factor (VIF), which confirmed that none of 
the selected variables were strongly correlated (VIF less than 5), and all 
could be included in the regression model. 

4. Results 

4.1. Spatial analysis 

The spatial distribution of the number of total and health-based 
SDWA violations by CWS for Pennsylvania is shown in the Supplemen
tary Material, Fig. S1 and the summary statistics of this data are shown 
in Table 1. There is no clear pattern in the spatial distribution of the total 
SDWA violations by CWS or health-based SDWA violations (Fig. S1). 

4.1.1. CWS-level analyses 
The summary statistics of the relevant SES and sociodemographic 

data by census tract in Pennsylvania are shown in the Supplementary 
Material, Table S1, and their spatial distribution is shown in the Sup
plementary Material, Fig. S2. There is no clear pattern in the spatial 
distribution of the population below the poverty line by census tract 
(Fig. S2A). However, census tracts with a higher percentage people of 
color appear to be located in the larger urban centers, specifically 
Philadelphia and Pittsburgh (Fig. S2B). 

The results of the three CWS-level spatial analysis methods for 
assessing percent below the poverty line by CWS are shown in Fig. 2A–C, 
and the results of these three methods for assessing percent people of 
color by CWS are shown in Fig. 3A–C. At the state scale, the spatial 
distribution of the percent below the poverty line by CWS does not 
appear to vary by spatial analysis method (Fig. 2A–C, Table 3). How
ever, the percent people of color by CWS estimated using areal inter
polation (Fig. 3C) appears to vary spatially compared to the results of the 
areal weighting and dasymetric mapping methods (Fig. 3A and B, 
respectively). The CWSs in the Philadelphia area in Fig. 3A and B have a 
higher percentage people of color than that shown in Fig. 3C. There is 
also slight variation in the CWSs surrounding Pittsburgh. The mean 
values of the percentage below the poverty line and people of color are 
relatively similar across CWS-level spatial analysis methods (Table 2). 

4.1.2. County-level analysis 
The summary statistics of the SES and sociodemographic data by 

county in Pennsylvania are shown in Supplementary Material, Table S1, 
and their spatial distribution is shown in Supplementary Material, 
Fig. S3. There is not a clear spatial pattern in the percent below the 
poverty line by county, but Fig. S3B shows the highest percentages of 
people of color reside in the counties surrounding Philadelphia. 

Table 1 
Violations per CWS in Pennsylvania (2012–2016).  

Statistics All Health-based 

Min 0 0 
Max 804 41 
Mean 24.4 0.75 
Median 8 0 
Standard Deviation (SD) 55.2 2.1  
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4.1.3. Summary statistics by CWSs 
The summary statistics for sociodemographic and SES variables by 

CWS and the categorical variables by CWS are presented in Tables 2 and 
3, respectively. The summary statistics of the continuous variables 
(percent below the poverty line and percent people of color) are rela
tively similar across the three CWS-level analyses but there are stark 
differences between these three analyses and the county-level analysis 
(e.g., percent below the poverty line maximum). 

Scatter plot matrices of the percentage of people below the poverty 
line and the percentage people of color as estimated by the four spatial 
analysis methods are shown in Supplementary Materials, Figs. S4 and S5 

respectively, along with the Pearson correlation coefficient between 
each set of estimates. Similar to the summary statistics, the county-level 
estimates are the least correlated with the estimates of the other three 
spatial analysis methods. The estimates from areal weighting and 
dasymetric mapping are the most correlated. 

4.2. Statistical analysis 

The results of unadjusted univariate regressions for each parameter 
for total and health-based SDWA violations are shown in Supplementary 
Materials, Tables S2 and S3, respectively. Results show the rural variable 

Fig. 2. Percent below the poverty line by CWS calculated using different spatial analysis methods: A) areal weighting; B) dasymetric mapping; and C) areal 
interpolation. 
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is significantly related to total SDWA violations (p < 0.05) in the CWS- 
level and County-level methods (Table S2). However, for percent below 
poverty line and percent people of color, differences were observed 
depending on selected spatial analysis method (Table S2). The CWS 
characteristic variable coefficients (e.g., size and water source) are 
identical across all spatial analysis methods since the data are the same 
and only one variable is being assessed. Purchased water, small size of 
CWS, and groundwater source are all significantly related to total SDWA 
violations (Table S2). Groundwater source was the only variable that 
was significantly related to health-based SDWA violations (p < 0.001) 
(Table S3). 

In the areal weighting and dasymetric mapping negative binomial 
regression models, an increase in the percent of the population below 
the poverty line resulted in a decrease in the number of total SDWA 
violations (p < 0.05), while no significant effect was found in the other 
total violation models (Table 4). The percent below the poverty line did 
not have a significant effect on the number of health-based violations in 
the CWS-level models but did have a significant negative effect in the 
county-level model (p < 0.05) (Table 5). The percent people of color had 
no significant effect in any of the models (Tables 4 and 5). 

The effects of the CWS characteristic variables only varied slightly by 
model. Small CWSs had more total violations in all the models (p <

Fig. 3. Percent people of color by CWS calculated using different spatial analysis methods: A) areal weighting; B) dasymetric mapping; and C) areal interpolation. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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0.001) but did not have a significant relationship with health-based 
violations. While the groundwater variable was not significant in the 
models determining total violations, all models showed a negative 
relationship between CWSs with groundwater as a source and health- 
based violations (p < 0.001). All models found that CWSs with pur
chased water were more compliant in terms of both total and health- 
based SDWA violations (p < 0.001). The owner of the CWS (public vs. 
private) was not significant in any model (p > 0.05). 

Rural CWSs were found to be less compliant across all models, except 
for the county-level model predicting health-based SDWA violations 
(Tables 4 and 5). Fig. 4 shows the mean total and health-based SDWA 
violations in the CWS-level analyses and the county-level analysis in 
rural and urban systems (only CWSs included in the regression analyses 
are factored into the figure). The county-level method estimated a 
slightly higher average of total SDWA violations (~33 violations/system 
compared to ~29 violations/system). The difference between rural and 

urban CWSs is more pronounced for the total SDWA violations 
compared to the health-based violations (Fig. 4). On average, a rural 
CWS experienced approximately 10–13 more total SDWA violations in 
the time period of interest than an urban CWS. 

5. Discussion 

5.1. Regression model comparison 

The results of the SES and sociodemographic data coefficients show 
that the spatial analysis method selected can directly affect the con
clusions of an environmental justice study at the state scale. The results 
of the regression models with regard to the percent below the poverty 
line were different for both sets of models predicting total and health- 
based SDWA violations. In the total SDWA violations analysis, only 
the areal weighting and dasymetric mapping methods found percent 
below the poverty line to have a significant effect (p < 0.05), while the 
county-level model found this variable had a significant negative effect 
on health-based SDWA violations (p < 0.05). These findings accord with 
recent environmental justice research that has also demonstrated that 
the spatial analysis method can have a direct impact on the outcome of a 
study (Maantay & Maroko, 2009; Ogneva-Himmelberger & Huang, 
2015). 

Areal weighting and dasymetric mapping had consistent regression 
results across all spatial analysis methods in terms of significance and 
direction. While dasymetric mapping is considered a more robust 
approach since it relies on more detailed datasets, this shows that at the 
state scale, utilizing more fine scaled data necessary for dasymetric 
mapping may be unnecessary for environmental justice studies. 

The results of the regression models for both total and health-based 
SDWA violations were relatively similar across all four spatial analysis 
methods with regard to the CWS characteristics including rural vs urban, 
public vs private, size, and water source, due to the fact that all of the 
data other than the rural/urban variable came directly from the SDWIS 
database and do not vary across methods. The county-level analysis 
identified substantially fewer rural CWSs, likely because the method of 
categorizing a county as rural or urban was based on the proportion of 
people in the county living in rural areas whereas the CWS-level analysis 
was based on the proportion of a CWS within a U.S. Census Bureau- 
designated urban area. Since fewer people live in rural areas, a county 
had to be considerably rural to have a greater rural than urban popu
lation and thus be classified as rural. Despite this discrepancy, Fig. 4 and 

Table 2 
Summary statistics by CWS for continuous variables.  

Statistics Method 

Areal 
Weighting 

Dasymetric 
Mapping 

Areal 
Interpolation 

County- 
level 

Percent Below the Poverty Line 
Min 0.00 0.00 0.00 6.00 
Max 100 100 99.3 26.4 
Mean 2.75 3.65 3.87 12.4 
SD 4.57 4.24 3.46 3.17 
Percent People of Color 
Min 0.00 0.00 0.00 2.40 
Max 100 71.6 76.3 64.2 
Mean 7.10 8.00 8.82 12.9 
SD 10.7 10.1 10.3 8.27  

Table 3 
Count of categorical variables.  

Variable Yes No 

Rural 960 733 
Public 723 970 
Purchased 207 1486 
Small size 951 742 
Groundwater Source 1295 398  

Table 4 
Determinants of total SDWA violations.  

Variable Method 

Areal Weighting Dasymetric Mapping Areal Interpolation County-level 

Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

Percent Below the Poverty Line � 0.018* 0.009 � 0.018* 0.009 � 0.019 0.011 � 0.005 0.011 
Percent People of Color 0.002 0.004 0.005 0.004 0.003 0.004 � 0.009 0.005 
Rurala 0.261*** 0.074 0.285*** 0.074 0.281*** 0.074 0.359*** 0.089 
Publicb 0.166 0.091 0.163 0.090 0.146 0.090 0.026 0.091 
Purchasedc � 0.947*** 0.126 � 0.944*** 0.126 � 0.942*** 0.126 � 0.862*** 0.126 
Small sizee 0.390*** 0.094 0.407*** 0.093 0.410*** 0.093 0.407*** 0.092 
Groundwater Sourced � 0.165 0.109 � 0.143 0.109 � 0.157 0.108 � 0.128 0.107 
Constant 2.962*** 0.133 2.916*** 0.135 2.955*** 0.135 3.141*** 0.204 
AIC 13,537.57 13,537.33 13,538.50 13,521.32 
Log-Likelihood � 6780.8 � 6760.7 � 6761.2 � 6752.7 
Pearson chi2 3601.73 3526.81 3548.39 3503.2 

Coeff. ¼ Coefficients. 
SE ¼ Standard Error. 
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001. 

a Reference group ¼ urban. 
b Reference group ¼ private. 
c Reference group ¼ unpurchased. 
d Reference group ¼ large size. 
e Reference group ¼ surface water source. 
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the regression results (Tables 4 and 5) demonstrate that rural CWSs tend 
to have more total violations than urban CWSs. However, the relation
ship was not significant in the county-level model predicting health- 
based violations, possibly due to the different method of estimating 
rural CWSs. 

The differences between the results of the county-level analysis 
compared to the CWS-level analyses were not surprising. CWSs may 
cover more than one county, and large portions of a county’s area, and 
thus some of its population, may be factored into analysis of that CWS 
even when far outside the boundaries of a system. This situation is not 

unique to Pennsylvania and should be evaluated for other states across 
the U.S. as CWSs can cover more than one county, and many counties 
have areas not covered by CWSs. 

5.2. Environmental justice analysis 

This study’s finding that poorer CWSs had fewer total SDWA viola
tions across two of the models, and fewer health-based SDWA violations 
in one of the models is surprising, but not unusual. A national study that 
investigated violations by every CWS between 1997 and 2003 found that 

Table 5 
Determinants of health-based SDWA violations.  

Variable Method 

Areal Weighting Dasymetric Mapping Areal Interpolation County-level 

Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

Percent Below the Poverty Line � 0.016 0.015 � 0.016 0.015 � 0.010 0.017 � 0.046* 0.018 
Percent People of Color 0.007 0.006 0.009 0.006 0.007 0.006 0.006 0.008 
Rurala 0.301* 0.121 0.311** 0.120 0.303* 0.120 0.277 0.145 
Publicb 0.012 0.146 0.019 0.146 � 0.004 0.146 0.071 0.147 
Purchasedc � 0.809*** 0.205 � 0.803*** 0.205 � 0.802*** 0.205 � 0.836*** 0.205 
Small sizee 0.192 0.153 0.209 0.151 0.202 0.151 0.274 0.150 
Groundwater Sourced � 1.077*** 0.172 � 1.060*** 0.172 � 1.071*** 0.172 � 1.127*** 0.171 
Constant 0.257 0.212 0.210 0.214 0.234 0.213 0.806* 0.327 
AIC 3635.18 3634.37 3635.85 3633.22 
Log-Likelihood � 1809.6 � 1809.2 � 1809.9 � 1808.6 
Pearson chi2 2259.45 2244.87 2230.4 2199.46 

Coeff. ¼ Coefficients. 
SE ¼ Standard Error. 
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001. 

a Reference group ¼ urban. 
b Reference group ¼ private. 
c Reference group ¼ unpurchased. 
d Reference group ¼ large size. 
e Reference group ¼ surface water source. 

Fig. 4. Mean total and health-based SDWA violations in rural and urban CWSs as estimated by the CWS-level analyses and the county-level analysis.  
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wealthier counties had more SDWA violations. That national study used 
income as a proxy for wealth (Wallsten & Kosec, 2008). Shaider et al. 
(2019) conducted a national environmental justice study on nitrate in 
drinking water, and found lower income residents associated with lower 
nitrate concentrations. A state-specific study found per capita income 
and average house value had no statistically significant effect on Ari
zona’s implementation of a 2002 arsenic standard (Cory & Rahman, 
2009). 

This study showed no relationship between the percentage of people 
of color and total or health-based SDWA violations. Previous studies also 
did not find that a greater percentage of people of color necessarily 
resulted in more violations or in an increased concentrations of con
taminants. In the study of Arizona’s implementation of the new arsenic 
standard, Cory and Rahman (2009) did not find evidence that commu
nities of color experienced inequitable implementation of the new 
standard. While Balazs et al. (2012) found that communities of color had 
greater odds of having an MCL violation, they did not find that these 
CWSs had higher arsenic concentrations. Balazs et al. (2011) also did not 
find a statistically significant relationship between race/ethnicity and 
nitrate levels in CWSs with more than 200 connections in San Joaquin 
Valley, California, although they did within communities of less than 
200 connections. In sum, this study did not find conclusive evidence of 
environmental injustice in CWS violations by race or SES in Pennsyl
vania, as was the case in several related studies at the national and state 
scale. 

Different water sources are susceptible to different types of con
taminants and problems. Systems that rely on groundwater have fewer 
regulatory requirements compared to systems that utilize surface water 
(Allaire et al., 2018). This study found groundwater supply had a 
negative correlation with health-based violations, which is consistent 
with some recent research on SDWA health-based violations on the 
national scale (Switzer & Teodoro, 2017). However, groundwater sup
ply has also been found to positively predict SDWA violations (Konisky 
& Teodoro, 2016). CWSs relying on purchased water were found to be 
more compliant across the board. The association of purchased water 
and fewer SDWA violations is supported by other studies’ findings 
(Allaire et al., 2018; Switzer & Teodoro, 2017). 

A significant finding of this study is that rural CWSs are likely to have 
more SDWA violations, and small CWSs are also likely to have more total 
violations. This is not surprising, as rural communities have a smaller 
customer base to generate the necessary revenue for proper treatment 
technology and maintenance and to hire experienced utility managers 
(National Research Council, 1997). These findings are consistent with 
Allaire et al. (2018), who found that rural areas had more violations than 
urban areas, and concluded that small, rural CWSs relying on surface 
water sources had the highest predicted probability of an SDWA viola
tion. Wallsten and Kosec (2008) found that small privately-owned PWSs 
have fewer MCL health violations and more non-health-based violations 
indicating that the health-based violations of small systems may be 
masked by the lack of monitoring and reporting. 

The distribution of population within Pennsylvania is unusual, which 
may explain the lack of a finding of environmental injustice. Rural areas 
in Pennsylvania tend to have a higher percentage of white individuals 
compared to states such as California (Cedar Lake Ventures Inc., 2018), 
where studies have found higher rates of violations in communities of 
color (Balazs et al., 2012; The Environmental Justice Coalition for 
Water, 2005). This may reflect the distribution of diversity in California, 
where many communities of color are rural (Cedar Lake Ventures Inc., 
2018). The PA DEP defines its own Environmental Justice areas as 
census tracts with more than 30 percent people of color and over 20% of 
the population “in poverty” (Pennsylvania Department of Environ
mental Protection, 2019) These areas tend to be clustered in urban areas 
such as Philadelphia and Pittsburgh, rather than in rural areas, which 
have a much higher rate of violations (Allaire et al., 2018). Overall, 
Pennsylvania also has a high percentage of non-Hispanic white residents 
compared to other states (Cedar Lake Ventures Inc., 2018), and the 

chance of missing significant trends increases. Conducting the study in a 
single state limits the ability to analyze some of the results outside of the 
context of Pennsylvania. 

There are additional potential limitations associated with this anal
ysis. Compliance with the SDWA does not equate with safe drinking 
water quality, so this study cannot be considered an environmental 
justice analysis of access to safe drinking water. This is true for the many 
reasons discussed in the introduction, including that the EPA is slow to 
regulate new contaminants (Fedinick et al., 2017). The undereporting of 
violations within the SDWIS database could also have an impact on the 
count of total and health-based violations (Balazs, 2011; U.S. EPA’s 
Office of Enforcement and Compliance Assurance, 2013). A 2011 report 
from the U.S. Government Accountability Office found that of 14 states 
audited in 2009, 26% of health-based violations and 84% of the moni
toring violations were not reported accurately or at all (U.S. Government 
Accountability Office, 2011). Another potential limitation is that this 
analysis does not include areas served by private wells, which are more 
prevalent in rural areas and do not undergo routine monitoring for 
SDWA violations. This study also excluded over 100 CWSs as a result of 
the limitations of the different spatial analysis methods, most of which 
were small and rural, which could affect the results. There could be 
other confounders that are not included in this analysis. 

Environmental justice analysis will differ based on the place and 
circumstance under analysis, as well as the scale and method of analysis. 
Baden, Noonan, and Turaga (2007) found that environmental justice 
research decisions regarding scale and scope can affect the findings. The 
scale (CWS) and scope (state-level) of this study could have had an 
impact on the results and conclusions. For example, in California race 
and rurality often coincide, reinforcing environmental justice concerns. 
In contrast, Pennsylvania’s rural areas are overwhelmingly Caucasian 
while populations of color are highly urbanized. This may serve to mask 
or counteract potential environmental justice concerns associated with 
rural living. Thus, in other regions, rural communities of color may be at 
even greater risk. 

5.3. Future research 

Two primary findings of this study can help inform future research. 
First, the results of environmental justice studies can vary depending on 
the spatial analysis methods used to estimate the sociodemographic 
characteristics of communities of interest. This has important implica
tions. When the CWS boundary data exists, it is best to use the most 
comprehensive method, which in this case would be dasymetric map
ping. However, as so few states produce CWS boundary data, the county- 
level analysis method is sometimes the only option. For future national- 
scale county-level studies, it would be prudent to include a more robust 
CWS-level spatial analysis, such as dasymetric mapping, in a state with 
available CWS boundary GIS data for comparison. 

A second, significant finding is that rural CWSs tend to experience 
more SDWA violations, and small systems experience more total SDWA 
violations. Balazs and Ray’s (2014) Drinking Water Disparities Frame
work identifies actors and systems that perpetuate social inequalities in 
drinking water and addresses the challenges faced by small rural water 
systems. They argue that funding at the regional level is needed to 
support TMF capacity and help CWSs develop engineering and financial 
strategies for infrastructure improvements and SDWA compliance 
(Balazs & Lubell, 2014). Future studies should focus on how regional 
agencies or organizations can best and most efficiently support CWSs, 
and policy makers need to take seriously the need for external funding, 
particularly in small rural communities and/or low-income commu
nities of color. Statewide studies could be beneficial in identifying po
tential disparities and the areas most in need of external support. This 
could assist in providing the most efficient allocation of funding to the 
areas in most need. Case studies of regions that have successfully 
reduced their violations could provide a beneficial blueprint for similar 
CWSs. 
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6. Conclusion 

This study demonstrates that the spatial analysis method used in an 
environmental justice study can significantly affect the outcome and 
interpretations and offers new insights. For both total and health-based 
SDWA violations, the results varied regarding the impact of SES and 
sociodemographic variables across the four spatial analysis methods. 
Dasymetric mapping is the most robust method and best reflects the 
population’s distribution (Holifield et al., 2017); it was thus used as the 
basis of comparison for other methods. While the county-level model 
was comparable to the dasymetric mapping model across many vari
ables, it differed in the key environmental justice-related categories. 
Areal weighting was found to have results consistent with dasymetric 
mapping in terms of significance and coefficient direction, indicating it 
could be a decent alternative spatial analysis method if the more 
detailed data required for the dasymetric approach is not available. It is 
important to be aware of the potential effects of the spatial analysis 
method applied; community-level variations may be masked if 
county-level data is used. 

This study did not find conclusive evidence that SDWA violations 
were associated with race or SES. The research did, however, identify a 
disparity in SDWA compliance in rural vs urban and small vs large 
communities. Rural CWSs in Pennsylvania are likely to have more total 
and health-based SDWA violations than their urban counterparts, a 
discrepancy which was also found to be true for health-based violations 
on a national scale (Allaire et al., 2018). It is possible that the fact that 
poorer communities of color are centered in urban areas in Pennsylvania 
is the reason that evidence of environmental injustice was not found. 

Disparities in many states go beyond the rural vs urban divide, 
however, as other studies have found evidence of environmental injus
tice by race and SES with regard to drinking water quality (Balazs et al., 
2011, 2012). Qualitative assessments of the recent events in Flint, 
Michigan also demonstrate the inequalities faced by poorer commu
nities of color in drinking water quality, compliance and enforcement 
(Butler et al., 2016). Prior studies analyzed in conjunction with this one 
show that disparities in drinking water quality and compliance need to 
be addressed through research and increased funding at the local, state 
and national level. 
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