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Object-based image analysis is used to perform crater detection.  High-resolution Lunar 

Reconnaissance Orbiter Narrow Angle Camera images are used with a resolution of one 

meter per pixel.  This CDA detects craters ranging from one meter to one kilometer in 

radius.  The algorithm is implemented in eCognition, ArcMap, and Python, using 

segmentation and object-oriented classification procedures iterating over the scale 

parameter and focusing on different levels of brightness.  The segmentation uses high 

values for the shape and compactness parameters, resulting in a preference for the nearly 

circular shapes associated with impact craters.  A three-tiered classification scheme is 

used which takes advantage of paired patterns of light and shadow.  Although many areas 

in the image are determined to be illuminated or shadowed, the pairing process filters out 

those most likely to be craters.  A quality rate of 60.11%, true detection rate of 68.88%, 

and false detection rate of 17.48% are achieved. 
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1.  Introduction 

The objective of this research is to detect impact craters on the Moon from Lunar 

Reconnaissance Orbiter (LRO) data using object-based image analysis (OBIA).  Many 

methods have been employed to automatically detect impact craters.  Although OBIA is 

increasingly used in terrestrial remote sensing applications, it is quite underrepresented in 

the crater detection algorithm (CDA) literature.  Therefore, this research presents a 

unique opportunity to explore the applicability of OBIA to crater detection.  

The Earth remains the primary focus of remote sensing.  However, data collection 

is not limited to Earth.  Many extraterrestrial bodies, such as the Moon and Mars, are 

subject to an increasing amount of scientific inquiry.  As the number of missions 

exploring the Solar System continues to grow, the volume of data returned from these 

missions has grown astronomically, such that manual data analysis is no longer feasible 

(1, 10, 9, 40, 7).  If limited to manual analysis, the remote sensing community would only 

be able to utilize a minute proportion of the available data (10).  As a result, the 

development of automatic procedures for analyzing such data is crucial (35, 10, 9, 40, 7).  

Mission-acquired data can include panchromatic, multispectral, or hyperspectral imagery, 

laser altimetry, and synthetic aperture radar (28, 6).  The analysis of mission-acquired 

data involves the transformation of raw data into knowledge, usually in the form of a 

thematic map (10).  This is achieved through classification, which constitutes a 

significant field of study within lunar and planetary science (28).  Closely related is the 

detection of a particular feature of interest, which includes both recognition in the form of 

localization and dimensionality and classification as either feature of interest or non-

feature of interest (1, 20). 

Collisions between meteoroids, asteroids, or comets with lunar or planetary 

surfaces occur despite the astronomical distances that characterize the Solar System (8, 

3).  These collisions create impact craters, which are concave bowl-shaped topographic 

depressions (42, 1, 37, 8, 2, 17).  Craters can be classified, from smallest to largest, as 

microcraters/pits, small/simple craters, large/complex craters, and multiring basins (42, 
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28, 8, 31, 40).  Microcraters/pits, which are sub-centimeter in scale, are formed by 

impacts of micrometeoroids or cosmic dust grains (8).  Small/simple craters, which tend 

to have diameters up to several kilometers, display the well-known bowl shape and 

represent the most common type of observed craters (42, 1, 8, 2, 30, 40, 7).  In imagery, 

these craters tend to display a characteristic pair of highlight and shadow crescents, 

resulting from the angle of solar illumination, elevated rims, and inner depression (42, 1, 

38, 2).  Large/complex craters, which tend to have diameters of tens to hundreds of 

kilometers, display flat floors, central peaks, and terraced rims (42, 35, 8, 2, 30, 

7).  Multiring basins, which are significantly larger than large/complex craters, display 

concentric rings (42, 8, 30). 

Crater density, quantity, distribution, morphology, and degradation often present 

the only viable method for remote estimation of surface age.  Craters also reveal 

information about historical impact rate, surface geology, stratigraphy, weathering, and 

other processes (15, 35, 1, 26, 27, 22, 37, 38, 11, 28, 6, 8, 9, 13, 2, 31, 23, 40, 7, 12, 

32).  Each of these investigations requires large amounts of data, and thus the manual 

detection of craters proves impractical (35, 1, 38, 9, 2, 23, 12).  Therefore, automation is 

needed to achieve statistically meaningful results (38, 26, 9, 2).  Due to their relative 

abundance, small craters are natural targets for such approaches, and the automation of 

their detection is the focus of this study. 

Automated CDAs are a subject of intensive study within lunar and planetary 

science, but research has faced a variety of challenges (35, 1, 38, 23, 7, 32, 28, 9, 

29).  The range of observed crater sizes spans multiple orders of magnitude, so CDAs 

must be capable of analyzing imagery or DEMs at multiple scales (4, 20, 9, 

2).  Additionally, crater morphology increases in complexity with increasing diameter 

(42, 35).  Rims, the most prominent features of craters, experience erosion 

(42).  Therefore, CDAs must be capable of detecting crater rims ranging from fresh and 

sharp to old and blurry (42, 20, 11, 28, 9, 2, 31, 40, 7, 12).  Craters frequently overlap, 

which increases the analytical demand on CDAs (11, 9, 2).  Lunar and planetary surfaces 
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display heterogeneous morphology, which further complicates the separation of craters 

from their background (9, 40, 12).  Imagery is obtained at varying spatial resolution and 

under varying solar illumination, which can result in the same crater appearing differently 

in separate images (42, 20, 9, 2, 40, 12).  Creating a CDA capable of serving all 

applications is complicated by the varying quality that each necessitates (29). 

No currently existing CDA is capable of generating results of sufficient quality to 

be utilized for all applications on all lunar or planetary surfaces (1, 20, 2, 30).  Despite 

the wide range of techniques, all CDAs inherently rely on pattern recognition and some 

form of classification (7).  As of 2014, 140 CDA articles had been published.  Of these 

140 articles, 59% are imagery-based; 28% are DEM-based; 11% are both imagery- and 

DEM-based; and 2% are based on other data types (31, 32).  Edge detection, Hough 

transform, and machine learning represent the most common techniques utilized in CDAs 

(31).  The following paragraphs will discuss a technique rarely applied to CDAs in more 

detail, because it will be used in this research. 

The last decade and a half witnessed the development of satellite systems capable 

of producing very high-resolution imagery (39), with spatial resolutions less than or equal 

to one meter (33).  While pixel-based classification is effective on small- and medium-

resolution imagery, it is less effective on high-resolution imagery (10, 14, 39, 19, 33, 45), 

which presents an overabundance of details.  This increases intra-class and decreases 

inter-class spectral heterogeneity and reduces the utility of spectral information to 

independently distinguish among classes, necessitating the additional use of ancillary 

data to perform effective classification (39, 5, 33, 24, 25).  Whereas pixel-based 

classification only utilizes spectral characteristics of individual pixels, object-based 

classification utilizes various characteristics of individual objects (39, 33, 34, 24, 45).  

Performing image analysis with objects instead of pixels allows for the utilization of 

more data characteristics and more complicated procedures.  Object-based image analysis 

allows the analyst to easily adjust parameters and repeat the analysis in order to optimize 

the result (39).  Therefore, the recent technological advancement in satellite systems 
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instigated a transformation of the basic entity of image analysis from pixels to objects and 

an expansion of the generally utilized data beyond solely spectral information.  Even 

though spectral information is the most frequently utilized data in image classification, 

the addition of ancillary data improves classification performance (5).  Whereas pixel-

based classification can produce results plagued by the salt-and-pepper effect, object-

based classification can reduce the noise that frequently characterizes high spatial 

resolution data (33).  The result of an object-based classification more closely resembles 

that of visual interpretation, mimicking the human recognition process (18, 39, 33, 34, 

45). 

The procedure of OBIA involves pre-processing, segmentation, object-based 

classification, post-classification, and accuracy assessment (14, 39, 24).  Pre-processing 

can include radiometric, geometric, and atmospheric corrections, as well as registration, 

orthorectification, and lidar interpolation (39).  Segmentation partitions the image into 

non-overlapping objects, or groups of spatially adjacent and homogeneous pixels, and 

determines the spectral, geometric, contextual, textural, conceptual, morphologic, and 

temporal attributes of the objects (14, 18, 39, 5, 3, 21, 24).  Segmentation relies on certain 

parameters, including weight, scale, shape, and compactness.  Since segmentation quality 

depends on parameter selection, some researchers use trial-and-error while others use 

machine learning to optimize these parameters.  Object-based classification then groups 

the objects into classes based on these attributes (14, 39, 3, 24).  Segmentation and 

object-based classification are closely related, in that the quality of the latter directly 

depends on the quality of the former (14, 39, 44).  OBIA can produce results in the form 

of raster or vector data, specifically polygons, which allows for the utilization of GIS 

operations and simplifies post-processing (39, 33).  Post-classification can involve 

manual confirmation of results and elimination of errors, field inspection, or reference 

source comparison, while accuracy assessment quantifies the quality of the result (39). 

 Table 1 presents the only four instances of object-based classification that have 

occurred in the CDA literature (4, 43, 10, 41).  The first study utilizes a DEM derived 
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from data acquired by the Mars Orbiter Laser Altimeter on the Mars Global Surveyor 

spacecraft, which has an approximate resolution of 500 meters per pixel.  This study 

achieves a quality rate of 61% and a true detection rate of 74% (4).  The second study 

utilizes lunar imagery obtained by the Ultraviolet/Visible Camera on the Clementine 

satellite, which has an approximate resolution of 100 meters per pixel.  Although this 

study does not report a quality rate or true detection rate, it validates its results through 

the use of a formula that determines surface age from the number of craters and then 

comparison of this formula-derived age with a reference age (43).  The third study 

utilizes a DEM derived from data acquired by the Mars Orbiter Laser Altimeter on the 

Mars Global Surveyor spacecraft, which has an approximate resolution of 500 meters per 

pixel.  This study achieves overall accuracies ranging from 40% to 90%, depending on 

the test area and classifier utilized (10).  The fourth study utilizes a DEM derived from 

lunar data acquired by the CCD stereo camera on the Chang’E-1 satellite, which has an 

approximate resolution of 500 meters per pixel.  This study achieves overall accuracies 

ranging from 65% to 78%, depending on the test area and classifier utilized (41). 

 

Table 1: Literature Comparison.  Instances and characteristics of OBIA in CDA 

literature. 
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The resolution of the data utilized by the CDA determines the minimum crater 

size identified.  While the resolution of the data utilized in the above four studies ranges 

from 100 to 500 meters per pixel, the resolution of the data utilized in this CDA is one 

meter per pixel.  Whereas the minimum crater size detected by the above four studies is 

approximately one kilometer in radius, the minimum crater size detected by this CDA is 

approximately one meter in radius. 
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2.  Study Area 

The study area for this project is on the Moon.  Although this CDA could be 

applied to any LROC NAC image, the area used for the accuracy assessment is a subset 

of the image with product name M114227172LC and is located at -11.1 degrees latitude 

and 318.4 degrees longitude.  The area is 5.7 kilometers by 4.4 kilometers, which 

constitutes a total area of 25 square kilometers.  This particular area was selected over 

other possible areas because it contains a wide range of crater sizes. 

 The lunar and planetary science community theorizes that the Moon was formed 

approximately 4.5 billion years ago as a result of a collision between a Mars-sized 

impactor and Earth.  With a radius of approximately 1,737 kilometers, the Moon displays 

the following average values: albedo (0.113), crustal density (2.85 grams per cubic 

centimeter), surface temperature (277 Kelvin), and surface pressure (3*10-15 bars).  The 

Moon’s atmosphere, which consists of helium, argon, sodium, and potassium, is so 

tenuous that it resembles a vacuum and was partially formed by the continual 

bombardment of impactors over billions of years.  Although volcanism and tectonics 

acted on the Moon, most activity ceased approximately 3 billion years ago.  The only 

active processes affecting the Moon are impact cratering and tidally- and thermally-

induced moonquakes.   

The lunar surface can be classified into two groups: the bright highlands (covering 

80% of the surface) and the dark maria (covering 16% of the surface).  The acquisition of 

382 kilograms of lunar rock samples by the Apollo and Luna missions allowed scientists 

to determine absolute ages via radioisotope dating.  While the highlands are 

approximately 4.4 billion years old, the maria are approximately 3.5 billion years old.  

The regolith, which was created by the continual bombardment of impactors over billions 

of years, is approximately fifteen meters deep in the highlands and approximately two to 

eight meters deep in the maria.  The maria are younger than the highlands because they 

constitute subsurface material subsequently brought to the surface via volcanism.  

Although volcanic features (e.g., basins and mountains) and tectonic features (e.g., 
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grabens and horsts) are visible on the surface, impact craters represent the most dominant 

feature on the surface (42, 11, 8). 

 The lunar surface is nearly saturated with craters; however, the highlands are 

more heavily cratered (8, 17).  Considering that the highlands were determined to be 

significantly older via radioisotope dating (8), this evidence supports the theory that 

crater density and surface age display a direct relationship.  The historic cratering rate can 

be determined from the radioisotope-dated samples and the crater size-frequency 

distribution (8).  The historic cratering rate indicates that the Moon experienced two 

periods of heightened cratering rates, referred to as the early bombardment era 

(approximately 4.4 billion years ago) and the late heavy bombardment era (approximately 

3.8 to 3.9 billion years ago) (11, 8).  Lunar impact craters range in size from micrometers 

to hundreds of kilometers, with a transition size between simple and complex craters of 

approximately twelve kilometers (42, 8).  Large craters tend to concentrate in the 

highlands, and small craters tend to concentrate in the maria (17). 
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3.  Methods 

3.1.  Data 

The data utilized in this project were acquired by the Lunar Reconnaissance 

Orbiter Camera (LROC) and are available to the public for free.  The LRO spacecraft is 

currently in a polar orbit around the Moon at altitudes ranging from 50 to 200 

kilometers.  Its mission objectives include assessment of potential landing sites and the 

creation of accurate, high-resolution thematic maps, both of which are assisted by 

CDAs.  LROC contains two Narrow Angle Cameras (NACs).  They are narrow-angle 

push-broom imaging cameras that capture panchromatic imagery (400 to 750 

nanometers) at an approximate resolution of 0.5 meters per pixel over a 5-kilometer 

swath (36, 16). 
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3.2.  Pre-Processing 

 To transform the raw data into a format appropriate for use in the eCognition-

based CDA, georeferencing and standardization are performed in 

ArcMap.  Georeferencing applies a coordinate system to the data so that accuracy 

assessment can be reliably performed and output data can be used in other 

applications.  Standardization is necessary to account for the variety of factors that can 

influence the appearance of the image.  These include the differing reflectivity of varying 

soil types and the changing angle and intensity of the sun from image to image. 

 Images are georeferenced to the Geographic Coordinate System 

GCS_Moon_2000 with Datum D_Moon_2000 within ArcMap.  The four vertices of the 

coverage shapefiles (which are already georeferenced to the specified coordinate system) 

are used as control points in the georeferencing process for the calibrated imagery.  Once 

the four control points are generated, the image is rectified using nearest neighbor and a 

first-order polynomial transformation. 

 Due to the vast coverage of each LROC NAC image, a single image is determined 

sufficient to be the input for this CDA.  Multiple images could be mosaicked together, 

and the algorithm applied to the result.  However, this would introduce additional 

complexity and could obscure the results of the novel methods. 

Standardization of the data is performed so that the inputs to the CDA are 

consistent regardless of the source image.  Therefore, identical classification thresholds 

can be used.  The standardization step operates under the assumption that the radiance 

values of the LROC NAC images follow a normal distribution.  This step transforms the 

normal distribution into a standardized normal distribution with a mean of 0 and a 

standard deviation of 100 by using Map Algebra.  These values are used instead of the 

standard normal, mean of 0 and standard deviation of 1, because the eCognition 

segmentation algorithm functions differently for different standard deviations. 
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3.3.  Crater Detection Algorithm 

 The small/simple crater class is distinguished from non-craters in an image by a 

distinctive pattern of dark and light crescents.  Figure 1a shows an example of a small 

crater featuring this pattern.  These crescents occur from oblique illumination by the sun 

across a well-defined crater ridge.  The side of the crater further from the sun is 

illuminated more brightly than the surrounding soil due to a more direct angle, while the 

other side sits in the shadow.  This specific brightness profile can be exploited by object-

based image analysis for crater detection. 

 Segmentation is applied to the image in eCognition.  This splits the image into a 

collection of objects, the borders of which delineate different clusters of pixels with 

similar properties.  In this instance, the standardized brightness is used as the defining 

property.  Shape and compactness parameters, which in eCognition denote the preference 

for roundness over homogeneity of segments, are both set to maximum since the shapes 

this CDA aims to detect are near circular.  This includes craters resulting from oblique 

impacts, which are somewhat elliptical.  Because the segmentation process relies on a 

relative weighting scheme between shape and homogeneity, it is robust to these 

irregularities, and such craters do not pose an issue.  The scale parameter can vary the 

average size of these segments, which can adjust the result to be more appropriate for 

different sizes of craters.  To make the CDA applicable to a large range of crater sizes, 

iteration is performed over different values of this parameter.  Because of the rotational 

symmetry of segmentation in eCognition, this CDA is independent of solar illumination 

angle.  However, because of this symmetry a near circular peak can theoretically be 

detected as a crater in this CDA.  Such features are relatively rare on the Moon, and the 

study area did not include them, but this could be a source of error in other areas.  Figure 

1b shows the result of segmentation at a single scale on the example area. 
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Figure 1: Segmentation.  A crater is taken through the processing steps in order to 

demonstrate the detection process in eCognition. 

(a) One crater is visible and surrounded by noise. 

(b) The area from (a) is segmented, with each side of the crater constituting one segment. 

 

 For every segmentation, each of which corresponds to a particular scale 

parameter, a three-step classification scheme determines which segments depict a 

crater.  On the first level of classification, segments are catalogued as Light, Medium, or 

Dark.  Medium encompasses objects with standardized brightness values within one 

standard deviation from the mean.  Light and Dark denote objects with standardized 

brightness values at least one standard deviation greater than or less than the mean, 

respectively.  Figure 2a shows the example area classified at level one.  The actual crater 

is identified as Light and Dark, but there are also Dark regions that do not correspond to 

craters. 
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Light or Dark segments are further analyzed in level two.  If a Light segment is 

within a specified distance from a Dark segment, then that segment is labeled as Light 

Crater.  An analogous process classifies Dark Crater.  This parity of Light and Dark 

segments is the key distinguishing characteristic of a crater and lends the CDA much of 

its efficacy.  Figure 2b shows the example area classified in level two.  The non-crater 

Dark segments of level one have been eliminated, as they are too distant from the Light 

segment.  However, the crater remains classified as two separate classes. 

In the classification of level three, Light Crater and Dark Crater segments are 

combined into Crater, while all other segments are combined into No Crater.  Table 2 

shows the rules used in eCognition to define these classes.  Figure 2c shows the example 

area classified in level three.  The crater is effectively identified and unified. 

 

Table 2: Class Description. 
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Figure 2: Classification at Level One, Two, and Three.  

(a) Level 1.  The crater is classified as Dark or Light, while most of the area is classified 

as Medium.  However, there are areas classified as Dark that are not craters. 

(b) Level 2.  The light and dark sides of the crater are classified as Light Crater and 

Dark Crater, respectively.  The segments previously classified as Dark are now 

Unclassified, due to the distance scaling (Table 3). 

(c) Level 3.  The final classification result for the example crater.  Segments classified as 

No Crater or Crater are merged to produce this final result. 
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 At level two, a particular distance is used as a threshold.  This value determines 

how close Light and Dark segments need to be to each other in order to be classified as 

Light Crater or Dark Crater.  In eCognition, the distance between two objects is a 

centroid distance.  Since iteration is performed over the scale parameter, the distance 

between adjacent objects will vary throughout the process.  Therefore, this threshold 

distance needs to vary along with the scale parameter throughout the iteration.  The 

distances between segments constituting actual craters of various sizes are measured 

manually.  Appropriate threshold values are determined to maximize true positives while 

minimizing false negatives.  Table 3 shows the value pairs used. 

 

Table 3: Distance Scaling.  Distance between segments at each scale parameter. 
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 The OBIA algorithm in eCognition is shown in Figure 3.  Using this algorithm, 

eCognition produces one output map for each scale parameter.  These maps are each 

exported as color-coded TIFF files.  Then, a python script performs a weighted overlay 

process in ArcMap combining the 100 layers into a single result.  Different weights are 

used for outputs produced using different scale parameters due to the relative importance 

of small craters, which are only detected with lower scale parameters.  These weights are 

manually optimized in order to produce similar crater detection performance over the 

whole range of crater sizes this CDA aims to detect.  Table 4 shows the weights used for 

each scale parameter. 

 

Table 4: Scale Coefficient.  Coefficient assigned to the result of each scale parameter in 

weighted overlay process. 
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Figure 3: Algorithm Schematic.  The steps taken in eCognition to produce 100 

classification results that are later input into the weighted overlay process. 
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The final result of this algorithm is a single raster map, which assigns a value to 

each pixel corresponding to the likelihood that pixel is part of a crater.  Figures 4 and 5 

show these results at differing levels of zoom.  Figure 5 is the full output of the algorithm 

on the entire study area and is the foundation of the accuracy assessment to follow. 

 

 

Figure 4: Selected Results.  While Figure 2c presents the final result for one scale 

parameter value, the process depicted in Figure 3 outputs 100 classification results, with 

one at each scale parameter.  This map provides a close-up of the result of the weighted 

overlay process, which outputs a raster referred to as Crater Score, which indicates the 

likelihood of a pixel being a crater. 
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Figure 5: Accuracy Assessment Results. 
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4.  Results 

        Although the CDA community lacks a standard method of assessing the quality of 

results (23), certain metrics frequently occur in the literature.  In order to assess the 

quality of results, ground truth is necessary (1, 4, 28).  Although some researchers utilize 

existing crater catalogs as ground truth, others create their own ground truth by manually 

identifying craters within their study area (4, 20, 37, 28).  True detection rate (TDR) and 

false detection rate (FDR) are frequently used and can be calculated using true positive 

(TP), false negative (FN), and false positive (FP) as TDR=TP/(TP+FN) and 

FDR=FP/(TP+FP) (15, 1, 4, 20, 22, 38, 29, 23, 40).  As TDR increases, so does FDR 

(20).  Another frequently used metric is quality rate (QR), which describes overall 

performance and can be calculated as QR=TP/(TP+FP+FN) (15, 4, 38, 29, 40).  When 

used alone, any of the above metrics can be misleading.  Therefore, it is recommended to 

provide several accuracy metrics in order to assess multiple aspects of the result 

(7).  TDR, FDR, and QR are all calculated for this study. 

For accuracy assessment, craters with a radius less than 1.5 meters are not 

considered, even though the CDA does detect craters smaller than this.  The upper bound 

in size is determined by the size of the image, since no mosaicking was done.  However, 

if mosaicking were done, then the CDA would theoretically be capable of detecting larger 

craters.  Any craters that are not mostly contained within the study area are not 

considered in the accuracy assessment.  If a detected crater is over 1.5 times the size of 

the actual crater, then the excess portion is considered a false positive and the actual 

portion is considered a true positive.  Each false positive is a contiguous area.  While 

some false positives are spatially contiguous with true positives, other false positives are 

not.  Regardless of whether they are the former or the latter case, they are each counted as 

one false positive.  Any Crater Score above zero indicates a detected crater.  If the 

majority of a crater is detected, it counts as a true positive.  Otherwise, it counts as a false 

negative.  True negatives are inherently uncountable. 
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Existing crater catalogs do not contain craters as small as the craters this CDA 

detects, and no other ground truth exists.  Therefore, this study area’s ground truth is 

established by manually picking craters in ArcMap (Table 5).  All craters in the study 

area that conform to the above criteria are used, facilitating the determination of true 

positives, false positives, and false negatives.  The quality rate is calculated to be 

60.11%.  The true detection rate is 68.88%, and the false detection rate is 17.48% (Table 

6).  This is a successful result for a new CDA, and the accuracy is similar to other studies 

that utilize DEMs (Table 1).  Since the LROC NAC imagery provides information at a 

much higher resolution, this CDA is capable of detecting small, previously undetected 

craters.  Therefore, this is an improvement on previous OBIA CDAs. 

 

Table 5: Accuracy Assessment Count.  Number of true positives, false negatives, and 

false positives in study area. 

 

 

Table 6: Accuracy Assessment Metrics.  Quality rate, true detection rate, and false 

detection rate for study area. 
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5.  Conclusion 

        This study uses object-based image analysis in ArcMap, eCognition, and Python 

to create a crater detection algorithm applied to the Moon.  A novel technique is 

developed, utilizing the distinctive appearance of adjacent light and dark crescents to 

identify craters.  The iteration of this technique over multiple scale parameters facilitates 

the detection of a range of crater sizes from roughly one meter to one kilometer.  The 

quality rating of 60.11% is comparable to other results in the literature (Table 1), but this 

project makes a significant step forward by pioneering this method for high-resolution 

imagery. 

        Future work could focus on optimizing the weights associated with each scale 

parameter used in the weighted overlay step.  It could also utilize mosaicking to extend 

the algorithm to detect craters larger than the size of the input images.  More localized 

image standardization would eliminate many of the false positives present due to soil 

heterogeneity.  Each of these refinements would improve the performance of this 

CDA.  As high-resolution imagery becomes available on other lunar and planetary 

bodies, this technique could be applied.  With these refinements to performance and 

additional applications, a further step could be taken towards achieving a universal CDA. 
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