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Incident solar radiation (insolation) passing through the forest canopy to the ground 

surface is either absorbed or scattered. This phenomenon is known as attenuation and is 

measured in forest ecology using the extinction coefficient (K). The effect of K on 

understory photosynthetically available radiation (PAR) and microclimate may be 

associated with plant species diversity, as distinct species and communities have unique 

habitat requirements. The objective of his study is to model insolation and canopy 

structure to observe effects of predictors representative of K on understory plant 

biodiversity using remotely sensed and botanical field data. 

We used two taxonomic diversity indexes (Menhinick’s and Simpson) to describe the 

surveyed plant community in a natural temperate montane forest, modeling the index 

values at the plot level as response variables. Independent variables included localized 

area incident solar radiation estimated using a solar model, LiDAR derived canopy height 

model, effective leaf area index (LAI) estimates derived from multi-spectral imagery and 

canopy strata metrics derived from LiDAR point cloud data. Considering the impact of 

atmospheric components above the canopy layer and an assumption that incident short-

wave solar radiation to Earth’s vegetated surfaces is primarily absorbed in the canopy 

layer, we used a multiple linear model to predict canopy metrics controlling the sub-

canopy surface radiant flux to develop the hypothesis that 1.) canopy structural variability 

is associated with the biodiversity of stand plant species through habitat partitioning and,  

2.) a prediction model can be developed to validate this relationship spatially. The 

available data indicated many and varied correlations between predictor and response 

variables as well as a statistically valid linear model comprising the canopy relief, the 

texture, and vegetation density with understory plant diversity. When analyzed for spatial 

autocorrelation, the predicted biodiversity data exhibited non-random spatial continuity. 
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Introduction 

 

The disciplines of spatial ecology and biogeography maintain similar theories that 

attempt to explain the variation of species distribution across spatial scales and latitudinal 

gradients. This spatial variability and its link to ecological and biogeochemical processes 

are considered to be fundamental to biological inquiry and relating phenomena across 

scales a central research problem in biology (Levin 1992). The spatial analysis of biota 

often focuses on either species distribution or species biodiversity within the context of 

community, landscape, ecosystem and genetic systems associated with spatial scales such 

as species populations. For plant species, the discipline of phytogeography combines 

botany and geography to investigate the spatial distributions of plant species and their 

communities. An historical example is given in Alexander von Humboldt and Aimé 

Jacques Bonpland’s “Essai sur la géographie des plantes”, published in 1807. In this 

work they considered the variation of several ecological gradients to put forth a theory of 

the geographical repartition of species, visualizing these concepts in portraiture – the 

“Tableau physique des Andes et pays voisins” a  prominent work among them – and 

contributing significantly to the formation of modern biogeography (von Humboldt & 

Bonpland 1807).  

Biodiversity measures describe species and trait richness and evenness on different bases 

and scales including taxonomic or genetic (trait based) and habitat or community and 

ecosystem. Alpha biodiversity (α-diversity), or species diversity in habitats at a local 

scale, is influenced both by the number of types of habitat and ecological processes 

(Dufour et al. 2006). It has been shown that the rates of such processes are affected by the 

spatial configuration of the environment, and a hypothesis will be made that α-diversity is 

influenced by two aspects of environmental heterogeneity: the range of environmental 

conditions (i.e. environmental variability) influencing the number of types of habitats 

available and the spatial configuration of those habitats (Dufour et al. 2006). Vegetation 

biodiversity in forest ecosystems has been positively correlated with productivity and 

resiliency in forest stands due to increased spatial, temporal and biogeochemical 

efficiencies in site utilization (Schulze 2005, Zhang et al. 2012, Ishii et al. 2004). In 

addition to higher productivity, the resultant plant communities tend to be less vulnerable 

to pathogens, wildfire and wind related disturbances and better adapt to environmental 

change (Schneider et al. 2017). 

The spatial variability of biodiversity on larger scales has been characterized by 

biogeographers with respect to latitudinal gradients. Meta-studies indicate that 

mechanisms such as solar energy, climate and area-specific processes are likely to 
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contribute to species diversity on many spatial scales (Hillenbrand 2004) and within the 

vertical and horizontal structural variation in forest landscapes. The asymmetric 

competition for light in the canopy is noted in another meta-study as a key negative 

influence on overall productivity (Ali 2019). 

A forest’s structure is a landscape scale terrestrial ecosystem including canopy flora, soil 

type and depth, subsurface biota and hydrology. The canopy is of considerable interest to 

researchers because of its functional interface with the atmosphere with respect to carbon, 

water and energy exchange and being the site of primary production (Pan et al. 2013). On 

a global scale, forest canopies support approximately 40% of extant species, 10% of 

which are predicted to be canopy specialists (Ozanne et al. 2003). Attributable to the 

complex three-dimensional structure of the canopy affording niche diversification and 

vertical stratification, approximately 10% of all vascular plants are epiphytic canopy 

species (Ozanne et al. 2003). 

Landscape scale studies have observed stand structure as a biodiversity indicator from 

ecosystem data repositories with no adjoining fieldwork. Gao et al. (2014) observed that 

mature stands with a stratified canopy had the highest plant species diversity of the 26 

stand structure types and across the nine soil classes in the study, in particular stands 

comprising mixed conifer and broadleaved species with a semi-open canopy, whereas 

younger single-layered stands had consistently low species diversity. Age of canopy trees 

was closely associated with taxonomic diversity, followed by canopy stratification, tree 

species composition and canopy coverage (Gao et al. 2014).  

Chronosequential field studies designed to observe forest succession related α-diversity 

in a temperate mixed-conifer forest region indicate that post-disturbance taxonomic 

diversity trends upward until canopy closure. It then decreases for up to several decades 

before increasing again as canopy structure variability increases (Schoonmaker & McKee 

1988). Notably, although late seral species returned in significant percentages in as soon 

as five years following the disturbance, two mycotrophs noted in the study area, reliant 

on the subsurface mycorrhizal biota, were lost to the survey habitat due to mechanical 

disturbance – these species potentially required more complex dispersal mechanism to 

recolonize the sites after an industrial harvest (Schoonmaker & McKee 1988). In contrast 

to more or less uniform mechanical stand replacement disturbances, Donato et al. (2009) 

note that natural and compound disturbance regimes, such as mixed-severity fire, create 

alternate successional pathways and distinct early seral communities contributing to 

canopy heterogeneity. 
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Due to its three-dimensional distribution of leaves, branches and stems comprising their 

topology within the overall canopy, as well as its physical relationship to incoming solar 

radiation, canopy structure is a source of habitat niche partitioning for plant species (Pan 

et al. 2013). Properties of this structure can be described by metrics such as stand height, 

density, distribution and volume – each as a proxy for the more complex and 

unmeasurable distribution of forest canopy structure itself (Leiterer et al. 2015). 

Canopy structure can be considered in terms of both vertical components, such as strata, 

and horizontal ones, such as age or disturbance patches, cover and fragments. Stands 

undisturbed by landscape level events such as fire or major windfall tend to develop an 

uneven-aged stand structure as natural disturbances generally provide open gaps in the 

canopy for younger trees (Pan et al. 2011). Depending on the scale of the canopy 

measurement, such as is the case with optical methods analyzing multi-spectral imagery 

or LiDAR point-cloud data gridded to a 30-meter raster resolution, elements of both can 

be captured and modeled at once.  

The objective of this study is to develop an approach for the accurate geospatial analysis 

of the impact of canopy strata diversity on the radiant flux and extinction on biodiversity 

at a stand-level scale. We used area solar radiation models and canopy metrics derived 

from multi-spectral imagery and light detection and ranging (LiDAR) systems to estimate 

radiant energy and canopy structural properties that act to absorb or scatter the radiant 

flux as it moves downward from the canopy surface to the forest floor.  

This derived data, and field data from randomly selected biodiversity plots sampled from 

an unmodified natural temperate montane conifer forest, was used to develop multivariate 

regression model to predict the spatial distribution of plant species α-diversity. If the 

results are adequate to initiate a more comprehensive study, localized data sets similar to 

those used for stand volume and site quality could be developed from data acquired over 

time for forest management and ecosystem services prescriptions. 

Study Area 

The study area is located in the center of the Klamath Ecoregion of Northern California 

and Southern Oregon, an area studied extensively for its geological antiquity and 

diversity of plant species. Geographically, the region is bounded on the north and south 

by lower elevation coast range mountains and interior valleys, on the west by the Pacific 

Ocean, and on the east by montane valleys and desert plateaus. Due in part to its 

topographic variability and an abundance of alpine water sources, the landscape contains 
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a conifer biodiversity ‘hot-spot’ within a region that represents a global maxima 

comprising 30 native and several endemic species (Olson 2016). 

The analysis extent is bound by an arid east-slope canyon at the base of Russian Peak in 

the Upper Sugar Creek Watershed. The analysis extent and the study area are two distinct 

geographic areas. The first is the topographic horizon captured in the bare earth digital 

elevation model (DEM) produced from the LiDAR products. The study area for plot 

selection is defined by a Klamath Mixed Conifer (KMC) plant community, comprising 

plots that were within one standard deviation from the mean canopy height derived at a 

30 meter resolution. 

The study area is an approximately 18.5 hectare area located at 507090 E, 4572336 N 

(Universal Transverse Mercator (UTM) Zone 10, NAD 1983) as shown in Figure 1. The 

elevation was between 1500 meters and 1700 meters height above ellipsoid (HAE), with 

the 2019 plots samples observed primarily near 1500 meters HAE. Sample plots were 

therefore selected from within a relatively uniform climate, soil type and vegetation 

profile, although soil water content varied considerably due to varied water sources, 

topography and organic structures such as down woody debris.  
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Figure 1: The study area comprises an 18.4896 hectare area of montane Klamath Mixed Conifer stands. The 

analysis extent includes the Upper Sugar Creek Watershed. Source: Existing Vegetation-CALVEG 2007. 

Regional Geological and Biogeographic History 

The geology of the Klamath Ecoregion is complex and plays a key role in its 

biogeographic formation. The overarching geological framework originated as island arcs 

and continental fragments in the Pacific Ocean consisting of the rifted fragments of pre-

existing continents and volcanic island masses created over subduction zones. These 

contain rocks believed to be 500 million years old that date to the early Paleozoic Era. A 

succession of eight island terranes moved eastward on the ancient Farallon plate and 

collided with the North American plate an estimated 260 to 130 million years ago 
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(Skinner et al. 2006). Each accretion left a terrane of rock of a single age. During the 

accretion, subduction of the plate metamorphosed the overlying rock and produced 

magma which intruded the overlying rock as plutons. Serpentinite, produced by the 

metamorphism of basaltic oceanic rocks, and intrusive rocks of gabbroic to granodiorite 

composition are common rocks within the Klamath Ecoregion terranes (Skinner et al. 

2006). 

The Wisconsin glaciation that began approximately 80,000 years ago and lasted until the 

Holocene was the last major geological event shaping the landforms proximate to the 

analysis extent. Glacial ice collected during the Wisconsin in the higher elevations, 

especially in the Marble Mountains, Trinity Alps, and Trinity Mountains (Sawyer 2006). 

Specific regional influences of the Wisconsin glacial period on landform and soil 

development involved a series of ice-free times (interstadials), and ice advance (stadial). 

The last major ice advance, the Late Wisconsin, occurred about 22,000 years ago. Since 

then, the climate has warmed in spurts with several reversals, during which the ice 

advanced and then retreated. During the interstadials, clay, silt, sand, gravel, and boulders 

(collectively called till), eroded from higher elevations, accumulated in mounds and 

ridges (moraines), as the ice melted. The last glacial in the region ended approximately 

170 years ago after the end of the Little Ice Age (Sawyer 2006). 

The region’s geological position and the topographic variability provided by its 

landforms have provided refugia that have allowed several endemic and relic species to 

persist which were once dominant in forests of previous geological epochs and during 

periods of alternating climate conditions in the Northern Hemisphere. Due to its 

proximity to the Cascade and Sierra Nevada ranges to the north and south, and to the 

Oregon and California coastal ranges to the west, the region’s conifer biodiversity can be 

traced to its biogeographic locale. This is believed to be related to the convergence of 

these regions in the Klamath, relic, endemic and regionally dominant species coexist in a 

diverse series of xeric, hydric and mesic habitats among abrupt alternes in elevation and 

climate (Keeler-Wolf 1990). Although regional vegetation diversity is higher along the 

inland-continental gradient, especially in temperate woodlands with a highly developed 

herb strata (Skinner et al. 2006), the taxonomic biodiversity present in the study area 

itself is thought to be the unique result of its topographic-climate variability and 

biogeographic history (Keeler-Wolf 1990).  
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The ruggedness and topographic variability of the study areas landscape is evident in a 

photograph taken from the steep ridge above the study area in Figures 2. Figure 3 depicts 

the study area landforms taken from a 3D rendering of the LiDAR data (last returns). 

 

Figure 2: Ridgeline below Russian Peak looking west above study area in the Upper Sugar Creek Watershed 

Source: Kauffmann 2014. 

 

Figure 3: Study area viewed from 506223E 4572098N using an extruded LiDAR based Digital Elevation Model 

(DEM). The ‘bare earth’ model with hill-shade rendering provides a detailed view of the site’s landforms. 

Study Area Soil Taxonomy 

Soil profiles in the study area include those composed of the Nanny and Gerle families as 

shown in Table 1 (USDA 1982) and labeled with the map unit symbol to indicate  

overlap with the study area (Figure 4).  
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Table 1: Soil Taxonomy of the Upper Sugar Creek Watershed (Source: USDA) 

Soil Name & Class Subgroup Order 

(Taxon) 

Map Unit 

Symbol 

Nanny, loamy-

skeletal,mixed, frigid 

Typic Xerumbrepts Inceptisols 165 

Gerle, coarse-

loamy,mixed, frigid 

Typic Xerumbrepts Inceptisols 127 

 

Figure 4: Study area soil map by map unit (Source: NRCS). 

Loamy inceptisols are the dominant soil taxon in the study extent. These soils commonly 

occur on landscapes that are relatively active, such as mountain slopes, where erosional 

processes expose unweathered materials formed in late-Pleistocene glacial drift. 

Regional Climate and Meteorology 

Significant shifts in climate over time make the Klamath Ecoregion both an intersection 

and a transition zone for several major regional scale biotas, specifically the Great Basin, 

the Oregon Coast Range, the Cascades Range, the Sierra Nevada, the California Central 
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Valley, and Coastal [Mountain] Province of Northern California (Olson 2016). Evidence 

indicates that the regional climates of the Quaternary period, including Pleistocene and 

the Holocene, were generally colder than were those of the Tertiary. 

The ecoregion’s modern climate is characterized by warm dry summers and wet winters 

with a strong precipitation gradient decreasing as it tracks from the Pacific coast to the 

eastern mountain interior. The temperature gradient from the coast to the interior basins 

increases in range as it tracks eastward from marine to continental. From west to east 

along the climate gradient away from the moderating marine layer, conifer species tend to 

occupy increasingly higher elevation sites, from sea level in the west, to montane to 

subalpine zones in the east. 

The region’s weather patterns are a key source of canopy disturbance in its forest 

ecosystems. These include the Pacific High–Post-Frontal, Pacific High–Pre-Frontal and 

Subtropical High Aloft patterns. Post-Frontal conditions are defined by high pressure 

following the passage of a cold front causing strong winds from the north and/or 

northeast. Pre-Frontal conditions are defined by strong, southwesterly or westerly winds 

created by dry southern tail-end of a rapidly moving cold front. In this case the strong 

winds are the relevant physical process. Subtropical high conditions are defined by 

descending air from high pressure, increasing temperatures, decreasing humidity and are 

related to strong temperature inversions (Skinner et al. 2006). These conditions are 

related to high-velocity winds and low-humidity and represent a key physical component 

of natural forest dynamics and stand succession including fire and windfall (Skinner et al. 

2006).  

The Klamath ecoregion is described as having had a mixed-severity fire regime, with a 

fire return interval of about 15 years in lower montane conifer forests (a term used when 

observing fire frequency at the scale of a stand or relatively small landscape area). The 

fire rotation interval presents a more nuanced view of the local study area fire regime, as 

it describes the fire cycle over the larger scale landscape with variable spatio-temporal 

frequency and intensity. Notably, the study area has missed some intervals in its natural 

fire regime due to suppression (DeSiervo et al. 2016).  

Regional Biogeography and Forest Species 

The Klamath Ecoregion is characterized by “complex biogeographic patterns, high 

endemism, and unusual community assemblages” (Olson 2016). It is one of seven IUCN  

(International Union for Conservation of Nature) Areas of Global Botanical Significance 

in North America and is a proposed World Heritage Site and United Nations Educational, 
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Scientific and Cultural Organization (UNESCO) Biosphere Reserve. It contains one of 

the four richest temperate coniferous forests in the world along with the Southeastern 

conifer forests of North America and those of the Primorye region of the Russian Far 

East and Sichuan region of China (Olson 2016).  

The region was relatively unglaciated during the late-Pleistocene, when it served as a 

refugia for northern plant species (Thorson et al. 2003). Sawyer & Thornburgh (1974) 

note paleobotanical studies that indicate that the Klamath Ecoregion maintains “forests 

most nearly equivalent to the western North American Arcto-Tertiary forests”. The 

region has not undergone any significant geological alterations since the Miocene, which 

is significant with respect to the magnitude of ecosystem disturbance from glaciation 

relative to the Wisconsin period. Late-Pleistocene glaciation was localized where it did 

occur and had a varied impact on the region’s conifer species, destroying many 

populations but allowing others to persist. The diverse topography played a role in 

preserving conifer species in some cases, such as sub-alpine fir which survived as 

krummholz (stunted, windblown trees) on cliffs above ice margins in the Russian Peak 

area, and subsequently repopulated hydric habitats as glaciers retreated. It is believed that 

Engelmann spruce survived along streams below the glaciers, and relatively low intensity 

fire regimes in the eastern montane allowed weeping spruce to persist (Sawyer & 

Thornburgh 1974). 

Larger forest reserves are generally found in the highest elevations of the region, with 

few significant areas of lower elevation habitat remaining undisturbed. The Dillon Creek 

watershed on the middle Klamath River reach is one of the last remaining unfragmented 

lowland forests of old growth Klamath Mixed Conifer in the region (Olson 2016). The 

montane Klamath Mixed Conifer (KMC) forest type that defines the study extent in the 

Upper Sugar Creek Watershed is a regionally unique assemblage composed of tall, dense 

to moderately open, conifer forests with patches of broad-leaved evergreen and deciduous 

low trees and shrubs typical of the assemblage (Küchler 1977). It is dominated by 

evergreen conifers up to 60 meters in height and a rich shrub and herbaceous layer on 

undisturbed mesic sites. The overstory layer is characterized by a mixture of conifer 

species dominated by white fir (Abies concolor), Douglas-fir (Pseudotsuga menziesii), 

ponderosa pine (Pinus ponderosa), incense cedar (Calocedrus decurrens) and sugar pine 

(Pinus lambertiana). On xeric sites the forest canopy is less continuous, but the shrub 

layer is still abundant, as shown in Figure 5 (Sawyer & Thornburg 1977).  
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Figure 5: Montane Klamath Mixed Conifer stand in the Sugar Creek study area and the lower strata 

herbaceous community at a study area plot. 

Plant species in temperate forest stands are influenced by insolation and microclimate, 

which impacts the presence (or the potential for the presence) of each under different 

canopy conditions. Table 2 lists common vascular plants, bryophytes and canopy lichens 

found in the analysis extent and the respective canopy position of each. 
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Table 2: Vascular plants, bryophytes and lichens (Sawyer & Thornburg 1974, USDA Forest Service 2019) 

Klamath Mixed Conifer Species 

(Montane) 

Canopy Position and Strata Level 

Dominance 

Habitat & Ecological Factors 

Pseudotsuga menziesii Upper strata, dominant/codominant. Shade-intolerant; ectomycorrhizal and 

ectendomycorrhizal relationships 
increase productivity. 

Picea breweriana Upper strata, dominant/codominant. Shade tolerant. 

Abies concolor Upper strata, dominant/codominant. Shade-intolerant. 

Picea engelmannii Upper strata, dominant/codominant. Shade-intolerant. 

Pinus ponderosa Upper strata, dominant in xeric sites, 

codominant in mesic sites. 

Shade-intolerant. 

Pinus contorta Upper strata, dominant/codominant. Moderately shade tolerant. 

Calocedrus decurrens Upper strata, codominant on xeric sites, 
subdominant on mesic sites. 

Shade-tolerant. 

Pinus lambertiana Upper strata, dominant/codominant. Semi-tolerant to shade. 

Prunus emarginata Lower strata, dominant in disturbed 

stands with low canopy closure.  

Shade-intolerant. 

Quercus sadleriana Lower strata.  

Rosa gymnocarpa Lower strata, sub-dominant. Shade-tolerant; persists most 

successfully in shaded xeric sites. 

Prosartes hookeri Lower strata.  

Amelanchier pumila Lower strata.  

Pteridium aquilinum Lower strata, dominance varies. Shade-intolerant; indicator of solar 
radiation intensity in understory. 

Arctostaphylos patula Lower strata, codominant. Shade-intolerant. 

Quercus vacciniifolia Lower strata, dominant/codominant. Xeric sites without canopy closure. 

Festuca idahoensis Codominant/subdominant. Moderately shade tolerant. 

Amelanchier alnifolia Codominant/subdominant. Shade-intolerant 

Berberis aquifolium Lower strata.  

Arctostaphylos nevadensis Lower strata, dominant. Does not tolerate canopy closure. 

Chimaphila umbellate Lower strata.  

Clintonia uniflora Lower strata, codominant. Surveyed in a range of 1.5% to over 

60% full sunlight; higher abundance in 
climax conifer forest. 

Chrysolepi sempervirens Lower strata.  

Leucothoe davisiae Lower strata.  

Ceanothus velutinus Lower strata, codominant. Moderately shade-tolerant. 

Symphoricarpos albus Lower strata, codominant. Moderately shade-tolerant. 

Apocynum androsaemifolium Lower strata, codominant. Shade-tolerant. 

Ceanothus prostrates Lower strata.  

Galium triflorum Lower strata. Favors diffuse light over full sun or full 

shade conditions. 

Taxus brevifolia Mid-strata, subdominant. Shade tolerant. 

Adenocaulon bicolor Lower strata.  

Calamagrostis koelerioides Lower strata.  

Linnaea borealis var. longiflora Lower strata, dominant. Surveyed in a range of 2% to full 

sunlight. 

Goodyera oblongifolia Lower strata, dominant.  

Amelanchier semiintegrifolia   

Rubus parviflorus Lower strata, subdominant Preference for mesic sites; shade tolerant 

in closed canopy. 

Pyrola picta Lower strata.  

Sarcodes sanguinea Lower strata, subdominant. Non-photosynthetic mycoheterotroph. 

Lobaria hallii All strata  

Letharia vulpine All strata  
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Canopy Structure and Insolation Partitioning 

The majority of incident solar radiation to Earth’s vegetated surfaces is absorbed in the 

canopy layer, independent of the vegetation height above the surface (Shulze 2005). In 

the context of the surface radiation balance, insolation is best understood as a shortwave 

radiation flux influenced by atmospheric water vapor, aerosols and ozone (Table 3). 

Short-wave radiation is both absorbed and reflected by molecules in the atmosphere and 

the surface depending on the type and distribution of vegetative cover (Schulze 2005). 

Table 3: Radiation balance based on average global incident solar radiation of 342 Wm2. Source: Schulz 2005 

Location Incoming Solar Radiation 

(Absorption) 

Outgoing SW Radiation 

(Reflectance) 

Space 100% 31% 

Atmosphere Absorbed by water vapor, 

aerosols and O3: 16%  

 

Absorbed by clouds: 4%  

Back scattered: 6%  

 

Reflected by clouds: 16%  

Surface 49% Reflected by land surface: 9% 
 

The spatial distribution of insolation on the surface is governed by solar elevation, 

surface orientation and albedo as well as the screening or reflection effects from the 

surrounding terrain and the diffuse fraction of radiant flux (Olseth & Skartveit 1997, 

Oliphant et al 2006). The spatial variability of annual photosynthetically active radiation 

(PAR) irradiation on the terrain surface is substantial in complex topography (Olseth & 

Skartveit 1997). Seasonal variation due to atmospheric opaqueness distributes radiation 

receipt spatially due to topographic effects, with aspects receiving direct radiant fluxes 

contrasting with aspects that receive primarily diffuse solar radiation (Nunez 1980). 

Canopy cover is the proportion of the forest floor covered by the vertical projection of the 

crown area, as contrasted with canopy closure, which is the proportion of sky hemisphere 

obscured by vegetation from a single point (Smith et al. 2008). The upper strata of the 

canopy determine, therefore, the type of vegetation on the forest floor (Schulze 2005). In 

addition, understory microclimate is related to production in the overstory canopy as well 

as to the distribution of understory species and the maintenance of subsurface processes 

(Geiger 1965); understory microclimate is additionally determined by the topographic 

variability and availability of water at or near the surface.  

Structural variation in the canopy should therefore create habitat variability and niche 

partitioning allowing greater potential for, all things being equal, measurable variation in 
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the diversity and richness of species. Since the stands in the study area are essentially 

unmanaged (except for historical fire suppression), it is important to understand that 

natural succession and regeneration in managed stands can differ considerably. Natural 

stands retain biogeochemical processes related to meteorological phenomena (lightening, 

wind, etc.) and temporal physical biomass processes (gravity-mass disturbances and 

overall nutrient load) over longer rotation periods, whereas silvicultural methods such as 

clear-cutting and selective harvest tend to maintain conifer stands in a perpetual state of 

early to pre-maturity seral classification by design and can result in a significant change 

in dominant conifer species composition at the landscape level. Management methods 

like these have resulted in biodiversity decline and generated interest in managing for 

increased structural complexity to enhance stand productivity, as noted before, by 

promoting complimentary resource utilization through spatial, temporal and 

physiological differentiation (Schulze 2005, Zhang et al 2012, Ishii et al. 2004). Other 

research has indicated that diversity related productivity may be more pronounced in 

boreal than in temperate forests generally, but that site-specific conditions are a 

determinant of this general observation (Paquette & Messier 2014). 

Area Solar Radiation and Canopy Structure Metrics 

The leaf area index (LAI) quantitatively characterizes plant canopy layers and is often 

used to model forest canopy structure. It is defined as the one-sided leaf area per unit 

ground surface area for broadleaf or half of the total needle surface area per unit ground 

surface area for conifer forests.  

It is notated as, 

𝑳𝑨𝑰 =
𝒍𝒆𝒂𝒇 𝒂𝒓𝒆𝒂(𝒎𝟐)

𝒈𝒓𝒐𝒖𝒏𝒅 𝒂𝒓𝒆𝒂 (𝒎𝟐)
   

(1) 

(Chen & Black 1992). 

LAI is also a key variable for regional and global models of biosphere-atmosphere 

exchanges of energy, carbon dioxide, water vapor, and other materials (Asner et al. 

2003). Canopy photosynthesis and its equivalent, gross primary productivity (GPP), 

should theoretically reach a maximum as leaf area (LAI) increases to a value where PAR, 

or spectral emittance in the .4 to .7 μm visible wavelength, is totally intercepted (Perry et 

al. 2008).  
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Photosynthetically available radiation (PAR) and its relationship to LAI is well 

established in the literature (Smith et al. 2008). The theoretical basis for the absorption of 

light as it passes through a forest canopy is described by the Beer-Lambert law:  

𝒕(𝒙) = 𝐞𝐱𝐩[−𝑲(𝑳𝑨𝑰(𝒙))] 

(2)                                 

where,  

• t is the proportion of PAR incident at the top of the canopy that is transmitted to a 

given point x within the canopy. 

• LAI(x) is the total leaf area above point x.  

• K is the extinction coefficient.  

 

The coefficient (K) indicates that light intensity decreases exponentially as it passes 

through each canopy layer (Perry et al. 2008, Schulze 2005). Also known as the 

attenuation coefficient, it describes the extent to which the radiant flux of a beam is 

reduced as it passes through a specific material, in this case the vegetation canopy. When 

a narrow (collimated) beam passes through canopy strata, the beam will lose intensity due 

to two processes: absorption and scattering. A detector can be used to measure a beam’s 

directional path, or conversely using a non-narrow beam, one can measure how much of 

the lost radiant flux was scattered, and how much was absorbed. The extinction 

coefficient is therefore the sum of the absorption coefficient and the scattering coefficient 

(Wikipedia 2019). 

The determination of the extinction coefficient requires direct measurement of LAI over 

consecutive seasons, as there is significant atmospheric and canopy structural variability 

in the determination of its value (Saitoh et al 2012). A meta-study of canopy light 

extinction showed significant intra-annual negative correlations between K and seasonal 

changes in LAI in natural ecosystems (Zhang et al. 2014). In another study, a K value of 

.48 and LAI of 6.2 are thresholds at which 95% of incident solar radiation is intercepted 

by the forest canopy in a stand of Pseudotsuga menziesii (Perry et al. 2008), a dominant 

upper strata canopy species in the Klamath Mixed Conifer forest type. 

The LAI variable defines the number of equivalent layers of leaves relative to a unit of 

ground area, but the fraction of PAR that is absorbed (fPAR) measures the proportion of 

available radiation in the photosynthetically active wavelengths that are absorbed by a 

canopy (NASA 2017). 
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The basis for calculating fPAR using an exponential function is based on Beer's law:  

𝒇𝑷𝑨𝑹 = 𝑷∞[𝟏 − 𝐞𝐱 𝐩(−𝐋𝐀𝐈)] 
(3)                               

where P∞ is the asymptotically limiting value of PAR absorption for an infinitely thick 

canopy and was set to 0.94, with the assumption made that the canopy leaves are 

randomly distributed (Oliphant et al. 2006). This assumption was made in the LAI 

calculation for this study as well. Both variables are used as parameters for calculating 

surface photosynthesis, evapotranspiration, and primary productivity, and those products 

are in turn used to calculate ecosystem functions such as terrestrial energy, carbon, water 

cycle processes, and biogeochemistry of vegetation (NASA 2017). Given its usefulness 

in this study, fPAR was nevertheless not directly calculated due to the need for complex 

adjustments required to ‘effective LAI’, i.e., the unadjusted product derived from optical 

methods. It can be inferred, however, through the interpretation of and relationship to 

other measures such as the normalized differentiation vegetation index NDVI (Perry et al. 

2008). 

In addition to LAI, metrics were derived from LiDAR data to measure area insolation and 

the canopy strata variables effecting solar radiation in the canopy understory. 

1.) Canopy Height (CHM) in meters was derived from the LiDAR digital surface 

model (DSM) and the first returns data at 1-meter resolution. It was used to derive 

area incident solar radiation adjusted for topography as well as to provide data 

required for sample plot selection by using the average values at 30 meters 

resolution matched to the gridded canopy metrics raster (BCAL, 2017, Evans et 

al. 2009, QSI 2015). 

 

2.) Area Solar Radiation (ASR) in WH/m2 was derived using the sum of 12 monthly 

values (2015 calendar year) for the analysis extent and resampled to 30 meters 

resolution. ASR was modeled in ArcGIS using the sum of the LiDAR bare earth 

surface product (DEM) and the canopy height model (CHM) product as the 

topographic parameter, including topographic elevation data for the entire 

watershed used as the horizon parameters for the ASR model equations (Fu & 

Rich 2000, 2002).  

 

Radiation parameters included diffuse model type (radiation flux varied with 

zenith angle in a non-uniform overcast sky condition), diffuse proportion 

(proportion of global normal radiation flux that is diffuse by month), and 
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atmospheric transmissivity (fraction of radiation that passes through the 

atmosphere by month) input parameters were derived from meteorological data 

acquired from a field station within close proximity to the analysis extent in 2015.  

 

ASR is a term used to describe irradiation, or the sum of downward area 

irradiance per unit area over a stated time interval expressed in WH/m2. Irradiance 

is the instantaneous density of solar radiation on a unit area expressed in W/m2. It 

comprises Global radiation (Globaltot), or the sum of direct (Dirtot) and diffuse 

(Diftot) radiation of all sun map and sky map sectors as shown in the following 

equation: 

𝑮𝒍𝒐𝒃𝒂𝒍𝒕𝒐𝒕 = 𝑫𝒊𝒓𝒕𝒐𝒕 + 𝑫𝒊𝒇𝒕𝒐𝒕 

(4) 

(Fu & Rich 2000, 2002) 

 

Dirtot for a given location is the sum of the direct insolation (Dirθ,α) from all sun 

map sectors. Direct insolation from the sun map sector (Dirθ,α) with a centroid at 

zenith angle (θ) and azimuth angle (α) is calculated using the following equation: 

  

𝑫𝒊𝒓θ,α = 𝑺𝑪𝒐𝒏𝒔𝒕 × β𝒎(𝜽) × 𝑺𝒖𝒏𝑫𝒖𝒓θ,α × 𝑺𝒖𝒏𝑮𝒂𝒑θ,α × 𝐜𝐨𝐬 (𝑨𝒏𝒈𝑰𝒏θ,α) 

(5) 

where: 

• SConst is the solar flux outside the atmosphere at the mean earth-sun 

distance, known as solar constant. The solar constant used in the analysis 

is 1367 W/m2. This is consistent with the World Radiation Center (WRC) 

solar constant. 

• β is the transmissivity of the atmosphere (averaged over all wavelengths) 

for the shortest path (in the direction of the zenith). 

• m(θ) is the relative optical path length, measured as a proportion relative 

to the zenith path length. 

• SunDurθ,α is the time duration represented by the sky sector. For most 

sectors, it is equal to the day interval (for example, a month) multiplied by 

the hour interval (for example, a half hour). For partial sectors (near the 

horizon), the duration is calculated using spherical geometry. 

• SunGapθ,α is the gap fraction for the sun map sector. 

• AngInθ,α the angle of incidence between the centroid of the sky sector and 

the axis normal to the surface. (Fu & Rich 2000, 2002) 
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Total diffuse solar radiation for the location (Diftot) is calculated as the sum of the 

diffuse solar radiation (Dif) from all the sky map sectors.  

 

The diffuse radiation at its centroid (Dif) is calculated, integrated over the input 

time interval and corrected by the gap fraction and angle of incidence using the 

following equation: 

𝑫𝒊𝒇θ,α = 𝑹𝒈𝒍𝒃 × 𝑷𝒅𝒊𝒇 × 𝑫𝒖𝒓 × 𝑺𝒌𝒚𝑮𝒂𝒑θ,α × 𝑾𝒆𝒊𝒈𝒉𝒕θ,α × 𝐜𝐨𝐬 (𝑨𝒏𝒈𝑰𝒏θ,α) 

 

(6) 

where: 

• Rglb is the global normal radiation. 

• Pdif is the proportion of global normal radiation flux that is diffused.  

• Dur is the time interval for analysis. 

• SkyGapθ,α is the gap fraction (proportion of visible sky) for the sky sector. 

• Weightθ,α is the proportion of diffuse radiation originating in a given sky 

sector relative to all sectors. 

• AngInθ,α is the angle of incidence between the centroid of the sky sector 

and the intercepting surface. (Fu & Rich 2002) 

 

3.) Intensity of return (IR) is an amplitude describing the peak power ratio of the 

laser return to the emitted laser, calculated as a function of surface reflectivity. 

Values are corrected for variability between flight lines and pre-processed at a 

0.5-meter pixel resolution before being processed using the BCAL vegetation 

intensity tools and output to a 30 meter resolution for the vegetation excluding 

bare earth data (BCAL 2017, QSI 2015). 

 

Forest remote sensing research indicates that the returns of high-intensity and the 

low intensity peak count of the intensity distribution were predictive of live and 

dead tree biomass, respectively (Kim et al. 2009).  

 

4.) Total Vegetation Density is a derived percent ratio of vegetation to ground returns 

within each pixel (per m2) or  

𝑻𝑽𝑫 = 𝒏𝑽/𝒏𝑮 ∗ 𝟏𝟎𝟎 

(7) 
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where nV is the number of vegetation returns and nG that of ground returns 

(BCAL 2017, QSI 2015). 

5.) Canopy Relief Ratio is a derived mean height less the minimum height divided by 

the maximum height less the minimum height within each pixel (per m2) or 

𝑪𝑹𝑹 =
 𝛍(𝒉𝒆𝒊𝒈𝒉𝒕) − 𝐦𝐢𝐧(𝒉𝒆𝒊𝒈𝒉𝒕)

𝒎𝒂𝒙(𝒉𝒆𝒊𝒈𝒉𝒕) − 𝐦𝐢𝐧(𝒉𝒆𝒊𝒈𝒉𝒕)
 

(8) 

It represents a quantitative descriptor of the relative shape of the canopy from 

altimetry observation which describes the degree to which canopy surfaces are in 

the upper (CRR > 0.5) or in the lower (CRR < 0.5) portions of the height range 

(Pike & Wilson 1971, Parker & Russ 2004, BCAL 2017, Evans et al. 2009, QSI 

2015).  

6.) Texture of Heights (TH) is the variance of height of points per pixel equal to the 

SD of height above the ground threshold and height below crown threshold per 

m2 or 

𝑻𝑯 = 𝝈 (𝒉𝒆𝒊𝒈𝒉𝒕 > 𝑮𝑻 𝒂𝒏𝒅 𝒉𝒆𝒊𝒈𝒉𝒕 < 𝑪𝑻) 

(9) 

where GT is the ground threshold and CT is the crown threshold (BCAL 2017, 

QSI 2015). Thresholds were based on canopy height data for the study area. 

7.) Foliage Height Diversity is a derived Shannon diversity index statistic calculated 

as percentage cover at different heights per m2, or 

𝑭𝑯𝑫 = − ∑ 𝒑𝒊  𝑰𝒏 𝒑𝒊   

(10) 

where pi is the proportion of the number of returns in the ith layer to the sum of 

points of all the layers (using all points) (BCAL 2017, Evans et al. 2009, QSI 

2015). 

Measures of Biodiversity 

Biodiversity as a biogeographic concept cannot be described without reasonable 

consideration of spatial and temporal scales (Schultze 2005). Alpha diversity (α-

diversity) was developed by R. H. Whittaker during his study of plant communities in the 
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Klamath Ecoregion and introduced with the complementary statistics, beta diversity (β-

diversity) and gamma diversity (γ-diversity). Beta diversity is dimensionless, as a 

comparative statistic, i.e., the ratio between γ-diversity (regional) and α-diversity (local) 

diversities (Whittaker, 1960); α-diversity and γ-diversity are limited to discrete units of 

space – roughly communities and ecosystems respectively (Schultze 2005). 

Whittaker postulated that total species diversity in a landscape, described by γ-diversity, 

is determined by the mean species diversity at a community scale (α-diversity) and also 

by the differentiation among those communities (β-diversity) (Whittaker 1960, 1972). 

Whitaker’s subsequent usage of α-diversity implies the application of the statistic across 

multiple sites in a landscape, strongly influencing its primary use at the assemblage and 

community scale (Whittaker 1960, 1972). 

Currently there are three varied types of biodiversity measures used in most plant ecology 

research, each providing evidence of an advancing understanding of diversity and 

ecological processes. These are taxa based (taxonomic diversity), trait based (functional, 

based on phenotypes expressions of traits) and phylogenetic diversity, defined as the 

minimum total length of phylogenetic branches required to span a given set of taxa on the 

phylogenetic tree (Faith 1992).  

Taxonomic index values that provide a quantitative measure of richness and abundance in 

a nominal scale dataset. Menhinick’s Index is a widely used measure of α-diversity that is 

based on the ratio of number of species (S) and the square root of the total number of 

individuals (N). It is notated: 

𝑴𝑫𝑰 =
𝒔

√𝑵
 

(11) 

 

 

where   

• s is the number of different species in your sample and  

• N is the total number of individual organisms in the sample. 

 

To assess the impact of species abundances, the Simpson Index relates the contribution 

made by each species to the total number of individuals present. 

𝑺𝑫𝑰 = 𝟏 − ∑ 𝑝𝑖
2

𝑠

𝑖 =1

 

(12) 
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where pi is the proportion of individuals found in species i. As SDI’s summation 

increases, evenness decreases. The difference between that value and 1 produces a range 

of 0-1, 1 being a monoculture. SDI is a non-parametric index value less sensitive to 

species richness in that species specific abundances are considered.  

 

There has been a significant recognition among researchers that classifying terrestrial 

plant species into functional types rather than their higher taxonomic identity improves 

our understanding of processes at the ecosystem scale, including vegetation responses 

and effects on climate, atmospheric chemistry, land use and disturbances (Cornelissen et 

al 2003). Although there is no consensus on a uniform definition for functional diversity 

in the literature, there are clear contrasts in areas of its measurement: those that use trait 

values directly and those that use distance-based and dendrogram-based constructs 

(Petchey et al. 2009). The number of traits included in the analysis must be adequate to 

capture the specific function of interest, continuous traits being more effective at 

capturing interspecific variability in trait values than categorical traits (Laureto et al. 

2015).  

It has also been proposed that functional diversity can be divided into functional richness, 

evenness and divergence as well, and that functional diversity is affected by the range of 

trait values (phenotype expressions) present as well as the distinct species in that range, 

and notably, that the trait measured is more important than the specific measure used 

(Petchey et al. 2009). Low functional richness, for instance, indicates that some alpha 

niches (i.e., resources) potentially available to the community remain unused, reducing 

productivity (Mason et al. 2005). The community weighted mean (CWM), as a metric of 

functional composition, reflects the functional mean of a single (focal) trait (Pla et al. 

2012). 

 

𝑪𝑾𝑴 =  ∑ 𝑤𝑖𝑥𝑖

𝑠

𝑖 =1

 

(13) 

where  

 

• Wi is the niche space filled by the species within the community, i.e., meters of 

cover by species in a survey plot 

• Xi is the trait value (see Cornelissen et al 2003) for species i, (Mason et al. 2005).  
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Given the many leaf traits available to research that impact productivity, such as specific 

leaf area (SLA) in mm2g-1, they represent a practical area of focus in any canopy 

insolation study concerned with the productivity of forest biota. Forest productivity 

research indicates that functional and phylogenic diversity significantly influence 

biomass productivity on small scales, while taxonomic diversity evidenced “only indirect 

effects” at that scale (Hao et al 2017). 

Data 

 

Multispectral Imagery Data Specification 

WorldView-2 is a high-resolution 8-band multispectral satellite operating at an altitude of 

770 km. A single early season ‘leaf-on’, corrected satellite image was used for the study, 

minimizing radiometric variability (manifested as differences in the coloration of image 

features - trees and openings) and radial displacement (or the apparent elongation or 

displacement of objects having height - such as trees - in satellite imagery) (Hamilton et 

al. 2013). The imagery provides 1.85 m multispectral resolution. Its sensor resolution for 

multispectral is 1.85 m GSD at nadir, 2.07 m GSD at 20° off-nadir, and the swath width 

is 16.4 km at nadir with a demonstrated geolocation accuracy of <3.5 m without ground 

control.  
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Table 4 describes the multispectral bands in the Sugar Creek image and highlights the 

bands used in canopy analysis (NDVI and LAI). 

Table 4: Worldview2 multispectral band wavelength and utilization (DigitalGlobe). 

Coastal Blue 0.40 - 0.45 µm Chlorophyll absorption sensing 

Blue 0.45 - 0.51 µm Soil & vegetation discrimination sensing,  

forest type mapping 

Green 0.51 -0.58 µm Green reflectance of vegetation sensing 

Yellow 0.585 - 0.625 µm Vegetation feature identification 

Red 0.63 -0.69 µm Chlorophyll absorption sensing; vegetation analysis and type 

differentiation 

Red Edge 0.705 - 0.745 µm Vegetative condition sensing; band directly related to plant health 

revealed through chlorophyll status 

Near Infrared 

(NIR1) 

0.77 -0.895 µm Vegetation type sensing, vigor and biomass survey 

NIR2 0.86 – 1.04 µm Overlaps the NIR1 band; supports vegetation analysis and biomass 

studies; water vapor influence 

 

LiDAR Data Acquisition and Specification 

The Sugar Creek LiDAR survey used the NAD83 (CORS96) datum as the basis for the 

mission coordinate system (epoch 2002.00). It was accomplished using a Leica ALS50 

system in late season ‘leaf-on’ conditions. The Leica ALS50 laser system records up to 

four range measurements (returns) per pulse. Discrepancies between first return and 

overall delivered density vary with terrain, land cover, and the presence of water bodies 

(QSI 2015). 

The LiDAR survey was accomplished with an opposing flight line side-lap of ≥50% and 

≥100% overlap in order to reduce laser shadowing and increase surface coverage. Ground 

control surveys were conducted to support the acquisition. These ground control data 

were used to geospatially correct the aircraft positional coordinates as well as perform 

quality assurance checks on final LiDAR products. Collection procedures for ground 

control surveys used real time kinematic (RTK) and post processed kinematic (PPK) 

survey techniques (QSI 2015). 

Ground survey data were collected with a Position Dilution of Precision (PDOP) of ≤ 3.0 

with at least six satellites in view of the stationary and roving receivers (QSI 2015). Post 

data acquisition processing included the use of a suite of automated and manual 

techniques to process the data into the product specifications requested including a first-

return density of no less than 8 points/m2. Actual first return average point density for the 

survey averaged 16.11 points/m2 for the analysis extent (while ground classified point 

density, used for accuracy assessments with ground control survey data, was 2.36 
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points/m2). First return density describes the density of pulses emitted from the laser that 

return at least one echo to the system. First returns reflect off the highest feature on the 

landscape within the footprint of the laser pulse. In forested areas the highest feature 

could be a tree or other natural feature not including the bare earth surface, while in areas 

of unobstructed ground the first return will be the only return echo and will represent the 

bare earth surface (QSI 2015).  

The accuracy of the LiDAR data collection can be described in terms of absolute and 

relative accuracy. Absolute accuracy is the consistency of the data with external data 

sources. Relative accuracy is the consistency of the dataset with itself. The acquisition 

engineers assessed absolute accuracy, shown in Table 5, using Fundamental Vertical 

Accuracy (FVA) methods outlined in the FGDC National Standard for Spatial Data 

Accuracy. FVA compares known RTK ground control data collected on open, bare earth 

surfaces with level slope (<20°) to the triangulated surface generated by the LiDAR 

points. FVA is a measure of the accuracy of LiDAR point data in areas where the system 

has a high probability of measuring the ground surface at the 95% confidence interval 

(1.96 * RMSE) (QSI 2015). 

Table 5: Absolute Accuracy of Ground Control Points Source: Quantum Spatial 

Sample Size 1.96*RMSE Mean Median RMSE Standard 

Deviation 

109 0.079m -0.004m -0.016m 0.041m 0.041m 
 

Vertical relative accuracy refers to the internal consistency of the data set as a whole. 

When the system is well calibrated, the swath-to-swath vertical divergence is low (<0.10 

meters). The vertical relative accuracy was computed by comparing the ground surface 

model of each individual flight line with adjacent points in overlapping survey areas (QSI 

2015). Vertical relative accuracy for the analysis extent is shown in Table 6. 

Table 6: Vertical Relative Accuracy Source: Quantum Spatial 

Surfaces Mean Median RMSE Standard 

Deviation 

144 0.050m 0.050m 0.053m 0.012m 
 

Quantum Spatial used ENVI software and other specialized tools to perform post data 

acquisition processing to derive the geospatial products used in the study, including the 

DEM, CHM and point-cloud dataset. 
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Data Processing Summary 

Post data acquisition processing for the LiDAR and imagery products provided the inputs 

required to develop a georeferenced canopy model. Boise Center Aerospace Laboratory 

(BCAL) Vegetation and Intensity tools were used to develop canopy model metrics from 

the LiDAR point-cloud data in ENVI, while ERDAS Spatial Modeler was used to derive 

LAI data from the satellite imagery. Figure 6 shows a LiDAR tile that was mosaiced with 

others before gridding to raster for analysis at a 30-meter resolution (intensity and 

vegetation products). 

 

Figure 6: A Sugar Creek LiDAR point-cloud tile rendered in the ENVI LiDAR analysis interface using default 

display settings. The tile is pre-processing artifact, the scale related to data acquisition and storage factors and 

not mapping products. The screen is useful for viewing the canopy laser light return and structure visually. 

The Klamath Mixed Conifer (KMC) forest type is a California Wildlife Habitat 

Relationship System (CWHRS) attribute “crosswalked” in the CALVEG (Classification 

and Assessment with LANDSAT of Visible Ecological Groupings) data layer. All 

LiDAR and imagery data comprising the predictor variables were subsequently 

resampled to 30-meter resolution and clipped to the KMC vegetation type of the analysis 

extent in ArcGIS. This is shown in a diagram (Figure 7) that details the complete pre-

processing dataflow required to select plots for biodiversity sampling. 
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Figure 7: Data processing steps for the analysis extent and study area. 

The geographic coordinate system and projected coordinates systems were based on the 

survey information provided in the post-acquisition LiDAR products (bare earth DEM). 

The WorldView 2 imagery was resampled and transformed to these coordinate systems 

as well. Once raster images containing the variable information were processed, a series 

of related tables were created in ArcGIS to analyze the processed data. 

Methods 

 

Modeling methods consisted of developing a predictive multiple linear regression model 

from the remotely sensed and field data and subsequently analyzing the spatial 

autocorrelation and clustering of this product with spatial statistics. Imagery and LiDAR 

data acquisition dates were both within an acceptable if not ideal ‘leaf-on’ seasonal 

timeframe (deciduous species were found primarily in the lower strata as opposed to the 

dominant upper strata species). 
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Forest dynamics, notably disturbance type and succession generally, are not the focus of 

the modeling. Each 30-meter field plot references a pixel of gridded LiDAR data of the 

same dimension. All diversity values resulting from plot data are numerically ordinal and 

assumed to be spatially continuous. There is a noted time-lag of five years between the 

LiDAR and multispectral data acquisition and the final field sampling of biodiversity 

plots. The assumption that a temporal lag for early seral species recruitment is likely after 

a disturbance would address this issue on average. For this reason, sites evidencing recent 

canopy disturbance were to be excluded from the study to maintain data continuity. 

All fine-scale data was resampled to 30-meter resolution to match plot size and location 

(using bilinear or nearest neighbor methods for discrete and continuous data) in order to 

create distinct metrics with unique centroid coordinates for the analysis. Forest 

ecosystems with less fine scale variability, such as closed canopy forests characterized by 

large, contiguous stands of trees, require coarse-scale analyses. High-resolution imagery 

can be used but coarse resolution imagery is the better option because the larger pixels 

reduce fine scale variability that is not of interest such as shadows within the canopy 

(Hamilton et al 2013).  

Input Data Analysis  

LiDAR point-cloud, elevation model data and WorldView2 8-band multispectral imagery 

were processed to derive incident radiation and canopy mensuration variables that 

describe the variation in energy and canopy structure for stand level modeling within the 

study extent.  

It can be challenging to quantify LAI accurately due to significant spatio-temporal 

variability and to measurement limitations inherent in current methodologies (Smith et al. 

2008). These methods utilize ‘direct’ approaches employing field sampling or ‘indirect’ 

approaches involving optical instruments combined with modeling (Smith et al. 2008). 

Optical instruments used to estimate LAI rely on the measurement of light transmittance 

and, because they are based on Beer’s law, the resultant measures are termed ‘effective 

LAI’ (Smith et al. 2008).  

Further, these methods assume a random spatial distribution of and represent insolation 

interception without the distinction between photosynthetically active materials and 

woody components of the canopy (Smith et al. 2008). Non-randomness in the spatial 

distribution of canopy components is a more realistic perspective of the true structure of 

forest canopies. When corrections for non-randomness are not made to the optical model, 
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the terms plant area index (PAI) or surface area index (SAI) are often used to characterize 

the results (Smith et al. 2008). 

LAI was derived in ERDAS Imagine by first deriving a NDVI from the multispectral 

image and then using a linear model to determine LAI (Wulder et al. 1998). NDVI is 

calculated from the visible red and near-infrared light (NIR) reflected by vegetative 

cover, where cells scatter (i.e., reflect and transmit) solar radiation in NIR spectral region 

(Hearne 2008).  

It is notated, 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹 − 𝑹𝒆𝒅

𝑵𝑰𝑹 + 𝑹𝒆𝒅
 

(15) 

NDVI uses normalization to minimize effects of variable irradiance and is commonly 

used to indicate the amount and vigor of vegetation and to differentiate vegetated and 

non-vegetated areas in an image. Plants appear relatively dark in the PAR and relatively 

bright in the NIR (Hearne 2008). The biophysical interpretation of NDVI for Figure 8 is 

the fraction of absorbed photosynthetically active radiation (fPAR). Although derived 

index values can range from -1.0 to +1.0, values less than zero do not have any biological 

meaning and the range was adjusted for the model to exclude them. 
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Figure 8: Classified NDVI map of study area in 2-meter resolution. Source: DigitalGlobe. 

The empirical conversion from the NDVI described by Wulder et al. (1998) was then 

used to derive the canopy leaf area in the ERDAS Spatial Modeler tool.  

𝑳𝑨𝑰 =  (𝟏𝟕. 𝟑𝟓 ∗ 𝑵𝑫𝑽𝑰) − 𝟗. 𝟎𝟏 

(16) 

(Oliphant et al. 2006) 

Study Area Predictor Variable Distributions 

The histograms in Figure 9 depict distributions of the 144 predictor variable data points. 
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Figure 9: Study area predictor variable distributions. 

A collinearity analysis of predictor variables (Figure 10) displays coefficient values in the 

upper half of the matrix and nonparametric trend lines (loess smoothed fits) and 

correlation ellipses below the diagonal. Modelled irradiation (ASR) within the study area 
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data set exhibited a correlation with canopy height. A significant positive correlation 

coefficient (r) of .61 provided a credibility test of the irradiation data since canopy height 

should reasonably have a relationship to WH/m2. This is because of the direct 

relationship between photosynthetic processes and productivity to the quantity of radiant 

energy, in this sense, in one area of space relative to another area of space.   

 

Figure 10: Density matrix analysis of ASR, LAI, CH and TVD 

Effective leaf area (LAI) & vegetation density relationships with radiance were not 

significant, and leaf area and radiance were negatively correlated. This may be partially 

attributable to the acquisition date for the multi-spectral data being early in the growth 

season. A seasonal analysis of LAI would be useful to validate data to use for further 

canopy studies. However, other controlling factors such as soil and water limitations 

would also require review. 
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Sample Plot Selection 

Foresters often delineate stands using photogrammetry or even LiDAR based methods 

which aide in defining contiguous communities of conifer forest sufficiently uniform in 

structure, age and size class, assemblage, and site quality to distinguish it from adjacent 

communities. For purposes of this study, stands or patches of contiguous forest of similar 

age and tree species were defined by canopy height and species assemblage (KMC).  

The study area extent was defined by identifying KMC stands within a contiguous 

18.4896 hectare area and sampling plots that were in a range of one standard deviation of 

the mean canopy height. Selected stand strata were used to represent the best sample 

variability and increase the area for predictive modeling. Thirty-two data points met this 

criterion after buffering major stream channels from the analysis.  

Random points were then selected, yielding possible plots (n/N = stratified sampling 

fraction = 22/32 = 0.69) as shown in Figure 11. Six plots were sampled (6/32 = 0.19). 

This provided an expansion factor of  5.3 for the stratified data and a population sampling 

fraction of 6/144 = 0.04 (an expansion factor of 24). Because the canopy height was not 

uniform across the population data, models with canopy height as a predictor would be 

limited by the range of the sample, while others would have greater range and 

applicability.  
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Figure 11: Study Area Plots. Random plots were selected from canopy heights in the range of one standard 

deviation above the mean canopy height within the study area. 

There was no discrimination of sampling method based on slope, aspect or relative soil 

hydrology of the site (mesic, xeric, hydric).  

The plot map was published to a cloud server that could be subsequently downloaded to a 

field data collection tablet paired with a GNSS receiver using a satellite based real-time 

kinematic (RTK) network for real-time plot position corrections (or SBAS if the RTK 

was not available). This method achieved an estimated horizontal plot accuracy of 

approximately 2 meters or less with respect to the LiDAR survey data used to produce 

the map service. Manual reconciliation of projected map coordinates and GNSS receiver 

data indicated that plots with 2 to 4 meters of estimated field data logger accuracy were 

matched to map coordinates within that level of estimated accuracy. 

Each sample plot provided 900 square meters of taxonomic field data; the survey was 

conducted by estimating species abundance and noting canopy position within the plot 
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perimeter. Quantitative precision was not the focus but was estimated with respect to 

abundance. Surveyed taxa included vascular plants, bryophytes and canopy lichens. 

Biodiversity Response Variables  

Six random stratified plots were sampled totaling an area of 5,400 m2 (Table 7). 

Accuracy of species identification was high, with only a few visible species remaining 

unidentified or uncounted. The data are representative on a comparative basis from one 

plot to another, but as an exploratory survey they likely understate actual richness and 

abundance. 

Table 7: Plot Survey Data 

Plot Richness (R) Abundance (A) MDI SDI 

32 14 361 0.737 0.829 

30 15 222 1.007 0.629 

26 18 655 0.703 0.866 

29 18 601 0.734 0.723 

25 11 171 0.841 0.852 

23 22 662 0.855 0.771 
 

Richness (number of specific taxa), abundance (quantity of each specific taxa) and two 

measures of biodiversity were computed for the model (Figure 12). 
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Figure 12: Distribution of plot values for species richness, abundance and diversity indexes. 

Multiple Linear Regression and Prediction Modeling 

Multiple linear regression, used often by ecologists to model species distributions, was 

selected to model canopy metrics as predictor variables and a biodiversity response 

variable. Future work would allow testing the model over greater spatio-temporal 

conditions that would better define the model’s range of applications and prediction 

suitability (Guisan & Zimmermann 2000). 
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The formula is notated as 

𝒀𝒊 = 𝒃𝟎 + 𝒃𝟏𝒙𝟏, 𝒊 + 𝒃𝟐𝒙𝟐, 𝒊 + ⋯ + 𝒃𝒑𝒙𝒑, 𝒊 + 𝜺𝒊 

(14) 

where  

• Yi is the response variable, 

• x1,i, . . . , xp,i are predictor variables (fixed, nonrandom),  

• b0, . . . , bp are unknown regression coefficients (fixed) and 

•  𝜺𝒊 𝑁(0, 𝜎2)~
𝑖𝑖𝑑  represents the random error 

Guisan & Zimmermann (2000) describe general patterns in the geographical distribution 

of species that originated in the field of biogeography to characterize the usefulness of 

predictive models. They note that the importance of abiotic and biotic factors at the 

margins of a species’ range of biological and physical stresses, respectively, as well as 

physical limits caused by environmental gradients and physiological constraints more 

generally determine the habitat preferences (Guisan & Zimmermann 2000). The 

regression model therefore focuses on “generality with precision” to predict and accurate 

response within a finite set of limitations (or a “simplified reality”) that implies natural 

phenomena are too complex and heterogeneous to be predicted accurately in every 

spatio-temporal aspect (Guisan & Zimmermann 2000).  

Canopy metrics, radiation and diversity were evaluated using R language functions for 

correlation, predictor collinearity, regression, model fit and predictive modeling within 

the study area. After prediction maps were created, the global inferential statistics 

Moran’s-I, Getis Global G and the local Getis-Ord Gi* statistics were used to evaluate 

spatial autocorrelation and clustering of continuous biodiversity data. 
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Results 

 

Richness of species, abundance of individuals and taxonomic diversity were initially 

plotted to ASR to confirm any relationships that might exist in the data using a paired-

plots diagram (Figure 13). Abundance (A) and diversity (MDI) exhibited modest negative 

and positive correlations, respectively, of similar magnitude. Diversity (SDI) exhibited 

the strongest correlation, with a correlation coefficient of -.49. 

  

  
Figure 13: Density matrix display of species richness, abundance, MDI and SDI with respect to ASR. 

When collinearity of all predictors was analyzed with respect to diversity in the paired-

plots matrix, species richness (R) was most significantly correlated with the texture of 

heights (TH, r = .76) and the intensity of the returns (IR, r = .78) (Figure 14). 



38 
 

 

Figure 14: Density matrix display of richness and canopy variables. Significance signals for each coefficient 

value are illustrated by the asterisks in the upper portion of the matrix. 

Abundance of individuals (A) was correlated with the texture of heights (TH, r = .59) and 

the intensity of the returns (IR, r = .70) (Figure 15). 
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Figure 15: Density matrix display of abundance and canopy variables. 

Diversity (MDI), was significantly correlated with leaf area (LAI, r = .69). Given the size 

of the plot dataset, and the early seasonality of the multi-spectral image acquisition, 

additional plot data and peak ‘leaf-on’ imagery would assist in confirming the potential 

usefulness of this finding. Vegetation density was negatively corrolated as well (TVD, r = 

- .43) as shown in Figure 16. 
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Figure 16: Density matrix display of MDI and canopy variables. 

Total vegetation density (TVD), representative of the total LiDAR vegetation returns to 

ground returns, bore a negative relationship to MDI. This correlation was the second 

most significant in the available data. Although it is not immediately discernable what 

this relationship represents, the density is in one sense most representative of all predictor 

variables as an indicator of relative canopy closure. 

Diversity adjusted for evenness (SDI), was modestly correlated with canopy height (CH, 

r = .42) and the intensity of the returns (IR, r = .24) within the available dataset (Figure 

17).  
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Figure 17: Density matrix display of SDI and canopy variables. 

The regression model was created by first identifying the best variable subset using cross-

validation statistics (the ‘regsubsets’ function in the R ‘leaps’ library), and then selecting 

predictors with high r2. To summarize, the cross-validation statistical notation is: 

(
𝒑

𝒌
) =  

𝒑(𝒑 − 𝟏)

𝒌
 

(15) 

where   

• p is the specific predictor variable and  

• k is the total number of predictor variables. 

 

If M0 is the null model containing 0 predictor values, the best model (Mk) from a series of 

models, denoted as M0…Mp. is derived by fitting (𝒑
𝒌

) models containing k predictors. 
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Biodiversity is analyzed as a function of all the variables in the canopy metrics data 

frame. The function evaluates the predictor variables using an exhaustive selection 

algorithm, selecting a maximum of four predictors for each variable subset.  

The richness (R) cross-validation analysis is shown in Figure 16 below with the 

coefficient of determination (r2) values on the y-axis, canopy parameters on the x-axis 

and values indicating the variables included in the validation. Results indicate that the 

greater portion of the variance (.9) is associated with two of the variables. The abundance 

(A) results indicate a similar portion of the variance (.91) associated with two of the 

variables, but the variables differ.  

The MDI diversity cross-validation indicates that much of the variance (.99) is associated 

with three of the variables, while the SDI diversity analysis indicates that much of the 

variance (.99) is attributed to three of the predictors and a similar proportion (.94) is 

associated with two of the variables. Complete results of each are shown in Figure 18. 

  

  
Figure 18: Model cross-validation analysis results for all predictor variables. Correlation coefficient is shown on 

the y-axis and predictor variables on the x-axis. The intercept is calculated as an output of the regression 

equation and is not significant for analysis. 

Using R linear modeling functions, we evaluated several variable subsets with significant 

r2 values to estimate the parameters of the linear model for SDI and MDI.  



43 
 

Figure 19 shows the results displayed for an SDI model with variables that have an r2  of 

.94. The p-values for each variable are insignificant (except for CH) and the model F 

statistic and p-value do not indicate the model itself is significant.  

Lm0(formula = SDI ~ LAI + CH + IR, data = thesisModelSDI) 

 

Residuals: 

         1          2          4          5          6  

 0.0181328  0.0001679 -0.0057449 -0.0102682 -0.0022876  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)   

(Intercept)  1.743356   0.437239   3.987   0.1564   

LAI           -0.021046   0.011619  -1.811   0.3211   

CH              0.050570   0.006195   8.163   0.0776 . 

IR              -0.016426   0.003853  -4.263   0.1467   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.02174 on 1 degrees of freedom 

  (1 observation deleted due to missingness) 

Multiple R-squared:  0.9852, Adjusted R-squared:  0.9409  

F-statistic: 22.24 on 3 and 1 DF,  p-value: 0.1544 

 
Figure 19: Summary statistics for LAI + CH + IR model (Lm0). 

A second model with two variables having the best p-values from the first model yielded 

the following results (Figure 20). 

Lm1(formula = SDI ~ CH + IR, data = thesisModelSDI) 

 

Residuals: 

       1        2        3        4        5        6  

 0.04041 -0.10677  0.10747 -0.01932  0.05052 -0.07230  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.175880   1.745028  -0.101    0.926 

CH              0.016505   0.021998   0.750    0.508 

IR                0.004572   0.013737   0.333    0.761 

 

Residual standard error: 0.1045 on 3 degrees of freedom 

Multiple R-squared:  0.2049, Adjusted R-squared:  -0.3252  

F-statistic: 0.3865 on 2 and 3 DF,  p-value: 0.709 

 
Figure 20: Summary statistics for CH + IR model (Lm1). 
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The addition of the interaction term increases the total variance associated with the 

predictors to 0.693 as shown in Figure 21. 

Lm2(formula = SDI ~ CH + IR +CH*IR, data = thesisModelSDI) 

 

Residuals: 

        1         2         3         4         5         6  

 0.015387 -0.049387  0.007445  0.045034 -0.017145 -0.001334  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)   

(Intercept) -32.68231    9.85867  -3.315   0.0802 . 

CH                1.41816    0.42369   3.347   0.0788 . 

IR                  0.25797    0.07686   3.356   0.0785 . 

CH:IR          -0.01092    0.00330  -3.309   0.0804 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.05027 on 2 degrees of freedom 

Multiple R-squared:  0.8772, Adjusted R-squared:  0.693  

F-statistic: 4.763 on 3 and 2 DF,  p-value: 0.1784 

 
Figure 21: Summary statistics for CH + IR + interaction model (Lm2). 

An ANOVA was output to determine whether the improved fit was worth the additional 

model complexity. This method can be used to compare models with the same response 

variable. (Figure 22). 

Analysis of Variance Table 

 

Model 1: SDI ~ CH + IR 

Model 2: SDI ~ CH + IR + CH * IR 

  Res.Df      RSS Df Sum of Sq      F  Pr(>F)   

1      3 0.032735                               

2      2 0.005055  1   0.02768 10.951 0.08045 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Figure 22: ANOVA R output for Lm1 and Lm2. 

A Likelihood Ratio test (ANOVA) compares nested models increasing in complexity 

(Bolker 2008). The resulting test p-value does not indicate that the model as a whole is 

significant or should be used despite its improved r2 value and significance of the 

predictor variables in the Lm2 model summary.  
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Linear model 3 summary statistics (shown in Figure 23) yield the best data frame for 

predictive modeling given the available data. 

Lm3(formula = MDI ~ CRR + TH + TVD, data = thesisModelMDI) 

 

Residuals: 

        1         2         3         4         5         6  

-0.016272 -0.005572  0.005557 -0.007054  0.020468  0.002873  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -2.904e+00  4.080e-01  -7.116  0.01918 *  

CRR           7.291e+00  6.777e-01  10.759  0.00853 ** 

TH              7.266e+00  8.754e-01   8.301   0.01421 *  

TVD          -6.492e-04  5.175e-05 -12.544  0.00630 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.02005 on 2 degrees of freedom 

Multiple R-squared:  0.9875, Adjusted R-squared:  0.9687  

F-statistic: 52.53 on 3 and 2 DF,  p-value: 0.01874 

 
Figure 23: Summary statistics for CRR + TH + TVD model (Lm3). 

The model p-value is below .05 and the adjusted r2 value is greater than .96. In addition, 

each of the predictor variables contribute to the significance of the model. 

The validity of linear regression modelling for prediction rests on four assumptions. They 

are that there is, 

1. a linear relationship between the dependent and predictor variables, 

2. the model errors are independent, 

3. the model errors are normally distributed, and 

4. the model errors have a constant variance with respect to the predictor variables 

(USDA 2016). 

The plot in Figure 24 graphs the model errors (residuals) vs. the predicted values (fitted) 

and tests for nonlinearity as well as heteroscedacity (non-constant variance) in errors. The 

plotted points should be symmetrically distributed around zero (a horizontal line) 

indicating that the model doesn’t make systematic errors (USDA 2016). The QQ plot 

(Figure 25) displays a satisfactory positive diagonal trendline for the available data. 
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Figure 24: MDI linear model (Lm3) residuals vs. fitted values. Some row values are flagged for a discrepancy in 

the fitted vs. residual relationship (1,4-5). 

 

Figure 25: QQ plot of linear model errors (Lm3) Variables 1, 5-6 are flagged. 

Coefficients from the model were used to display the prediction spatially over the study 

area extent as shown in Figure 26. 
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Figure 26: Graphic displaying predictive scatterplot for MDI (Lm3). 

 

The prediction model can be used to develop a raster with the predictive data in a few steps. 

 

Coefficients from linear model: 

(Intercept)          CRR                  TH                   TVD  

-2.9038666336   7.2912875982  7.2662259085  -0.0006491474 

 

Model equation for predicting MDI in R: 

MDI = -2.9038666336  + 7.2912875982*CRR + 7.2662259085*TH + (-

0.0006491474)*TVD 

 

Model equation formatted in map algebra for spatial prediction with gridded raster 

layers: 

MDI = -2.9038666336 + 7.2912875982 * "CRR30mStat" + 7.2662259085 * 

"ToH30mStat" + (-0.0006491474 * "TotVegDen30mStat") 
 

Multicollinearity, such as that exhibited between CRR and TVD (r2 = .80), does make it 

difficult to assess the relative importance of independent variables if they are both used in 

the model, but it does not impact the usefulness of the regression equation for prediction. 

Even when multicollinearity is great, the least-squares regression equation can be highly 

predictive.  

Figure 27 shows the results of the unadjusted prediction results mapped over the study 

area. Since predicting beyond the ranges of the original data will result in model 
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extrapolating and subsequent prediction errors, areas where the model extrapolated 

beyond the range of observation were ‘masked out’. Average CRR at a 30-meter 

resolution ranged in value from .27 to .40, the average TH from .23 to .31 and TVD from 

656 to 1704 per meter square. The Con tool in ArcGIS creates a raster where ‘1’ is the 

assigned value if the canopy parameters are met, and if false, ‘0’ is the assigned value. 

 

Figure 27: Map depicting spatial prediction raster of MDI in 30-meter resolution. 

Combining three mask extrapolation layers – one for each variable – by deriving the 

product (using the Times tool) of raster layers with 0 or 1 pixel values creates an output 

raster consisting of pixels where variables are within the range of observations (a value of 

1). Finally, this raster data is used to create a combined raster extrapolation mask applied 

to the original prediction file with the Set Null tool to derive a new predicted range of 

values (USDA 2016) shown in Figure 28. 
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Figure 28: Map depicting spatial prediction raster of MDI in 30-meter resolution, adjusted for predictor 

variable ranges. 

Two global spatial (inferential )statistics were used to evaluate the raster surface values 

for spatial autocorrelation and high-low value clustering of the predicted data set. Global 

Moran's I statistic uses a z-score and p-value that test the null hypothesis that MDI is 

randomly distributed across the study area. Similarly, the Getis-Ord General G statistic 

uses a p-value and z-score to determine that there is no spatial clustering of feature 

values. However, whereas the Moran’s I statistic evaluates high and low values together 

for purposes of spatial autocorrelation, the General G distinguishes between clustering of 

high and low values in the data set, determining which, if either, is significant and non-

random. Therefore, if the p-value is statistically significant, the null hypothesis can be 

rejected, and the z-score is used to determine if the high or low values are contributing to 

the clustering. 
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The Global Moran's I statistic is denoted as, 

𝑰 =
𝒏

𝑺𝟎

∑ ∑ 𝒘𝒊,𝒋𝒛𝒊𝒛𝒋
𝒏
𝒋=𝟏

𝒏
𝒊=𝟏

∑ 𝒛𝒊
𝟐𝒏

𝒊=𝟏

 

(16) 

where  

• zi is the deviation of an attribute for feature i from its mean,  

• wi,j is the spatial weight between feature i and j,  

• n is the number of features in the dataset and 

•  𝑆0  is the aggregate of spatial weights ∑ ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1 . (Rogerson 2015) 

 

The Getis-Ord General G is denoted as, 

 

𝑮 =
∑ ∑ 𝒘𝒊,𝒋𝒙𝒊𝒙𝒋

𝒏
𝒋=𝟏

𝒏
𝒊=𝟏

∑ ∑ 𝒙𝒊,𝒙𝒋
𝒏
𝒋=𝟏

𝒏
𝒊=𝟏

, ∀𝒋  ≠  𝒊 

(17) 

where 

• xi and xj are attribute values for features i and j,  

• wi,j is the spatial weight between feature i and j,  

• n is the number of features in the dataset and 

•  ∀𝑗  ≠  𝑖 indicates that features i and j cannot be the same feature. 

 

A 100 meter Euclidian distance parameter was estimated for spatial statistics (although 

formal methods exist to derive this distance, this would add unnecessary complexity for 

the purposes of the current study as the assumption is within reason for sub-canopy 

surface light penetration). 

Table 8: Global Moran's I and General G Results for Predicted MDI 

Global Moran's I Summary 

Moran's Index:  0.261149  

Expected Index:  -0.016667 

Variance:  0.004745  

z-score:   4.033045  

p-value:  0.000055 

Getis-Ord General G Summary       

Observed General G: 0.002234  

Expected General G: 0.002245  

Variance:                     0.000000  

z-score:                           -0.162268 

p-value:                 0.871095 

  

These statistics indicate that the data as a whole are non-random with respect to spatial 

autocorrelation – the Global Moran's I p-value indicates significance, so the null 
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hypothesis is rejected. However, the Getis-Ord General G p-value indicates we should 

accept the null hypothesis that there is randomness in the data with respect to the 

clustering not being attributable to either high or low MDI biodiversity values (Getis & 

Ord 1992, Ord & Getis 1995). 

The Getis-Ord Gi* statistic can be used to determine statistically significant spatial 

clustering of data with an influence threshold distance. The resulting data can be used to 

create an MDI biodiversity hot-spot analysis map from the predicted raster values (Figure 

29). ‘Hot spots derived from this statistic are both positive and negative, like the General 

G, and both types have significance for biodiversity prediction. It may be useful for a 

forest ecologist, for instance, to predict biodiversity ‘cold-spots’ as well as high 

biodiversity areas to see why this might be the case or for stand biodiversity and 

productivity improvement. 

The notation for the local Gi-star (z-score) statistic is, 

𝑮𝒊
∗ =

∑ 𝒘𝒊,𝒋𝒙𝒋
𝒏
𝒋=𝟏  −  𝑿 ̅ ∑ 𝒘𝒊,𝒋

𝒏
𝒋=𝟏

𝑺√[𝒏 ∑ 𝒘𝒊,𝒋
𝟐𝒏

𝒋=𝟏 −  (∑ 𝒘𝒊,𝒋)𝒏
𝒋=𝟏

𝟐
]

𝒏 − 𝟏  

 

(18) 

where xj is the attribute for feature j, wi,j is the spatial weight between feature i and j, n is 

the number of features in the dataset and: 

𝑺 = √
∑ 𝒙𝒋

𝟐𝒏
𝒋=𝟏

𝒏
 − (𝑿 ̅)𝟐 

(19) 

𝑿 ̅ =  
∑ 𝒙𝒋

𝒏
𝒋=𝟏

𝒏
 

(20) 

(Rogerson 2015) 

The statistic in this case used a fixed distance band of 100 meters to impose a “sphere of 

influence” or “moving window” conceptual model of spatial interactions onto the data. 
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Each feature is analyzed within the context of those neighboring features located within 

the distance you specify for the distance band and neighbors within the specified distance 

are weighted equally. The hot-spot map data frame contained 61 points each with 2-13 

neighboring data points depending on its spatial position (Appendix 4). 

 

Figure 29: Map depicting spatial prediction of MDI hot spots based on Gi-star z-scores. High-value z-score hot 

spots are enhanced visually; both hot and cold statistics are displayed with confidence internals.  

Discussion 

 

Geospatial analysis of the radiant flux and canopy metrics focused on three general areas. 

1.) exploratory analysis of collinearity between variables, 2.) selecting predictor variables 

for regression and predictive models, and 3.) examination of the predicted values with 

spatial statistics to determine if the predicated values were random. Regarding 

exploratory analysis, area solar radiation and canopy height exhibited a significant 

positive correlation (validating in some sense the radiation model with respect to the 

LiDAR canopy mensuration data). Statistically significant relationships were evident 
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between the canopy structure and biodiversity data as well. Prior to regression, a review 

of area solar radiation and biodiversity (MDI) data exhibited a modest association with an 

r value of .2, the only positive relationship of magnitude evident between radiant flux and 

biodiversity in the available data.  

Of the four models analyzed, linear model (Lm3) comprising the canopy relief ratio 

(CRR), the texture of heights (TH) and total vegetation density (TVD) and its relationship 

to biodiversity (MDI) was the most significant given the available data. Interestingly, this 

set of predictors is intuitively descriptive of the category of metrics that would influence 

the variability of irradiance and the extinction of PAR in the lower strata. Unlike with 

canopy height (CH), there was no significant positive correlation between area radiation 

(ASR) and vegetation density (TVD). TVD’s negative relationship to MDI may represent 

a spatial pattern whereby canopy density is associated with less diversity, much like patch 

dynamics in horizontal forest patterns generally suggest greater heterogeneity. I.e., 

canopy closure could suggest fewer, dominant species in the area (patch). 

The MDI linear regression model had a p-value of 0.01874 and an adjusted r2 of 0.9687. 

As a predictor variable, CRR had a p-value of 0.00853 (a 0.01 level of significance), TH 

a p-value of 0.01412 (a 0.05 level of significance), and TVD a value of 0.00630 (a 0.01 

level of significance). This model was used for study area prediction based on 144 data 

points in the base data set. It yielded over 60 data points after adjusting the prediction 

model for the range of canopy metrics in the specific plots that were surveyed. 

The application of spatial statistics to the predicted data was the final component of the 

study. Global spatial statistics indicated the predicted range of MDI was not-random 

overall, and the local hot-spot map produced from this predicted data indicated several 

areas of both high and low biodiversity concentrations based on the prediction model 

data. The statistical significance of each of these hotspots varied from 90-99% based on 

the concentration of nearest neighbors within 100 meters of each analyzed data point. 

Schneider et al. (2017) undertook a similar study in a European conifer forest supported 

by the University of Zurich Research Priority Program on Global Change and 

Biodiversity (URPP GCB) and the working group of the National Center for Ecological 

Analysis and Synthesis on ‘Prospects and priorities for satellite monitoring of global 

terrestrial biodiversity’. They employed a “spatially simultaneous autoregressive error 

model estimation based on first order neighbors” (using a spatial econometrics R package 

spdep, errorsarlm) “to fit a generalized linear model”. This allowed for the spatial 

autocorrelation to be applied in the linear model method itself and could be calculated for 

this study with the available data as an alternate method. 
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Although the plant biodiversity point-sample size was not as large as initially planned, 

the forest area sampled was nonetheless significant and varied in terms of area solar 

radiation and canopy structural diversity. Even in the relatively small number of plots 

surveyed, there were examples of hydric, mesic and dry-mesic soils which impacted 

vascular plant species abundance given the availability of water. Schneider et al. (2017) 

use abiotic factors to test for “patterns of functional traits and trait diversity” related to 

topography, soil type, water and incident solar radiation. This study does not analyze the 

same biogeographic scale or use the same diversity assumptions (although they are not 

contradictory), however, the use of these abiotic factors in the list of explanatory 

variables would prove useful in future research. 

The model results provided some level of confidence that current or more topographically 

precise modeling methods might yield useful prediction models with additional point 

samples. However, more fieldwork is also required to determine the relationship of 

structural metrics used in the study to extinction (K) to develop a more coherent 

understanding of canopy insolation partitioning of the radiant flux in the context of plant 

communities. These relationships, being more highly descriptive of understory PAR, 

would likely add more insight into the interpretation of modeled results of larger data 

sets. 

Based on facts and probabilities in the technology innovation domain, it may be inferred 

that the increased availability of LiDAR and multi-spectral data acquired from UAVs, the 

quantity of products useful to practitioners may increase significantly as acquisition costs 

decrease in coming years – provided ALS has a data acquisition competitor in UAV for 

forest landscapes, this would likely impact LiDAR use trends. Even if satellite based 

acquisition becomes the norm for larger studies, there will be a need for small scale 

analysis. Additionally, the market for accurate biodiversity assessments has a basis in 

wildlife management and forest biometrics and is mandated under ecosystem services 

management requirements in some jurisdictions. One example of the use of this model is 

the implementation of biodiversity deficiency potential logic into long-term carbon 

sequestration and yield models that might prove advantageous if managing for multiple 

objectives, and lead to decreasing the effective fragmentation of horizontal structure 

across landscapes. It is possible that agroforestry professionals who seek to increase total 

yield or forestry fund managers looking for sustainable carbon offset investments would 

benefit from methods that build on this study. In any case, the development of a flexible 

and reasonably priced collection of tools for practitioners analyzing complex forest 

canopy models is within the means of a broad spectrum of researchers and institutions. 
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Appendices 

 

Appendix 1. 

Plate tectonic setting for the Klamath Ecoregion. A—A' indicates the location of the 

profile of the Gorda Plate subduction under the North American Plate between Eureka 

and Mount Shasta, the arc in direct proximity to the study area near Russian Peak 

(Sawyer 2006). 
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Appendix 2. 

LiDAR Data Specification 

• Projection: UTM Zone 10 North 

• Horizontal Datum: NAD83 (CORS96)  

• Vertical Datum: NAVD88 (GEOID03)  

• Units: Meters 

• LAS v 1.2 - All Returns (.laz compressed)  



63 
 

• Raster (1.0 Meter ENVI .dat files) 

o Bare Earth Model (1/4 USGS quads)  

o Highest Hit Model (1/4 USGS quads) 0.5 Meter ENVI .dat files  

o Normalized Intensity Images (1/4 USGS quads) 

LiDAR Acquisition Specification 

• Survey Altitude (AGL) 900 meters 

• Target Pulse Rate 600 kHz 

• Pulse Mode Single Pulse in Air (SPiA) 

• Laser Pulse Diameter 21 cm 

• Mirror Scan Rate 52.0 Hz 

• Field of View 30 degrees 

• GPS Baselines less than or equal to 13 nm 

• GPS Position Dilution of Precision (PDOP) less than or equal to 3.0 

• Intensity 8-bit 

• Resolution/Density Average 8 pulses/m2 

• Accuracy RMSEZ ≤ 15 cm 
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Appendix 3. 

Biodiversity Sample Plot Data 

Plot: #32 

Map Coordinates: 10T 507793 4572949 

GNSS correction method: SBAS 

Estimated horizontal accuracy: 2 meters (approximate) 

Elevation: N/A 

Densitometer reading at plot center: 100 – (20 * 1.04) = 79.2% canopy closure 

Note: Lower strata abundance concentrated in mesic soils; xeric soils also observed on 

plot. 

Upper and mid-strata species quantity estimate: 

Abies concolor 50 

Pinus contorta 5 

Pseudotsuga menziesii 15 

Calocedrus decurrens 5 

Pinus ponderosa 9 

Letharia vulpine 100 

 

Lower-strata species quantity estimate: 

Abies concolor 30 

Pseudotsuga menziesii 10 

Picea engelmannii 3 

Chrysolepi sempervirens 40 

Chimaphila umbellate 30 

Adenocaulon bicolor 10 

Linnaea borealis var. longiflora 50 

Rosa gymnocarpa 2 

Prosartes hookeri 1 

Prunus emarginata 1 
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Plot: #30 

Map Coordinates: 10T 507733 4572919 

GNSS correction method: SBAS  

Estimated horizontal accuracy: 4 meters (approximate) 

Elevation: 1521 HAE 

Densitometer reading at plot center: 100 – (49 * 1.04) = 49.0% canopy closure 

Upper and mid-strata species quantity estimate: 

Abies concolor 4 

Pinus monticola 1 

Pseudotsuga menziesii 1 

Calocedrus decurrens 1 

Letharia vulpine 2 

Lobaria hallii  15 

 

Lower-strata species quantity estimate: 

Abies concolor 2 

Chrysolepi sempervirens 6 

Chimaphila umbellate 130 

Adenocaulon bicolor 1 

Linnaea borealis var. longiflora 30 

Rosa gymnocarpa 4 

Prosartes hookeri 7 

Pteridium aquilinum 5 

Galium triflorium 9 

Apocynum androsaeemifolium 4 
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Plot: #26 

Map Coordinates: 10T 507584 4572768 

GNSS correction method: SBAS 

Estimated horizontal accuracy: 1.5 meters (approximate) 

Elevation: 1550 HAE 

Densitometer reading at plot center: 100 – (12 * 1.04) = 87.5% canopy closure 

Upper and mid-strata species quantity estimate: 

Abies concolor 18 

Pseudotsuga menziesii 1 

Picea engelmannii 11 

Letharia vulpine 2 

Lobaria hallii  2 

 

Lower-strata species quantity estimate: 

Abies concolor 28 

Pseudotsuga menziesii 10 

Calocedrus decurrens 3 

Picea engelmannii 2 

Chrysolepi sempervirens 3 

Chimaphila umbellate 175 

Adenocaulon bicolor 40 

Linnaea borealis var. longiflora 50 

Rosa gymnocarpa 10 

Prosartes hookeri 80 

Pteridium aquilinum 20 

Clintonia uniflora 5 

Galium triflorium 50 

Apocynum androsaeemifolium 25 

Calamagrostis koelerioides 10 

Letharia vulpine 10 

Unidentified plant 100 
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Plot: #29 

Map Coordinates: 10T 507613 4572888  

GNSS correction method: SBAS 

Estimated horizontal accuracy: 1.5 meters (approximate) 

Elevation: 1543 HAE 

Densitometer reading at plot center: 100 – (12 * 1.04) = 87.5% canopy closure 

Upper and mid-strata species quantity estimate: 

Pseudotsuga menziesii 18 

Calocedrus decurrens 2 

Pinus ponderosa 1 

Lobaria hallii  5 

 

Lower-strata species quantity estimate: 

Abies concolor 35 

Pseudotsuga menziesii 13 

Calocedrus decurrens 1 

Chimaphila umbellate 50 

Adenocaulon bicolor 25 

Linnaea borealis var. longiflora 50 

Rosa gymnocarpa 5 

Prosartes hookeri 30 

Pteridium aquilinum 1 

Clintonia uniflora 25 

Rubus parviflorus 2 

Galium triflorium 10 

Prunus emarginata 1 

Apocynum androsaeemifolium 25 

Letharia vulpine 1 

Lobaria hallii 1 

Unidentified plant 300 
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Plot: #25 

Map Coordinates: 10T 507524 4572768  

GNSS correction method: SBAS 

Estimated horizontal accuracy: 3.5 meters (approximate) 

Elevation: 1530 HAE 

Densitometer reading at plot center: 100 – (17 * 1.04) = 82.3% canopy closure 

Upper and mid-strata species quantity estimate: 

Abies concolor 2 

Pseudotsuga menziesii 11 

Calocedrus decurrens 1 

Pinus ponderosa 1 

Letharia vulpine 25 

 

Lower-strata species quantity estimate: 

Abies concolor 26 

Pseudotsuga menziesii 1 

Calocedrus decurrens 3 

Chrysolepi sempervirens 5 

Chimaphila umbellate 20 

Adenocaulon bicolor 25 

Berberis aquifolium 1 

Rosa gymnocarpa 40 

Prosartes hookeri 10 
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Plot: #23 

Map Coordinates: 10T 507433 4572530  

GNSS correction method: SBAS 

Estimated horizontal accuracy: 1 meter (approximate) 

Elevation: 1569 HAE 

Densitometer reading at plot center: 100 – (50 * 1.04) = 48% canopy closure 

Note: Plot soil hydrology is hydric. 

Upper and mid-strata species quantity estimate: 

Abies concolor 2 

Pseudotsuga menziesii 4 

Picea engelmannii 5 

Pinus ponderosa 1 

Letharia vulpine 25 

 

Lower-strata species quantity estimate: 

Abies concolor 70 

Picea engelmannii 2 

Chrysolepi sempervirens  1 

Prunus emarginata 2 

Rubus parviflorus 5 

Adenocaulon bicolor 45 

Amelanchier pumila 2 

Rosa gymnocarpa 6 

Chimaphila umbellate 25 

Pteridium aquilinum 75 

Clintonia uniflora 25 

Lilium columbianum 5 

Galium triflorium 25 

Apocynum androsaeemifolium 25 

Acer macrophyllum 1 

Symphoricarpos hesperius 2 

Veratrum californicum 3 

Alnus incana 6 

Linnaea borealis var. longiflora 300 
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Appendix 4. 

 
MDI, Z-score and p-values for data points used to produce the local Gi-star map. 
 

POINT ID MDI VALUE GI* Z-SCORE GI*P-VALUE N NEIGHBORS 

1 0.950523436 -0.379137603 0.704585685 8 

2 0.64489764 -0.536237105 0.591794695 9 

3 0.551392734 -0.536237105 0.591794695 9 

4 0.753116131 -1.57725639 0.114736542 6 

5 0.895265818 0.945622418 0.344341217 9 

6 1.012304306 -0.536237105 0.591794695 9 

7 0.374205112 -0.571862952 0.567414827 8 

8 1.432014585 0.239518571 0.810703498 9 

9 0.971790373 -0.536237105 0.591794695 9 

10 1.354251146 1.880310147 0.060065821 9 

11 0.992714345 0.235316107 0.813963394 9 

12 0.921366751 1.239257339 0.215250236 8 

13 1.047469139 0.532882945 0.594114614 11 

14 0.946267366 1.53915907 0.123765467 8 

15 0.934375107 -0.968195169 0.332946919 5 

16 0.820723474 0.002165397 0.998272265 9 

17 0.697763085 0.707607701 0.479188914 13 

18 1.170986414 0.676712505 0.498588386 12 

19 0.231846929 0.983866671 0.325181086 12 

20 0.926844597 1.027307879 0.304275528 12 

21 1.116466284 0.865254017 0.386899392 11 

22 1.17999649 0.766481926 0.443389609 9 

23 1.029138923 0.991587646 0.321398731 10 

24 1.37430346 0.942997484 0.345682201 9 

25 1.014053702 1.655980718 0.097725724 6 

26 0.908354163 2.914650473 0.003560871 8 

27 0.950768173 1.57505523 0.115243697 7 

28 1.411396027 2.726129093 0.006408193 7 

29 1.189407229 2.810175623 0.004951447 7 

30 1.243346453 2.898078894 0.003754561 7 

31 1.048261285 2.76259358 0.005734412 8 

32 1.199327826 2.726129093 0.006408193 7 

33 1.121464968 1.436313129 0.15091326 9 

34 0.301283121 -0.834310748 0.404105905 9 
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35 1.028103113 -0.004708383 0.996243267 9 

36 0.867261827 -1.408520534 0.158976991 9 

37 0.698297679 -0.834310748 0.404105905 9 

38 1.062563777 -0.834310748 0.404105905 9 

39 1.107253671 -1.6683891 0.095238511 8 

40 0.626810849 -1.408520534 0.158976991 9 

41 0.676508367 -0.368937706 0.712174158 6 

42 0.541493118 -1.6683891 0.095238511 8 

43 0.62604028 0.388567646 0.697596005 3 

44 1.274631977 -0.053431365 0.957388216 4 

45 0.949938536 0.388567646 0.697596005 3 

46 0.656762123 -0.509226676 0.610593349 2 

47 0.92310524 -0.509226676 0.610593349 2 

48 0.60632205 -1.420676396 0.155410858 5 

49 0.881251276 -3.04520218 0.002325239 9 

50 0.59173876 -2.811447688 0.004931911 10 

51 0.638733983 -2.890760729 0.003843106 9 

52 0.296034575 -2.576138402 0.009991065 11 

53 0.634688079 -2.816957101 0.0048481 12 

54 0.879496157 -2.61192181 0.009003484 9 

55 0.925068915 -2.363721262 0.018092419 8 

56 0.523034692 -2.576138402 0.009991065 11 

57 0.590007246 -2.576138402 0.009991065 11 

58 0.974484026 -2.489235818 0.012801802 7 

59 0.680426359 -1.886055345 0.059287497 9 

60 1.080617905 0.556541235 0.577840916 4 

61 1.170920849 0.560747311 0.574969813 3 

 

 


