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An Object Based Image Analysis (OBIA) was employed to classify four tree species in a 

temperate rainforest utilizing the high-resolution WorldView-2 (WV2) sensor (8 bands + 

panchromatic) and airborne LiDAR (minimally 2 points per square meter).  Classification 

involved first performing a parametric Maximum Likelihood (ML), Spectral Angle Mapper 

(SAM), and OBIA classification to the study area. Secondly, for each classified image, a 

LiDAR-derived Canopy Height Model (CHM) was incorporated thereafter.  Kappa and z-

statistics were calculated and compared for each classification.  It was originally 

hypothesized that an OBIA will provide the best accuracy, and incorporation of a CHM 

would further increase classification accuracy for all outputs. A series of statistical tests 

indicated a lack of strength in utilizing the CHM, except when specifying the Coastal 

Redwood class at  50m.  Kappa results are 59% for the OBIA, 46% for ML, and 24% for 

SAM.  CHM increased kappa accuracy by an average of 4.5%.   
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1.  INTRODUCTION AND BACKGROUND 

 
 Accurately characterizing tree species distribution and bioparametric metrics is 

critical for active management of forested ecosystems (Jones et al. 2010,  Plourde et al. 

2007).  The increase of greenhouse gas emissions over the next century is expected to 

impact ecological systems, particularly arboreal ones (Allen 2009, Allen et al. 2010).  In 

California, it is projected that climate change may increase the severity and frequency of 

forest fires, change weather patterns, and reduce snowpack levels in the Sierra Nevada 

(Hayhoe et al. 2004).   

 Of increasing concern for arboreal ecosystem management is the Pacific 

temperate biome (Appendix 1).  Its geographical boundaries stretch from the southern 

coast of Alaska to the north-central coast of California.  This biome has four times more 

productivity than tropical forests (Davis 2000), but is also one of the most endangered as 

13 of 25 million hectares have been destroyed since the arrival of European colonialists 

(Auwaerter and Sears 2006). 

 Due to the highly varied mountainous terrain, access to this region can be 

difficult, and therefore remote sensing is the only viable option as a means of measuring 

arboreal physical characteristics in a spatially and temporally continuous manner (Hyde 

et al. 2005).  Recent advances in remote sensing have allowed for a more proficient 

analysis of vegetation and forest canopies  (Antonarakis 2008, Chen et al. 2008, Jones et 

al. 2010, Ke et al. 2010, Mundt et al. 2006, Pu 2004, Onojeghuo and Blackburn 2011, 
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Salah et al. 2006, Zhang et al. 2012). Two of those technologies include the Light 

Detection and Ranging (LiDAR) airborne sensors, and multi and hyperspectral sensors 

that allow for monitoring of varied environments at finer spectral scales.   

LiDAR data has the potential to distinguish forest composition characteristics 

accurately in a diversity of forest types (Zhang et al. 2012a).  Furthermore, airborne 

LiDAR, coupled with a high level of global positional accuracy and point density, is an 

attractive dataset for estimating a wide range of forest parameters (Stephens et al. 2012). 

LiDAR has been used for vegetation mapping in urban (Chen et al. 2009) and non-urban 

contexts (Antonarakis et al. 2008, Ke et al. 2010, Puttonen et al. 2010, Voss and 

Sugumaran 2008), even to map invasive trout in Yellowstone Lake (Shaw et al. 2008). 

LiDAR applications capture accurate three-dimensional information for the retrieval of 

tree heights, canopy structure, forest biomass, and other parameters that conventional 

optical sensors are unable to retrieve to a high degree of accuracy.  Yet LiDAR is not 

perfect; Hyde et al. (2006) complains that LiDAR is incapable of imaging entire 

landscapes, limits scanning to near nadir to prevent ranging errors, data has coverage 

gaps due to pitch and roll, and is expensive. 

 Hyperspectral high-resolution images also provide the opportunity to differentiate 

small spectral differences and classify individual tree species better, thereby achieving 

more accurate classifications. Hyperspectral remotely sensed data have been used in 

mapping vegetation types across an assorted range of environments, such as estuarine 
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eel-grass communities (Onojeghuo and Blackburn 2011), marshland vegetation (Rosso et 

al. 2005), urban land-use (Xiao et al. 2004), and tropical forests (Clark et al. 2005). 

 A study by Clark et al. (2005) used a well calibrated hyperspectral imaging 

spectrometer called HYDICE to classify 7 tree species in an old growth tropical forests in 

Costa Rica.  The authors analyzed leaf, pixel, and crown-scale spectra using Object 

Based Image Analysis (OBIA) while comparing the performance of linear discriminant 

analysis (LDA), spectral angle mapper (SAM), and maximum likelihood (ML) 

classifiers.  The objective was to examine the trade-offs between spectral features, leaf to 

crown spatial scale of measurement, and classification schemes for the automated 

classification of individual tropical tree species using their reflectance properties. The 

overall accuracy at the leaf scale using LDA was 100% with 40 hyperspectral bands and 

92% with 30 bands.  Different band combinations were also tested, and the ML had a 

88% overall accuracy using 60 bands at crown scale. The SAM performed the worst (< 

51% overall accuracy) and the authors suggested not using the spectral angle mapper 

(SAM) and maximum likelihood classifiers for dense arboreal habitats. 

 Unfortunately, hyperspectral sensors are limited by several factors. Cho et al. 

(2009) argue that the high dimensionality of hyperspectral data restricts the function of 

parametric classifiers for species mapping due to the demand for a large number of 

training samples. Quackenbush et al. (2000) believe hyperspectral data poses challenges 

to tree classification because the spectral response of individual trees are influenced by 
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variation in canopy illumination and topographic effects which ultimately affects 

accuracy (Ke et al. 2010).  

 Classifications performed using such data can introduce salt-and-pepper noise in 

the output (Ke et al. 2010). Weishampel et al. (2000) argue that passive optical sensors 

are limited in their ability to penetrate the upper canopy layer, and are thus better suited 

for mapping horizontal structure such as urban environments.  However, Onejeghuo and 

Blackburn (2011) believe that such shortcomings can be overcome through compression 

which reduces data dimensionality, while retaining vital spectral information for 

classification.  

 In order to compensate for errors apparent in optical sensors, OBIA provides a 

more functional way of delineating readily usable objects from optical imagery while also 

combining image processing and GIS functionalities in order to utilize spectral and 

contextual information in a holistic way (Blaschke 2010).  Using two SPOT-5 satellite 

images merged with a 1-meter color infrared aerial image, Riggan and Weih (2009) com-

pared an OBIA and a Pixel Based Classification (PBC) in a mixed deciduous and 

evergreen forest within Arkansas. A supervised classification was performed employing a 

ML classifier. Utilizing error matrices, the Kappa Coefficient, and a two-tailed t-test, 

results indicate an overall accuracy of 82% for OBIA and 67% for PBC. The PBC 

misclassified pixels in the spectrally heterogeneous mixed forest classes, but did well for 

spectrally homogenous classes such as impervious surfaces and farmland. The OBIA 
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provided better class distinction for all deciduous and evergreen tree classes. The authors 

cautioned the use of the ML classifier for classifying intraspecies rich mixed forest. 

 Kamagata et al. (2008) studied and compared both techniques in Central Japan 

amongst slowly urbanizing agriculture-based areas. Using Ikonos imagery, the 

researchers determined that the PBC was mired with errors, primarily because it had 

difficulty differentiating between the highly heterogeneous urban-agricultural landscape 

and shadows. The OBIA improved the accuracy only marginally. Yet the author‘s 

believed that the classification method—minimum-distance—was inappropriate for 

differentiating between evergreen broad-leaf forests, secondary mixed forests, and broad- 

leaf forests that were in close proximity from one another.  Furthermore, they believed 

that misclassifications were further hampered by employing an inappropriate scale 

parameter.  

 An attractive viable alternative to hypespectral imagery is the WorldView-2 

(WV2) sensor.  WV2 was launched by DigitalGlobe in 2009, and is the first commercial 

satellite to feature a high-resolution 1.8 m spatial resolution (at nadir) with 8 

multispectral bands.  In contrast to QuickBird (see Figure 1) which has similar bands, 

WV2 provides four new bands: coastal blue (400-450 nm), yellow (585-625), red-edge 

(705-745 nm) and a second near-IR band (860-1040 nm). A 0.50 m spatial resolution (at 

nadir) panchromatic band is also included.  The additional WV2 red-edge and NIR bands 

are important in distinguishing and discriminating vegetation types (DigitalGlobe 2010).   
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Figure 1.  Worldview-2 Sensor Comparison of Worldview-1 and Quickbird 

(Source:  DigitalGlobe 2010). 

 

 Studies using WV2 determined that the image texture features extracted from 

WV2 can be used for modeling and mapping forest structural parameters in conifer 

plantation forests (Ozdemir and Karnieli (2011).  The WV2 sensors have benefits in 

urban land use classifications as well; Knovack et al. (2011) performed an urban land 

cover study and determined that classes like ceramic tile roofs and bare soil, as well as 

asphalt and dark asbestos roofs, can be better distinguished with the additional bands of 

the WV2 sensor.     

 

 Pu and Landry (2012) compared WV2 and IKONOS sensors using a Linear 

Discriminate Analysis (LDA) and a Regression Tree classification algorithm using OBIA 

to identify 7 different tree species in a spatially heterogeneous urban environment.  

Although results indicate that WV2 had an overall average accuracy improvement of 16-

18% over IKONOS, WV2 only had an overall average accuracy of 63% and a kappa 

coefficient of 53%.  Cho et al. (2009) assessed the spectral configuration of WV2 for 
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discriminating eight savanna tree species in Kruger National Park of South Africa. The 

results showed a higher classification accuracy (77%) for the ML classification involving 

all WV2 bands compared to the traditional blue, green, red and NIR bands (61.8%).  The 

WV2 based classification was improved to 82% (kappa 0.77) when a 3x3 post-

classification majority filter was applied.  

 Other non-arboreal uses for WV2 include a coral reef health study using a 

Support Vector Machine (SVM) classification that achieved an overall accuracy of 76% 

using the ocean band alongside the traditional 3 bands, and a 93% accuracy with all 8 

bands (Collin and Planes 2012).  Chen et al. (2009) compared the WV2 and IKONOS 

imagery for identifying the Sophora chrysophylla and Myoporum sandwicense tree on the 

western slope of Mauna Kea, Hawaii using a pixel vs. OBIA approach.  WV2, in both the 

pixel and OBIA approach, had a 6% / 13% improved accuracy over IKONOS.   

 Since the beginning of the 21st century, an increasing number of studies have 

attempted to combine multi-source images to improve classification accuracy and 

overcome challenges posed by using either sensors alone (Chen et al. 2009). To date, the 

synergy or fusion of spectral data and LiDAR has proven successful for a diversity of 

applications, including the mapping of floodplain vegetation (Geerling et al. 2007), 

reedbed habitats (Onejeghuo and Blackburn 2011), urban environments (Chen et al. 

2009), low (Ke et al. 2008) and relatively high (Jones et al. 2010) species-rich forests, 

and deciduous temperate forests (Voss and Sugumaran 2008). These studies indicate an 
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increase in classification accuracies by 5%-20% when combining LiDAR with an optical 

sensor.  

 In a model study by Jones et al. (2010) which attempted to classify coastal forests 

(11 different tree species in total) along Canada‘s Pacific Coast using fused hyperspectral 

and LiDAR datasets, results suggest that hyperspectral optical data alone produced an 

accuracy of over 90% for species within homogenous height, age, and volumetric 

canopies using a refined Support Vector Machine (SVM) classification. However, the  

incorporation of height information from LiDAR did not significantly increase accuracy 

in areas where spectrally similar intra-species tree classes exhibited similar mean canopy 

heights.  The height information from LiDAR resulted in only a slight average per-class 

accuracy increase of 4%.   

 Dalponte et al. (2008) experimented with different LiDAR returns and channels 

(elevation and intensity), and different hyperspectral band combinations (25/40/126) 

using the AISA Eagle hyperspectral sensor for estimating the effectiveness of classifying 

19 different tree species in a topographically flat mixed evergreen forest in Italy.  Three 

different classifier were used: (1) distribution-free support vector machines (SVMs), (2) 

the parametric Gaussian maximum likelihood (ML), and (3) the leave one-out-covariance 

algorithm (GML-LOOC) classifier.  The author's used a Jeffreys–Matusita distance 

versus the number of hyperspectral channels selected, where saturation was reached at 25 

hyperspectral bands.  They chose to further analyze the effect on accuracy with 40 and all 
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126 hyperspectral bands.  The use of all 126 hyperspectral bands (versus 25 and 40 

bands) and the SVM proved to be the most robust and accurate (88.1% Kappa with 126 

bands, 87.9% with 40 bands, and 87.2% with 25 bands) in the exploitation of the 

multisource data due to its strong non-linear properties and decision boundaries, its 

ability to manage hyperdimensional feature spaces, and its ability to solve binary 

classification problems (Dalponte et al. (2008).  Although the SVM had a higher 

classification accuracy than the ML (by 10%) or the GML-LOOC (by 20%), the 

differences in overall and kappa accuracy between the use of all (126) or a fraction (40 or 

25) of the hyperspectral bands were insignificant at <1% within each classifier.  On 

average, the inclusion of only the LiDAR first-return height data increased classification 

accuracy and discrimination of each of the 19 tree species (all of which have very similar 

spectral signatures but different heights) between 1-10%.  Dalponte et al. (2008) also 

concluded that using different LiDAR returns (from 1 to 4) did not increase Kappa 

significantly.   

 A summary analysis of the scientific literature within the past 7 years in Table 1 

highlights several significant findings, the most obvious being the wide variety of 

employed classifiers for tree centric classifications. The maximum likelihood (ML) 

classification appears to be the most widely used.  Table 1 also suggests that several 

studies, including those by Shafri et al. (2007) Clark et al. (2005) and Pu and Landry 

(2012), have opted to test and evaluate the performance of two or three classifiers in their 
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study.  Table 1 also suggests that LiDAR will improve classification results between 5% 

to 20%. 

 In sum, there is a general consensus from the scientific literature that mapping and 

discriminating the varied spatial and structural patterns of individual tree species in 

heterogeneous forests using optical sensors will benefit from the integration of LiDAR 

datasets (Anderson et al. (2008)).  Also, as evident in the research discussed, the 

classifier and the type of environment in which it is used also has a strong impact on 

accuracy.   
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Note:  OA = Overall Accuracy, K = Kappa. Support Vector Machine (SVM), K-Nearest Neighbor (K-NN); 

where K is a positive integer, Binary Linear Discriminant Function (BLDF), Maximum Likelihood (ML), 

Kohenen's Self-Organized Map (SOM) Nearest Neighbor (SOM-NN), Classification And Regression Tree 

(CART). 1. Mean Producer's Accuracy: Rocky zone / wetland zone 2.  Dalponte tested the accuracy of 

three classifiers using 24, 40, and 126 hyperspectral bands, but only those with 40 is shown above.  

"LiDAR only" was also tested, but not described in detail yet it was noted that the accuracy of understory 

tree's increase 5-15% with only the LiDAR vs. the hyperspectral data. 3.  A Classification using "Three-

dimensional canopy volume profiles" were used instead of a traditional pixel-based classification.  

Although overall accuracy changed minimally between single and fused dataset, producers and user 

accuracies increased 5-15% depending on the tree species, except for Douglass fir (4.3% producers, -23.2% 

users) 4.  A Kappa-z test was only provided using discovered optimal scale parameters for each given 

dataset. 5.  A multilayer perception (MLP) was employed for the data fusion and classification  

implemented into an Interactive Data Language (IDL).  A feed-forward neural network based on a scaled 

conjugate gradiant training was also employed. The classification results shown above are based on 

accuracy comparisons of using either ML, SVM, INFOFUSE results using the multispectral bands and/or 

DSM. 6. Salah et al. (2009) also integrated textural features with LARHY which increased overall accuracy  

by 9%

 

 

 

64.8 (OA) 91 (OA) N

n/a 89.4 (OA) Y

n/a 92/88 N

n/a 89/81/71 (K) N

78 (OA) 81 (OA) N

n/a 72.9 (OA) N

87 (K) 92 (K) Y

n/a 71 (OA) N

32/35/54 (OA) 91/75/87 (OA) N

n/a 89 (OA) N

n/a 87 (OA) N

51 (K) 77 (K) Y

Table 1:  Scholarly Summary of Conclusive Findings on Multi-Sensor Data Fusion

Nn/a 75 (OA)

CART

Voss and Sugumaran 

(2008) 56 (OA) Urban NN

Temperate RainforestZhang et al.  (2012) 62 (K)

N

Salah et al. (2009)6 50 (OA) Urban Kohenen's SOM-NN

ML/SVM/INFOFUSE

MTM

Onojeghuo and 

Blackburn (2011) 85 (OA) n/a 96 (OA) Coastal Reedbeds ML

Maximum Likelihood (ML)

Hierarchical Tree

ML

SVM / ML / L-NN

ML

SVM

Decision Tree

BLDF

Coastal Forest

Arboreal

Coastal

Urban

Rangeland Shrub

55 (OA)

69/63/76 (OA)

75 (OA)

Arboreal

Urban

Coastal

Arboreal

Mix: grass/bush/forest

69.12 (OA)

73.2 / 75.1 

88/78/66 (K)

74 (OA)

72.3 (OA)

88 (K)

Kempeneers et al.  (2009)

Macarau et al.  (2011)5

Mundt et al.  (2006)

Chen et al.  (2009)

Chust et al. (2008)1

Dalponte (2008)2

Geerling et al. (2007)

Jones et al.  (2010)3

Ke et al. (2010)4

 Accuracy Results (%)

Authors Environment Studied Classifier Used
OBIA? 

(Y/N)

Bork and Su (2007) 74.6 (OA)

Multi / Hyper 

spectral 
LiDAR Only Both
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2.  RESEARCH PROBLEM 

 The synergestic use of LiDAR and WV2 for an OBIA classification of tree 

species in a highly topographically varied and evergreen temperate rainforest has only 

been evaluated once in the scientific literature.  Zhang et al. (2012b) used airborne 

LiDAR data and WV2 for an OBIA of 4 intraspecies trees using a decision tree (CART) 

classification in the Strzelecki Ranges, a low mountain range of cool temperate rainforest 

in southeast Australia.  The authors tested the efficiency of CART using LiDAR and 

WV2 under the following data categories:  1) Utilizing only the blue, green, red, infrared 

bands (BGR-IR), 2) all WV2 bands, 3) LiDAR and BGR-IR, and 4) LiDAR and all WV2 

bands.  The authors concluded that the utilization of LiDAR and all WV2 bands had the 

best accuracy (77% Kappa).   

 This study aims to fill a gap in the literature by examining the multi-sensor OBIA 

approach in a temperate rainforest of Northwestern United States. The main objective is 

to conduct a tree-centric OBIA of Muir Woods and neighboring areas that incorporates 

part of Tamalpais State Park. Specifically, this research will try to answer two questions:  

(1) In a topographically heterogeneous and multi-layered temperate rainforest 

environment of Northwestern California, how significantly different are the classification 

results of the OBIA from the ML and Spectral Angle Mapper (SAM) classifications? As 

is evident from the studies previously discussed, it is hypothesized that the OBIA will 

outperform the pixel-based ML and SAM classifications,  
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 This study also hypothesizes that, based on the scientific literature, the inclusion 

of LiDAR data will increase classification accuracy by at least 5%. Thus, this research 

also asks: (2) How well does the inclusion of LiDAR data improve the classification 

accuracy of each classifier.  This study hypothesized that, based on the scientific 

literature as shown in Table 1, the inclusion of LiDAR data will increase classification 

results by at least 5%.  

 The ML classifier was chosen for comparison based on its abundant use in the 

scientific literature.  The SAM classifier was chosen as a third classifier based on its 

utilization in a variety of forest ecosystems, albeit with mixed results (Clark et al. (2005), 

Petropoulos et al. (2010), Shafri et al. (2007)).   

 OBIA was chosen as a main feature of this study because studies have suggested 

that OBIA generates a much higher accuracy than a pixel-based classification (PBC) and 

is less susceptible to error. A study by Robertson and King (2011) on the land cover 

decadal change detection of eastern Ontario determined that, after applying a McNemar‘s 

Test for statistical comparisons of both methods, OBIA had fewer significant classified 

errors than PBC where large entities such as forest stands, wetlands, fields, or urban areas 

were incorrectly classified. 
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3.  STUDY AREA 

 

 Muir Woods National Monument (MWNM), which is administered by the 

National Park Service (Figure 2) consists of over 500 acres, and is located 20 km north of 

San Francisco and one mile west of Mill Valley in Marin County (NPS 2008).  Located 

near the southern tip of the coastal temperate rainforest biome, the area consists of a cool 

maritime climate with a moderate temperature (5 to 21 °C) (Chapman and Reiss 2003). 

 Fog is common throughout the year, and precipitation can reach between 700 and 

3000mm each year although predominantly during the winter season (October - March). 

Based on its close proximity to the Pacific Ocean, and its northeastern aspect facing deep 

concave slopes, moisture from fog moderates the dry summer temperatures while 

providing, on average, an extra one to two meters in precipitation.  Most of the maritime 

fog that rolls into the region, especially in the deep gorge called Redwood Canyon is 

trapped by the multi-story canopy of Redwoods and Douglas Firs. (Chapman and Reiss 

2003, NPS 2008, NPCA 2011).   

 The mountains found in MWNW and surrounding area are part of a narrow band 

of low but steep mountains on the western edge of the North American plate. The region 

began forming around 150 million years ago by bedrock from ancient sea floor sediments 

and igneous rock that was heavily folded and uplifted due to lateral slipping along the 

juncture of the North American and Pacific plates (Auwaerter 2006).  Muir Woods i
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Figure 2: Study Area (Source: Google Maps) 

 

nestled within Redwood Canyon (Figure 3and Figure 4), one of the main valleys in the 

region, transformed by the south-trending course of Redwood Creek that begins north 

near the peak of Mt. Tamalpais.     

 Redwood and Fern Creek, as shown in Appendix 2, are the primary drainage of 

the Redwood Creek Watershed. The watershed is underlain by the Franciscan Complex 

that consists of deformed beds of sedimentary, metamorphic, and igneous rocks from the
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Jurassic and Cretaceous age (McLaughlin et al. 2000). Soils in the parks are 

agriculturally poor gray-brown podzolic (alfisols), and plant / tree debris scatter litter the 

floor (Kimball and Kondolf 2002, NPS 2008, NPS 2011).  

 

 It has been documented that fire benefits the long­term health of coastal redwood 

forests (NPS 2008). Data suggests that fires of low to mid intensity, with rare high 

intensity that charred large forests, frequented this region every 20 - 50 years before 

European colonization (Agee 1993).  Fire has many benefits, including the clearing of 

debris so tree seeds can reach mineral soil. Fire also destroys harmful bacteria and fungi 

that can damage new tree sprouts, and fire turns debris into ash which enhances soil 

nutrients for seedlings (NPS 2008).  Due to fire's importance in the ecology of these 

forests, the National Park Service conducts prescribed interval burning as a substitute for 

natural fires. 

 Although Coastal redwoods (Sequoia sempervirens) and Douglas firs 

(Pseudotsuga menziesii) dominate the landscape, other deciduous trees, grasslands, and 

chaparral can be found within and outside both parks. The multi-layered canopy structure 

(i.e. a ground herbaceous layer, understory trees, and a top canopy) of this old-growth 

and spatially heterogeneous forest sustains an ecosystem that produces specialized 

species of plants and trees. Plants such as Oxalis oregana (Redwood Sorrel) and 

Anemone oregana (Windflower) blankets the ground cover of Muir Woods, including 
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ferns and wildflowers (for a full list of understory plants, see http://www.marin.edu/cnps/ 

MuirWoods.html). The understory canopy consist of the Umbellularia californica 

(California Bay Laurel), Acer macrophyllum (Big Leaf Maple), Lithocarpus densiflorus 

(Tan Oak), Torreya californica (California Nutmeg), Alnus rubra (Red Alder), Aesculus 

californica (California Buckeye), and Quercus agrifolia (Coast Live Oak; situated mostly 

on the western coastal side of Muir Woods). Sequoia sempervirens (Coastal Redwoods) 

and Douglas fir (Pseudotsuga menziesii) dominate the upper canopy  (NPS 2008).   

 At the preliminary phases of this research, the boundary of the study area was 

selected to be Muir Woods only.  A preliminary survey was performed by walking 

through most of the trails within Muir Woods, and those outside it.  It was determined 

that Muir Woods is nestled within Redwood Canyon, and the scope of the vegetative 

characteristics could be better explained if the study area were to be extended to 

encompass the entire Redwood Canyon. The multi-layered canopy structure that is 

characteristic of Muir Woods, although common, does not dominate the region. To 

capture the variability of tree species that exist within Redwood Canyon, which serves as 

an ecotone between a chaparral and a temperate rainforest environment, the study area 

was expanded outside the boundaries of Muir Woods and into surrounding sections of 

Mt. Tamalpais State Park. The yellow boundary shown in Figure 3, is primarily the 

Panoramic Highway.  The Panoramic Highway serves as the northern, eastern, and 
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western border of the study area.  The Old Mine Trail, Dipsey Trail, and Fire Road serve 

as the southern border of the study area. 

 
Figure 3. Shaded Relief of Study Area: Redwood Canyo 
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4.  METHODS 

 

 

4.1  WV2 Data and Preprocessing  

 

 The WorldView-2 (WV2) image was acquired on September 1, 2012. 

Commercially available products of WV2 consist of a 2 m multispectral image with 8 

bands and a 0.5 m panchromatic image. The average off nadir angle is    .  According to 

the manufacturer, DigitalGlobe, WV2 products are delivered to the customer with 

radiometrically corrected image pixels (DigitalGlobe n.d.). A relative radiometric 

correction is performed on raw data from all detectors in all bands in the early stages of 

WV2 formation. This correction includes a dark offset subtraction and a non-uniformity 

correction.  The image is then spatially resampled to create radiometrically corrected 

pixels.  

 Figure 4 provides a flowchart of general procedures conducted in this study. The 

image was orthorectified using the "Orthorectify Without GCP" tool in Erdas Imagine.   

The Rational Polynomial Coefficient (RPC) model is an acceptable alternative to 

physical sensor models method for photogrammetric processing (Chen et al. 2006, Fraser 

et al. 2003, Fraser et al. 2005, Tong et al. 2010). Erdas Imagine 2011 has a RPC 

geometric model designed for the WV2 image; it is a simpler empirical mathematical 



 
 
 

20 
 
 
 
 
 

                                    
 

 

 
                   Figure 4.  General flowchart of work performed
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model relating image space (line and column position) to latitude, longitude, and surface 

elevation (Zhang et al. 2010). The tool requires the input of an RPC located in the 

metadata file provided by the manufacturer upon purchase. This file contains the 

information necessary for orthorectification, such as exterior orientation of the satellite 

when the data was collected (DigitalGlobe n.d.). 

The tool also requires the satellite image as input, and a DEM to supply elevation 

values.  The DEM utilized in the RPC tool was created from LiDAR point cloud data. 

The tool then computes the proper geographic position for each image cell, producing an 

orthorectified image.  

 Pan-sharpening was not performed in order to preserve the radiometric integrity 

of the data. Instead, a haze Reduction and removal was performed next on the WV2 

image using ATCOR3, a tool for Atmospheric/Topographic correction of mountainous 

terrain.  ATCOR 3 requires a DEM to obtain information about surface characteristics, 

such as slope, aspect, shadow, skyview, and sensor information such as zenith and 

azimuth angles.   These datasets are used to derive terrain files for a Haze or Atmospheric 

correction, along with calculating spectral radiance, ground reflectance, topographic 

corrections, and extract surface brightness temperatures.   

 Before the haze removal is performed, the calibration of the WV2 variable gain 

settings has to be performed.  Sensor calibration problems may pertain to spectral 
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properties; for example,  the channel center positions and / or bandwidths might have 

changed compared to radiometric properties, i.e., the offset (   ) and slope (   ) 

coefficients relating the digital number (DN) to the at-sensor spectral radiance (Richter 

and Schlapfer 2012).  

 Unlike hyperspectral imagery, miscalibration is difficult to detect in multispectral 

imagery, so calibration of the radiometric coefficients is necessary.  Calibration is also 

needed to correctly help ATCOR3 "rescale" the data of the raw DN image to true 

radiance at sensor, or Top-of-Atmosphere (TOA) radiance, which is then used for the 

Haze/Atmospheric correction process.  TOA spectral radiance is measured in units of 

              , where W is watts, m is meter, sr is steradian, and nm is nanometer. 

The WV2 calibration file provided by ATCOR3 is only a template and must be updated 

to values found in the metadata file (IMD.).  The rescaled calibration file is shown in 

Appendix 3, and Updike (2010) provides the bandwidths and k factors required by 

ATCOR3 to transform the raw digital number image into TOA spectral radiance.  

 Temporal variations in solar illumination and a wide range of topographic 

landscapes present a problem for classifying trees that have a small sun-lit surface or 

vegetation covered by tree canopy shadows. The differences in canopy heights and 

lengths in this region, along with differences in ground elevation create a shading or 

shadowing effect that induces challenges in classifying neighboring trees (see Figure 5).  

The atmospheric/topographic correction of ATCOR3 was unable to remove the effect of 
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tree canopy shadows; topographic correction models (i.e. Minnaert Correction) are 

limited in their ability to remove the shadowing effect of trees, especially forests of the 

Pacific Northwest. Unlike smooth terrain, where irradiance and radiance is controlled by 

the sun-terrain-sensor geometry alone, shadowing by forest canopies is the dominant 

source of spatial variance (Gu and Gillespie (1988), Kane et al. (2008)).   More complex 

canopies produced lower proportions of sunlit area than less complex canopies for a  

 
Figure 5.  The Effect of Tree Heights, Sun Elevation Angle, and Topography on Shadows. 

Note:  Depending on the Solar Zenith Angle and Incident Angle, the sunlit canopy will vary.  

This image, taken from Kane et al, (2008), does not show the range of sunlit canopy areas 

with trees of varying height and varying topography. 
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given incidence angle (Kane et al 2008).  According to Van Pelt and Ndkarmi (2004) and  

Waring and Franklin (1979), the variations in age, height, and elevation result in a range 

of canopy structure that is only found in few places on Earth.  

 Efforts to undertake the removal of tree shadowing was conducted by Kane et al. 

(2008). They conducted a study using LiDAR-derived Canopy Height Models (CHM), 

and exposed canopy surfaces of 80 conifer stands in the Pacific North-west ranging from 

pre-canopy closure to old-growth, and adjusted the underlying topography to represent 

the canopy as it would exist on flat terrain.   To accomplish this, the authors tested the 

performance of the leading topographic correction model called the Sun-Canopy Sensor 

(SCS) developed by Gu and Gillepsie (1988), a revised version (SCS + C [cosine 

correction constant]) by Soenen et al. (2005),  and a newly constructed model called the 

Adaptive Shade Compensation (ASC) algorithm based on two independent variables.  

The ASC incorporates the shadow area proportion as an estimator of canopy complexity 

and the inverse of the SCS [(cosα cosθ) /cosi; where α is the slope (degrees),θ is the solar 

zenith angle, and i is the incidence angle (degrees)] as an estimator of how the proportion 

of shadow area changed based on the geometry of the scene.  Results indicated that the 

robustness of each model depended on the topography and the Solar Zenith Angle (SZA), 

with the ASC the least effective at steeper slopes and the SCS+C providing substantially 

more accurate corrections for all SZAs. Yet the authors mention that their results may not 
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be representative of the performance of the SCS+C correction because they did not fully 

take into consideration the sky illumination coefficient within the SCS+C algorithm. 

 The inability to remove the shadow effect caused by the combined effect of 

canopy structure/ruggedness, the geometry of incidence and exitance angles, and 

topography can negatively impact classification accuracy (Kane et al. 2008). Yet due to 

the apparent lack of publications devoted to understanding the relationship between tree 

canopies and shade, and a lack of strong consensus on how to successfully tackle the 

shade and shadows  effect of trees in a topographically complex arboreal environment, 

this study will not consider appropriately classifying shaded areas that are known to be 

vegetated.  Instead, a simple "shade" class was developed in the mapping of Redwood 

Canyon. 

 

4.2   LiDAR Data and Preprocessing 

 

 The LiDAR data was received from the Golden Gate LiDAR Project, sponsored 

by the US Geological Survey (USGS) and San Francisco State University. The imagery 

was collected in 2010 at a nominal point spacing of 2 points per meters for San Mateo, 

San Francisco, and Marin Counties. The aerial LiDAR sensor was capable of capturing 

the first, second, third, and last  return from a single laser pulse.  The first return 

generated the most data, with 87.98% of all the returns, and the second with 10.34%.   

 ArcMap 10.1 was used to process the LiDAR point cloud data.  The "Las to 

Raster" tool converted the point cloud into a raster. The tool uses a process called binning 
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to determine the value of a pixel. Binning examines the points that fall within the pixel, 

then determines which z-value to use when generating the raster surface if there is more 

than one point to consider (ESRI 2010).  

 The "Las to Raster" tool has a section wherein the user can specify the cell size of 

the new raster. A reasonable cell size of the las raster is four times the average point 

spacing (APS) according to ArcGIS Help 10.1.  If this process is not  considered, a lot of 

noise will manifest in the DEM/DSM because the point cloud is not evenly spaced (ESRI 

2012). The Las files in this research has an APS of 0.54m. Multiplying the APS by 4 

generates a 2.16 meter cell size. The figure was rounded to 2m in order to match the 

WV2 image cell size.   

 The next step was to generate the Digital Surface Model (DSM) and the Digital 

Elevation Model (DEM).  These two datasets are needed to calculate the canopy height 

model (CHM). Within the "Las to Raster" tool, the DSM is generated by assigning the 

largest or maximum z-value in the cell while specifying the first pulse return of the point 

cloud.  The  DEM is generated by assigning average values of all the z-values within the 

cell, while specifying the last pulse return.  The optional natural neighbor interpolation 

method in the "Las to Raster" tool was used to define values for cells that do not have 

points within their extent (i.e. to fill-in voids that have no data). 

 Once the DSM and DEM datasets are generated, the "raster calculator" in ArcGIS 

was used to subtract the DSM from the DEM.  The output had negative values in very 
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small areas, so the conditional or "Con" tool was used to provide values at or above zero 

meters. The CHM, shown in Figure 6 and 7,  was then clipped to the study area.  Brighter 

areas indicate higher canopy height elevations, with the tallest tree being located in Muir 

Woods measured at 73.24 m. The CHM continued to exhibit no-data cells throughout the 

dataset, therefore gaps were interpolated using a Natural Neighbors algorithm.   

 The next step was to register the WV2 image and the CHM.  Both images have 

similar cell size.  They must be positioned in respect each other so that corresponding 

elements of the same ground area appear identical in both images. In this study, 75 GCPs 

selected primarily on road and paved trail intersections were used to complete image-to-

image registration. By using the WV2 image as a reference, and the Image Equalizer tool 

in Erdas Imagine 2011, a 0.46 RMSE was achieved.   
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Figure 6: CHM clipped to Study Area.   
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Figure 7: Close-up of clipped study area: Cathedral Grove in Muir Woods.  

Cathedral Grove is a cluster of old growth coastal redwoods; the oldest and tallest 

trees (shown in white) are found he 
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4.3   Field Work to Collect Training Data 

 

 To get a good measure of the intraspecies tree richness of this ecological 

landscape, random stratified sampling was used to collect the training samples (see 

Appendix 4 for a list of tools used). The stratified random sample, conducted in the 

summer of 2012, was broken into three sections: 

 

 

 I.   The southern section of Redwood Canyon, along Deer Park and   

  Fire Road  trails (see Figure 8). This section serves as an ecotone   

  between chaparral and temperate rainforest, and is the warmest   

  part of Redwood Canyon. Douglas firs dominate the uppermost   

  canopy. 

 

 II.   Muir Woods.  The main trails are the  Ben Johnson, Bootjack, Fern  

  Creek, and Hillside.  Coastal redwoods dominate the upperstory   

  canopy and the temperature is the coolest of three sections. 

 

 III.   The northern and eastern steep slopes of Redwood Canyon along   

  the Panoramic Highway. The main trails are the Alpine, TCC,   

  Troop 80, and Panoramic.   Temperatures vary on these high   

  altitudes; aspect and fog play a role in temperatures here.   Coastal   

  redwoods and Douglas firs dominate the uppermost canopy, and   

  California bay laurels are present to a lesser extent. 
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Figure 8.  Trail Map of Muir Woods and surrounding Redwood Canyon. 

  

 The collection of training samples was affected by several factors.  One is that the 

sampling is restricted to the parks trail system due to safety reasons.  Additionally, the  

GPS receiver was incapable of generating a positional accuracy lower than a 5 meter 

error.  As a result, Positional Dilution of Precision (PDOP) readings lower than 6 meters 

were chosen, even though PDOP usually averaged 5 meters in open areas. The high error 

could be caused by several factors, e.g. satellite to receiver signals bouncing off tree 

canopies, atmospheric effects (fog is common in this region), the multistory canopy, and 
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limitations of the GPS receiver (i.e. receiver clock errors).  Collecting a training sample 

below a 6 meter error proved difficult.  Because the error fluctuated sharply, a waiting of 

roughly 20 minutes was commonly necessary the error to go under 6 meters.  

 To reduce the multipath effect, training samples were predominantly collected 

adjacent to open areas. To help compensate for the high amount of positional error, a 

training point needed to be within a visually inspected large arboreal homogenous area 

(usually a 10x10m sq area) where identical trees also existed.  Thus, there was a high 

degree of confidence that an identical tree will be chosen as a training point even though 

the positional error prevented identifying the exact tree where coordinates were extracted.  

Averaging the GPS position readings over time, and ensuring that at least 4 satellites 

were operational (to improve DOP), also helped in reducing positional error.  In sum, the 

stratified random sample was not random at all, but more of a calculated stratified 

sampling that had to be imposed due to technological and logistical limitations.    

 A total of 147 training samples were collected. It was found that Redwood 

Canyon is dominated by only four main tree species.  These four species are highlighted 

in Table 2 along with 6 other tree species which are also observed in Redwood Canyon. 

Because these four tree species dominate the area in terms of biomass and quantity, this 

research limits the classification to these four tree species only. It should be noted that, , 

though Tan Oak dominates the landscape in quantity similar to the 4 dominant trees 

species, is not included in sampling and classification because tan oak predominantly 
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inhabits the lowest section of the canopy. Its depiction is eliminated in the WV2 and 

CHM data.   

 

   Table 2.  Trees of Redwood Canyon   

Tree Species within Redwood Canyon 

Big Leaf Maple (Acer macrophyllum) 

Coastal Redwoods (Sequioia sempervirens) 

California Bay Laurel (Umbellularia californica) 

California Nutmeg (Torreya california) 

Coast Live Oak (Quercus agrifolia) 

Douglas Fir (Pseudotsuga menziesii) 

Interior Live Oak (Quercus wislizeni) 

Red Alder (Alnus rubra) 

Toyon (Heteromeles arbutifolia) 

Tan Oak (Lithocarpus densiflorus) 

       Note:  Dominant and most abundant trees are in red.   

 

 

 UTM coordinates for the training points (n = 147) were entered into an Excel 

spreadsheet and then transferred into ArcMap for plotting and visualization (Figure 9). 

Coastal redwoods (CR; n = 47) were sampled slightly more than Douglas fir (DF; n =  

33), CA Bay Laurel (CBA; n = 35) and Coast Live Oak (CLO; n = 32) due to its domi-

nance. Other noted trees were Big Leaf Maple (n = 6), Interior Live Oak (n = 2), Cali-

fornia Nutmeg (n = 3), and Red Alder (n = 4). 
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Figure 9.  Training samples (n=147) in the study area. Training points were plotted 

in ArcMap 10.1.  Note: red dots are training samples. Yellow outline is the extent of 

the study area.  Light blue lines are rivers. 
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4.4.  Object Based Image Analysis (OBIA) 

 

 The first step in the OBIA process is the segmentation of the image into objects 

using the multi-resolution segmentation (MS) within the eCognition software (2011, ver. 

8.7). MS is a region-based iterative algorithm whereby pixels are grouped or merged 

together into homogenous objects --based on location, texture, shape, spectral 

similarities-- until a given threshold of upper variance is reached.  The threshold for this 

bottom-up approach is the scale parameter;  the scale parameter is also weighted with 

color, shape and compactness parameters (Darwish et al. (2003).  The scale parameter is 

a variable that controls the maximum allowed heterogeneity within each object (Navulur 

2007).  The shape parameter is weighted between 0 and 1; the closer to 0 the more 

spectral color is pronounced, the closer to 1 then spectral color and object shape are more 

weighted.   The compactness parameter symbiotically affects the shape parameter by 

either providing borders that are smooth or compact.  

 There was considerable difficulty in determining the appropriate scale parameter  

for the study area, as scholars vary in their approach.  Voss and Sugumaran (2008) tested 

the scale parameter between 1 and 10 and results showed that a scale parameter of 3 

produced the best accuracy for tree classification in Northern Iowa University.   Ke et al. 

(2010) tested the effect of the scale parameter on accuracy for oaks, pines, and spruce 

trees in a New York State Park.  The scales tested were 20, 50, 100, 150, 200, 250,  
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300, 400, 500, 600, 700, and 800.  Results indicate that the best average accuracy was 

obtained with 250 for merged LiDAR-Multispectral,  200 for the multispectral data only, 

and 100 for the LiDAR data only.  Yet accuracies for each tree varied widely for each 

different scale parameter. Hajek (2005) used a triple-level multiresolution segmentation 

scheme of 15, 5, and 3 for classifying a mixed deciduous forest. Novack et al. (2011) 

used a trial-and-error analysis in an urban setting (Sao Paulo, Brazil) to discover an 

appropriate multi-resolution segmentation scale parameter of 40; color parameter of 0.5,  

and compactness 0.7. 

 These studies suggest that choosing an appropriate scale parameter requires a 

trial-and-error approach by factoring in the study area and the objective of the study.  

The user has to inspect objects visually until the objects of interest are adequately and 

satisfactorily delineated.  For this study, all the WV2 bands were given equal weights. A 

scale parameter of 12, a shape of 0.5, and a compactness of 0.2 were chosen because 

segmentation objects approximated single tree crowns and clusters of tree crowns the best 

with these parameters.  Anything past a scale parameter of 12 resulted in objects so large 

that they encompass multiple trees.   Anything under 12 resulted in objects too small to 

encompass a tree canopy.    

 The nearest neighbor (NN) classifier within eCognition, based on a fuzzy 

classification algorithm, was used. NN classification is more appropriate when classes are 

more difficult to separate from each other.  This approach is better suited for evaluating 
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the correlations between object features and for describing a multidimensional feature 

space (Definiens, 2003, Laliberte et al. 2007). NN classified image objects may have a 

membership to more than one class, or between zero and one based on an object's feature 

space distance to its nearest neighbor. The smaller the difference is between sample 

objects and the object to be classified, the higher the association value.   If a sample 

object differs from its neighbor, the feature space distance has a fuzzy dependency on the 

feature space distance to the nearest sample class.  Hence, membership function at each 

point in the feature space is a combination of fuzzy functions over samples of the class 

being classified (Trimble 2011).  

 To define the four tree classes, samples obtained through the stratified sampling 

as described in section 4.3 were used.   Training sites can be selected by double clicking 

on the sun-illuminated areas of the object (s) that corresponds to the training data.  This 

trains the system to identify where each sample tree is located.  eCognition then classifies 

the trained image objects based on their nearest sampled neighbors (Trimble 2011).  

 The Feature Space Optimized (FSO) tool in eCognition was used to evaluate the 

distance in the feature space between the samples in different classes.  After training 

samples are collected, the tool selects the user defined features, or mean band values, that 

result in the best class separation distance; i.e. the FSO compares the spectral mean band 

values and finds the largest average minimum distance between the training samples of 

different classes (Definiens 2003, Laliberte et al. 2007).  Object statistics of the 
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optimized feature space are calculated, bands are sorted on how well they separate 

classes, then their objects are classed based on the NN classifier (Platt and Rapoza 2008).   

 As shown in Table 3, the Distance Matrix shows a strong separability between 

Douglas Fir and CA Bay Laurel, and less strongly between Douglas Fir and Coastal 

Redwood.  A value above 1 would suggest that the training samples separate the classes 

well (Definiens 2012), but the low "Best Separation Distance" of 0.194 suggests that the 

training samples do not provide good discrimination between the four tree classes.  This 

is due to the similarity in spectral signatures between Coastal Redwood and Douglas Fir, 

between Coastal Redwood and Coast Live Oak, and between Coast Live Oak and CA 

Bay Laurel. The FSO-NN results also indicate that, in order of importance, the NIR2, 

Green, NIR1, Coastal, and Yellow bands are optimal (in terms of separability) in 

classifying the image. The FSO-NN algorithm then classifies the image; the output image 

(shown later) is used later for analysis with the LiDAR data.  

 The FSO procedure indicated that only 5 of the 8 bands provided the most favor- 

able separability.  This was an astonishing find, as the FSO procedure was able to 

identify the optimal bands with the best separability between the spectrally similar tree  
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Table 3.  Class Separation Distance Matrix generated from the FSO tool.  

 
Note:  Any distance closer to or higher than 1 indicates strong spectral separability between the two 

tree species.  

 

classes.  As shown in figure  10-18,  there appear to be subtle yet noticeable spectral band 

differences between tree types within each band, especially in the Red Edge, NIR1, and 

NIR2  bands. Yet the Red Edge was excluded, and the Green, Yellow, and Coastal bands 

(which show spectrally similar radiance values) were included in the FSO. CA Bay 

Laurel's mean (red diamonds) and median values have a strong and distinguishable 

radiance value in the NIR1 band that sets it apart from the rest, but distinguishable tree 

differences can be found in each band, albeit minimal.  A closer look suggests that mean 

and median spectral reflectance values for each tree class are similar in the Coastal band, 

so the FSO-NN 's inclusion of the Coastal Band is questionable. The Figures also show 

mean spectral differences in the Red Edge band which the FSO-NN classification deemed 

as ineffective in class separation. 

Coastal Redwood

Class Coastal Redwood Douglas Fir CA Bay Laurel Coast Live Oak

0.000000

0.193834

0.375233

0.232727

Douglas Fir

CA Bay Laurel

Coast Live Oak

0.193834 0.375233 0.232727

0.000000

1.570723

0.708994

1.570723

0.000000

0.219426

0.708994

0.219426

0.000000
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Figure 10. Quartile ranges of coastal band for each tree class.  n = 35 per tree  

class.  Note:  C.R. = Coastal Redwood; D.F. = Douglas Fir;  C.B.L. = California  

Bay Laurel; C.L.O. = Coast Live Oak. TOA spectral radiance is measured in units  

of               , where W is watts, m is meter, sr is steradian, and nm is  

nanometer. 

 

 

 

 

 

 

 

 

 



 
41 

 
 
 
 
 

 
 

 
Figure 11. Quartile ranges of blue band for each tree class.  n = 35 per tree class. 

 

 
Figure 12. Quartile ranges of green band for each tree class.  n = 35 per tree class. 
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Figure 13. Quartile ranges of yellow bands for each tree class.  n = 35 per tree class. 

 

 
Figure 14. Quartile ranges of red band for each tree class.  n = 35 per tree class. 

 



 
43 

 
 
 
 
 

 
 

 
Figure 15. Quartile ranges of red-edge band for each tree class.  n = 35  

per tree class. 

 

 
Figure 16. Quartile ranges of NIR1 band for each tree class.  n = 35  

per tree class. 
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Figure 17.  Quartile ranges of NIR2 bands for each tree class.  n = 35 per  

tree class. 

 

 

Figure 18.  Mean spectral radiance profiles per tree class. 
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4.5.   Maximum Likelihood Classification 

 The ML assumes a gaussian distribution of each class (Strahler 1980).  It 

calculates the probability that a pixel is a member of a specific class using the mean and 

covariance of the training set.  The ML classification was performed in Erdas Imagine 

2011 using the Signature Editor tool. In similar fashion as the OBIA, Regions of Interest 

(ROI) were constructed from field data.  ROI's or polygons were constructed over sunlit 

regions of trees identified from the training field data. The ROI regions were built, per 

class, to construct and classify signatures needed to perform the parametric classifier. For 

each class, excluding other insignificant classes (i.e. impervious surfaces, bare soil, 

grasses, shadows, and coyote bush), at least 500 pixels were used per class.  

Traditionally, the number of pixels to use per ROI is proportional to the number of bands 

in the image multiplied by 10.  To remove salt-and-pepper effects, a 3x3 neighborhood 

majority filter was used on the output thematic layer. 

 

4.6.   Spectral Angle Mapper 

 

 SAM treats each spectrum, i.e. the reference spectrum (specified from the training  

data) and the observed spectrum (i.e. the random target cell to be classified) as vector in 

an n-dimensional scatter plot. "n" is equal to the number of bands in the image.  The 

smaller the angle between reference and observed, the closer the relationship (Dennison 

et al. 2004, Shafri et al. 2007).   The SAM classification was performed using the ENVI 

5.0 software. Regions Of Interest's (ROI) were constructed from the ATCOR3 WV2 
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output (spectral radiance) in ENVI's classic module.  ROI's were constructed in identical 

fashion as the ML classifier in Erdas Imagine, where sunlit regions of trees identified in 

the training field data are used. ROI's are used to extract endmember spectra (see Figure 

16) which are subsequently used as input in the SAM classifier.  Endmembers are spectra 

that are chosen to represent pure surface materials in a spectral image (Dennison et al. 

2004, Shafri et al. 2007). The default Maximum Angle (radians) parameter of 0.3 was 

used as any value above or below 0.3 produces unfavorable results.  Similar to the ML 

classifier, a 3x3 neighborhood majority filter was used on the output thematic layer to 

remove salt-and-pepper effects.  

 

4.7   Problems Incorporating LiDAR  

 

 The incorporation of the LiDAR data to each classified image involved two 

different procedures.  In eCognition, a rule set was built in order to define the mean CHM 

value to delineate each tree class for the NN classification. For the ML and SAM 

classfication, the Knowledge Engineer tool within the Erdas Imagine 2011 software was 

used.  The Knowledge Engineer interface is similar to the user defined rule set diagram of 

eCognition, except that Knowledge Engineer is less restrictive in the type of variables 

and parameters used.  

 At the start of this research, there was an assumption that the LiDAR data will 

help classification accuracies because it was commonly believed that Coastal Redwoods 

(CR) are the tallest trees in the Pacific Northwest.  However, after gaining ground 
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knowledge of the area over a span of several months, the effectiveness of the CHM in 

helping improve classification results began to be questioned.   As an alternative, other 

LiDAR-derived datasets, such as slope and aspect, began to be seriously considered as an 

alternative to the CHM.   Based on the topographically varied nature of Redwood Canyon 

and ground knowledge, it was speculated that slope and aspect may play a role in 

determining the geographic location of each tree.  In order to determine whether aspect, 

CHM, and aspect have any statistical significance in discriminating between tree species, 

several statistical tests were performed using a select number of trees (C.R., n = 50; D.F, 

n = 47; C.B.A. = 45; C.L.O = 45). 

  The first statistical test used was Multivariate Analysis of Variance (MANOVA) 

which is expected to answer whether the mean of a variable (i.e. CHM, slope, and aspect) 

is the same across tree classes. Since MANOVA requires homogeneity of variance, 

Levene’s Test of Equality of Error Matrices was conducted. The p-value obtained for 

CHM is less than 0.05%, suggesting that the variances of CHM are not homogenous. A 

review of the Homogenous Covariance Matrix between the dependent variables and the 

tree types suggest that corresponding covariance values between tree types are 3 to 4 

times greater than each other. This confirmation of unequal variances does not give 

power to the pursuit of the MANOVA tests.   Further evidence against the use of 

MANOVA is provided by the Box’s test of Equality of Covariance of Matrices which 

had a significant p value of less than 0.001%. This suggests that the observed covariance 
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matrices of the dependent variables (i.e. CHM, Aspect, Slope) are not equal across 

groups--a violation for an assumption of MANOVA.  

 Although not recommended, the MANOVA tests are continued with caution 

because MANOVA’s is relatively robust against assumptions of the violation of 

homogeneity.  In the "Tests of Between-Subjects Effects" table, across the four 

dependent variables, the MANOVA found  statistically significant differences in slope (p 

= 0.009) and CHM (p < 0.001) between tree types. The use of Tamhane’s T2 post hoc 

test (see the output Table 4 and 5), under the Test Between-Subjects Effects section of 

SPSS, conducts four separate t-tests (i.e. one for each tree type) between the three 

dependent variables (i.e. aspect, CHM, slope).  This was done to investigate the 

individual mean differences on the two dependent variables that were statistically 

significant.  The Tamhane's T2 post hoc test is usually performed when there is an 

assumption on the violation of homogeneity for MANOVA. 

 As shown in the Tamhane's tables for slope, when comparing the mean 

differences in slope between coastal redwoods (1) and coast live oak (4), there is a  +/-  

7.719 slope difference that is statistically significant at p = 0.005. When comparing the 

mean differences in CHM between redwoods and the other three trees, there is also a 

statistically significant differences between all the tree types.  Since the MANOVA 
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        Table 4. Tamhane's Test using Slope 

     
        Table 5.  Tamhane's Test using CHM.           
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lacked robustness, due to the rejection of homogeneity of variances, this study chose to 

conduct more tests, particularly non-parametric tests.  Conducting more tests aids in 

determining the validity or disuse  use of the CHM and other datasets. 

 A CHI-Square test of independence, which required the  need to convert CHM z- 

values and slope into categorical data (e.g. small, medium, tall, giant for the CHM; flat, 

medium, medium-high, steep for slope), was used to compare tree class with CHM and 

slope (Ho: CHM/slope is not related to tree type / Ha: CHM is related to tree type), and 

the resulting p-value of less than 0.001 for both CHM and slope indicate the probability 

of the model chi-square (477.97 for slope, 533.70 for CHM) fit was less than 0.001 for 

both variables.  This suggests that the CHM and slope are good indicators of tree type; 

the null hypothesis that no difference exists between the tree variables and the models 

with CHM and slope was rejected. The existence of a relationship between tree type and 

the selected dependent variables is supported.  The null hypothesis was accepted for 

aspect (p = 0.099), suggesting a weak relationship.  

 Through the use of SPSS, three more non-parametric tests were performed on the  

four tree classes: an independent samples median test (Figure 19), a Kruskal-Wallis test 

(Figure 20), and a Jonckheere-Terpstra test (Figure 21).The independent samples median 

test determines whether two or more populations have identical or very similar median 

values (Siegel 1988).  The non-parametric Kruskal-Wallis test (equivalent to the 

parametric one-way ANOVA) is used to determine whether median differences between 
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two or more independent populations are identical or different --based on a variable of 

interest-- when ordinal, interval, or ratio level of data are available (Chan and Walmsley 

1997, Kurskal and Wallis 1952). The null hypothesis states that the population medians 

are equal, whereas the alternative one-way ANOVA suggests differences between at least 

two means (Bewick et al. 2004).  The Jonckheere-Terpstra test is identical to the Kruskal-

Wallis test except when there is a natural a priori ordering (i.e. the height of trees, e.g. 

small, medium, tall) of independent populations. This test is preferable and more 

powerful than either the two former tests (Terpstra 1952, Jonckheere 1954).  The results 

suggests that slope and CHM are not the same across tree type.  Except for aspect, all the 

null hypotheses shown in Table 6 suggest that to a certain degree, CHM and Slope are  

related to tree type.   

 Additionally, yet another non-parametric test was performed: multinomial logistic 

regression (MLR).   MLR is used  to predict the probability of a categorical placement of 

a dependent variable based on multiple independent variables (Hosmer et al. 2013); it is 

used to analyze the strength of a relationship by classifying subjects (%) between a non-

metric dependent variable (i.e. aspect, CHM, slope) and metric or dichotomous 

independent variables (i.e. tree type) (Hosmer and Lemeshow 2000).  A tree is predicted 

to belong to a dependent variable associated with the highest percentage probability. 

Predicting tree class membership to an actual group membership is a measure of 
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      FIGURE 19.  Independent-Samples Median test.  Note:  The vertical  

     axis (CHM) is in meters.    

 
      FIGURE 20.  Kruskal-Wallis test of CHM 
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      FIGURE 21.  Jonckheere-Terpstra test for ordered alternative  

                performed on CHM. 

 

 

Table 6:  Summary of Findings for employed Non-Parametric tests 

Null Hypothesis CHM Slope Aspect 

Independent-n Median Test:  The 

Medians are the same across the tree 

categories 

Reject Null 

Hypothesis 

Reject 

Null 

Hypothesis 

Do Not 

Reject 

Null 

Hypothesis 

Kruskal-Wallis Test:  The Distributions 

are the same across the tree categories 

Reject Null 

Hypothesis 

Reject 

Null 

Hypothesis 

Do Not 

Reject 

Null 

Hypothesis 

Jonckheere - Terpstra:  The 

Distributions are the same across the 

tree categories 

Reject Null 

Hypothesis 

Reject 

Null 

Hypothesis 

Do Not 

Reject 

Null 

Hypothesis 
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classification accuracy. MLR does not necessarily abide by assumptions of normality of 

independent variables, linearity of relationships, equal dispersion matrices but it does 

require multicollinearity among independent variable (Bayaga 2010, Hosmer & 

Lemeshow (2000).   

 Table 7 shows the results on using aspect, CHM, and slope together to classify 

186 samples based on the MLR.  The overall accuracy of all three variables is 46.8%.   

CHM by itself can differentiate tree type between the classes by 44.1% (see Table 8), 

slope with 37.6% (see Table 9), and aspect with 25.8%. (see Table 10),  None of the 

MLR models are statistically significant.  Supporting the results of the MLR is the 

"Likelihood Ratio" test; this test is normally conducted before the MLR.  The Likelihood 

Ratio test suggested that the statistically significant relationship between tree type and 

aspect/slope was not supported.   

 

Table 7. MLR Classification using CHM, slope, and aspect together 

 

Classification 

Observed Predicted 

CA Bay 

Laurel 

Coast Live 

Oak 

Douglas Fir Redwood Percent 

Correct 

CA Bay Laurel 9 15 12 8 20.5% 

Coast Live Oak 5 26 9 1 63.4% 

Douglas Fir 9 18 17 7 33.3% 

Redwood 8 1 6 35 70.0% 

Overall Percentage 16.7% 32.3% 23.7% 27.4% 46.8% 
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Table 8. MLR classification using CHM only 

 

Classification 

Observed Predicted 

CA Bay 

Laurel 

Coast Live 

Oak 

Douglas Fir Redwood Percent 

Correct 

CA Bay Laurel 0 16 20 8 0.0% 

Coast Live Oak 0 27 14 0 65.9% 

Douglas Fir 0 20 18 13 35.3% 

Redwood 0 1 12 37 74.0% 

Overall Percentage 0.0% 34.4% 34.4% 31.2% 44.1% 

 

 

Table 9. MLR classification using slope only 

 

 

Classification 

Observed Predicted 

CA Bay 

Laurel 

Coast Live 

Oak 

Douglas Fir Redwood Percent 

Correct 

CA Bay Laurel 0 16 13 15 0.0% 

Coast Live Oak 0 16 20 5 39.0% 

Douglas Fir 0 8 28 15 54.9% 

Redwood 0 14 10 26 52.0% 

Overall Percentage 0.0% 29.0% 38.2% 32.8% 37.6% 
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Table 10. MLR classification using aspect only 

Classification 

Observed Predicted 

CA Bay 

Laurel 

Coast Live 

Oak 

Douglas Fir Redwood Percent 

Correct 

CA Bay Laurel 0 0 30 14 0.0% 

Coast Live Oak 0 0 25 16 0.0% 

Douglas Fir 0 0 30 21 58.8% 

Redwood 0 0 32 18 36.0% 

Overall Percentage 0.0% 0.0% 62.9% 37.1% 25.8% 

      

 

 

 No evidence of numerical problems in the models were found (the standard error 

was less than 2; this indicates no multicollinearity in the data), and the "estimate by 

chance" accuracy was 32%.  Since the overall accuracy was 46.8% and higher than the 

"estimate by chance" accuracy, then the efficacy of the MLR model is proved.   The best 

classification results, although statistically poor, comes through the use of CHM to 

identify tree type.   The MLR also suggested that the CHM can classify each individual 

tree class with an accuracy of 55% (Coastal Redwood; CR), 25.5% (Douglas Fir; DF), 

2% Coast Live Oak (CLO; 2%), and California Bay Laurel (CBL; 0%).  The MLR also 

indicated that the California Bay Laurel is the most difficult tree class to differentiate 

using any dependent variable.  

 In sum, the statistical tests indicate a lack of strength in utilizing aspect, slope, 

and CHM to differentiate between the tree classes.  Although the results of the MLR did 
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not find a statistically significantly categorical placement of CHM with tree type,  the 

CHM will still be utilized nonetheless to strengthen the classification accuracy of CR.  

The rationale being that CRs have the highest mean and median z-values which can be 

distinguished from the other tree classes with an appropriate metric value.  The difficulty 

lies in choosing a z-value (height) for CR that will not negatively affect the classification 

accuracy of the other tree classes. A trial and error approach was performed to test how 

the CHM improves (or impedes) the accuracy of CR (and the other tree classes) as CHM 

increases from 35m at 5 meter intervals. Beginning the trial-and-error approach at 35m 

was chosen as an arbitrary number. 

 

4.8   Accuracy Assessment 

 

 To determine the appropriate quantity of reference sample points to collect per 

tree class, the following multinomial equation was used (Congalton and Green (2012):   

                                          
        [1] 

 

where    is the  proportion of class closest to 50% (or 30% in this case),   is the upper 

percentile of    distribution with 1 degree of freedom (k = 4), and   
  is the precision of 

confidence.   In this study, a 90% confidence limit was used, thereby making   equal to 

2.706 with the use of four classes.  The equation generated a reference sample size of 73 

per class. 
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 Random reference points were collected through the guidance of the Accuracy 

Assessment (AA) tool in Erdas Imagine 2011.  In the AA tool , the user has control over 

the amount of random points to generate.  Using the ML classified image, over 5000 

random points were generated per class in order to increase the probability of a random 

point falling within close proximity to roads and trails for verification.  As previously 

mentioned, the study area can only be safely accessed by means of the established trail 

system.  Within the established trail system, it is common to have near vertical +10m 

drops outside a 1m distance of a trail.  Thus, safety was a key component in eliminating 

randomly generated AA reference points that were not located in close proximity to the 

trail system. 

 Another criteria for eliminating AA generated reference points is based on the 

probability of generating a high GPS positional error (over 6m positional errors were 

excluded; +20m error is common in the study area).   A high GPS positional error 

prohibits the pinpointing of exact coordinates provided by the AA tool. Based on 

previously garnered knowledge of the study area (from the collection of training 

samples), it was known that certain areas generate high GPS positional error regardless of 

an open canopy. For these reasons center left sections of the study area are devoid of 

collected reference samples. Most reference points collected fall within areas where a 

reasonably good GPS positional error (between 5m - 6 m) can be extrapolated.  Such 

areas fall on either the Kiosk/Parking lot area of Muir Woods, Dipsea Trail and Deer 



 
59 

 
 
 
 
 

 
 

Park/Fire Road, the north/south section of the Ben Johnson trail, and the Alpine/Alice 

Eastwood/Troop 80.  Thus, AA generated reference samples went through a pattern of 

elimination that rested solely on the likelihood of producing high GPS positional error, 

and unsafe distances from the  established trail system.   

 The AA random sample generation continued until 73 field-verified samples for 

each tree class was collected.  All collected AA reference UTM coordinates were 

collected in an Excel spreadsheet and then imported into ArcMap 10.1 for visualization 

(see figure 22). For each classified map being generated, UTM coordinates (representing 

symbols) were overlaid to inspect the accuracy of the image and to subsequently generate 

error matrices in an Excel spreadsheet.   User's and Producer's accuracy, as well as Kappa 

statistics were generated for each classified image.  

 In the field, the GPS receiver was a pivotal tool for determining the exact location 

of a reference sample given by the AA tool.  Yet ground knowledge, the WV2 image, and 

Google Earth was equally useful for helping estimate the positional location of a 

reference point.  Before the collection of reference points, the entire trail system of the 

study area had already been traversed.  Furthermore, the 2 meter cell resolution of the 

WV2 image equates to a highly detailed image where the canopy structure of a given tree 

can be easily contrasted from other vegetation.  With a reasonably good ground 

knowledge established, and with the highly detailed WV2 map for guidance, a reference 

point falling on a given tree canopy can be located in areas without a canopy cover along 



 
60 

 
 
 
 
 

 
 

the southern and northern areas of the study area.  During field verification, the GPS 

receiver was used as the last process in confirming the location of a given reference point.  

This methodological process was practiced for collecting reference points along the 

Dipsea and Deer Park/Fire trails or along the southern boundary of the study area.   

  
 Figure 22.  Distribution of training samples (n=297). 

 

 

 Google Earth's "street view" served as a strong visual aid for determining the 

location of AA random samples collected on the Alpine, Panoramic, and Troop 80 trails  

that are situated along the northern border of the study area.  These trails are easily 

accessible by a vehicle because they are within a few meters of walking distance from the 
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Panoramic Highway.  Before fieldwork was conducted, if a reference sample happened to 

fall in close proximity to trails that run parallel to Panoramic Highway, the  "street view" 

option of Google Earth was utilized to visually inspect the area before conducting the 

field verification.  This process involved printing a "street view" map as shown in figure 

23, and using visual cues (i.e. road signs, unique trees or road features) within the image 

to determine where to stop and to specify the reference sample number to verify with the 

aid of the GPS receiver. Such time-saving pre-fieldwork preparatory steps was critical for 

knowing where to stop and inspect. 

 Based on the equation by Congalton and Green (2008) shown below, and the 

research by Ke et al. (2010), Kappa z-tests were used to determine whether Kappa values 

from two classifications are significantly different. With a null hypothesis of equal Kappa 

values, meaning the  two Classifications are not significantly different from one another, 

the z-statistic was calculated as: 

 

 

    
      

                     
                    [2] 

 

 

 

Where k1 and k2 are the two kappa values, and Var (k1) and Var (k2) are their variances. 

If the z-statistic is greater than the critical value (1.96 for a 95% confidence level), then 

the null hypothesis will be rejected (Ke et al. 2010).  
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Figure 23.  Example of Google Earth's "street - view." Note:  visual cues as those 

shown in the figure were critical for faster collection of reference samples. 
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5.   RESULTS 
 

 The FSO-NN classification provided the best accuracy (kappa 58%; Table 11), 

with the ML receiving 50% kappa (Table 12), and the SAM receiving 24% (Table 13).  

The FSO-NN provides a good representation of the study area (Figure 24), showing the 

non-uniformity of tree classes apparent in a mixed-conifer and evergreen temperate 

rainforest with various topographical differences.  The image contrasts Coast Live Oak 

(CLO), California Bay Laurel (CBL), and Coyote Bush well, as these three classes are 

routinely found in close proximity to one another in the southern Dipsea trail boundary 

characteristic of chaparral vegetation.    

 Within the FSO-NN and SAM classification (Figure 25), CBL had a better 

producer/user accuracy than the other tree classes (FSO-NN%: 78/84%; SAM: 59/73%) 

while CLO fared the worst in all three (FSO-NN%: 58/74% (Table 11); ML: 55/58% 

(Table 12); SAM 34/42% Table 13)). Coastal Redwood (CR) received the worst accuracy 

with the SAM classifier (26/42%) as this class was routinely misclassified into Douglas 

Fir (DF), CLO, and Coyote Bush.  The CR class in the FSO-NN classification provided 

the best accuracy (producer 71%/user 64%) compared to the ML and SAM. 

 The ML classification (Figure 26) over-classified CR along Troop 80 and Alice 

Eastwood trails.  These trails have a mix of all the four tree classes, thereby negatively 

impacting user and producer accuracies for the CR class.  Areas where CR is dominant,  
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Table 11. Confusion Matrix of FSO-NN 

 
Note:  Accuracy Assessment was only conducted on the four tree classes. 

 

Table 12.   Confusion Matrix of Maximum Likelihood (ML)
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Table 13.  Confusion Matrix of Spectral Angle Mapper (SAM) 

 
 

 

 
        Figure 24.  Classification of FSO-NN. 
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        Figure 25.  Classification of SAM. 

 
        Figure 26. Classification of ML. 
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e.g. along the Ben Johnson and Hillside trail, have a spotted pattern of DL mixed with 

CR that further reduced accuracy.  This pattern affects the FSO-NN as well although not 

as prevalent. The SAM classification showed poor results, as DF, CLO and Coyote Bush 

was routinely over-classified.  DF was also regularly classified as impervious surfaces in 

the SAM classification. 

 As mentioned previously in section 4.7, a trial-and-error analysis was performed 

to test how the CHM improves or impedes the accuracy of CR (and the other tree classes) 

as CHM increases from 35m at 5 meter intervals.  As shown in figures 27-29, similar 

mean and median CHM values between DF and CBL exist, and CHM ranges for any one  

 
FIGURE 27.  Trial-and-Error analysis as CHM increases from 35m in the FSO-NN 

classification. 
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FIGURE 28.  Trial-and-Error analysis as CHM increases from 35m in the ML 

classification. 

 

 

 
FIGURE 29.  Trial-and-Error analysis as CHM increases from 35m in the SAM 

classification. 
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class traverse other classes. The statistical tests performed further implied a lack of 

statistical strength for utilizing the CHM to differentiate between the tree classes. Yet CR 

is the only class with the highest contrasting and median/mean CHM values than other 

tree classes, and therefore the analysis proceeded with caution for the CR class only.  

 Applying the CHM was made possible within the rule-based platform of 

Knowledge Engineer, a tool within Erdas Imagine 2011.  The trial-and-error analysis 

began at 35m after a preview of results when CHM was applied lower than 35m 

significantly showed CR as being over-classified within areas know to be heavily DF 

(e.g. along the Alpine, Dipsea, Panoramic, and TCC trails).    

 With the introduction of the CHM, the Ben Johnson/Hillside trail becomes solid 

CR as CHM increases from 35m at 5m increments.  Yet as shown in Figure 25-27, a 

CHM higher than 35m negatively impacts the DF class of all three classifications, albeit 

minimal, as the southwest section of the study area (Trails: Alpine, Dipsea, Deer Park, 

and TCC) is predominantly DF.  A CHM > 35 negatively affects CBL for the FSO-NN 

classification.  With a CHM   50, negatively affected accuracies of DF and CBL return 

to their original condition while strong CR areas along the Ben Johnson trail become 

more solid CR. CHM becomes negligible as CHM reaches over 60m for the FSO-NN and 

ML classification, and when CHM    65 for the SAM.   

 Applying CHM   50 increases the FSO-NN by 3% kappa (Table 14, Figure 30), 

and the ML classification by 4% kappa (Table 15, Figure 31).  The increase in accuracy 
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is attributed to an increase in robustness in the CR class along Ben Johnson/ Hillside 

trails where CR dominates.  The CHM positively affects the CR in the SAM 

classification as well; kappa increases from 24% to 32% (Table 16, Figure 31).  This 

relatively large increase is attributed to the poor CR  results in the SAM classification; 

CR was routinely misclassified as coyote bush, DF, and CLO throughout the map but the 

CHM corrects some of these misclassifications back to CR.  A summary of results given 

by the error matrices is given in Table 17. 

 Table 18 represents the z -statistic results for testing the significant differences 

amongst two matrices.  The z-statistic for comparing matrices determined that the ML-

CHM (52% kappa) and SAM-CHM (32% kappa) classifications suggest statistically 

significantly differences.  As evident from the error matrices and images comparing 

OBIA-CHM (62% kappa) and ML-CHM, z-statistic results confirm no statistical 

significant differences even though there is a 8% kappa difference between them.  
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Table 14. Confusion Matrix of FS0-NN with CHM   50 

 
 

 

Table 15.  Confusion Matrix of Maximum Likelihood with CHM   50 
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Table 16.  Confusion Matrix of Spectral Angle Mapper    50 

 
 

 

 
                  FIGURE 30.  Classification of FSO-NN with CHM   50 
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      FIGURE 31.  Classification of SAM with CHM   50 

 
       FIGURE 32.  Classification of SAM with CHM   5 
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                                      Table 17.  Summary of classification results 

Summary of Results 

Classification Overall Accuracy (%) Kappa (%) 

FSO-NN 68 59 

FSO-NN + CHM   50 71 62 

ML 60 50 

ML + CHM   50 62 53 

SAM 39 24 

SAM + CHM   50 46 32 
 

 

   Table 18.  Summary of z-statistic results  

Test of Significant Differences between Error Matrices 

Comparison z - Statistic 

SAM (CHM ≥ 50) vs ML (CHM ≥ 50) 3.69* 

FSO-NN (CHM ≥ 50) vs ML (CHM ≥ 50)  1.62** 

FSO-NN (CHM ≥ 50) vs SAM (CHM ≥ 50) 5.49* 

* significant at the 95% confidence level (1.96).  ** NS = Not Significant 
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6.   Discussion 

 

 The results are indicative of a slightly modest improvement in classification 

accuracy when the CHM is incorporated, but only specific to the CR class.  If specifying 

the CHM under 50m, classification accuracies affect the DF and CBL class, albeit 

minimal. Accuracy improvement began to diminish as CHM was specified to extract CR 

over 55m.  Results also are indicative of better classification results of the OBIA using 

the FSO-NN procedure.   

 Results proved significant for the CBL class, as all classification outputs were 

very successful in delineating CBL tree amongst the other tree classes.  An explanation 

can be sought in the feature space image shown in Figure 33.  Figure 33 displays CBL as 

being predominantly positioned in the highest section where vegetation cohabits in n-

dimentional space.  Also noted is the compactness of all vegetation classes in one section 

of the feature space; this sheds light on the difficulty of the classifying algorithms, 

especially the SAM, to differentiate these spectrally similar tree classes. It also sheds 

light on the strenght of the FSO-NN/OBIA in providing a good discrimination of 

spectrally similar tree classes.  

 At the pixel scale, ML generally had higher overall accuracy and Kappa than 

SAM using all 8 bands and sunlit-only pixels. SAM had very low performance, with an 

insignificant Kappa accuracy below 35%.  The modest underperformance of the ML 

classification is possibly due to a lack of a sufficiently Gaussian distribution, resulting in 
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a poor representative description of the respective tree classes.  This is not surprising, 

considering the wide in-class spectral variation (as shown in figure 33) that is further 

compounded by tree shadows.  

 The SAM classifier was the least successful of the classifiers, even with the 

incorporation of the CHM. Although SAM is relative insensitive to brightness or solar 

illumination factors (Petropoulos et al. 2010), poor results can be explained by a lack of 

second-order statistics (e.g., covariance), and its reliance on a single distance metric that 

appears ineffective given intra-species spectral diversity in a forest stand (Clark et al. 

2005). 

 It is believed that the FSO-NN Classification performed well in part by the 

utilization of an appropriate scale parameter, through a trial-and-error approach, that 

culminated in a WV2 segmented image at small scales that closely resembled forest 

stands.  This approach inadvertently also  accurately separated and distinguished shadows 

and gaps from sun-lit tree crowns. With the integration of the CHM in the multi-

resolution segmentation, the CHM possibly further helped mitigate the shadow effect in 

areas where tree heights were homogenous. As Ke et al. 2010 suggests, the LiDAR 

derived CHM is not influenced by relief displacement and shadow effects.   
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     FIGURE 33.  Feature Space of Study Area 
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Other reasons the FSO-NN performed well is the lack of the salt-and pepper phenomenon 

that is more common in PBC.  The ML and SAM continued to modestly exhibit salt-and-

pepper effects even after a 3x3 neighborhood majority filter was employed. Yet a large 

factor for the FSO-NN's relatively good kappa accuracy rests on its use of the fuzzy 

classification algorithm which appears to be better suited for evaluating spectrally similar 

classes (Laliberte et al. 2007), and the utilization of optimized bands (NIR2, Green, 

NIR1, Coastal, and Yellow bands) via the FSO tool in eCognition. 
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7.   Conclusion 

 

 Studies using a multi-sensor and OBIA approach in a Northwestern Pacific 

temperate rainforest environment are lacking. This research evaluated the synergistic use 

of high spatial resultion multispectral data and a CHM created from  LiDAR point cloud 

data in a highly topographically varied and temperate rainforest enviromnent of the 

Pacific Northwest.  The results from an OBIA approach using the WV2 optical sensor 

was compared with pixel-based ML and SAM classification.  Subsequently, the CHM 

was synergestically used in all three classifications and the results were compared.  

  It is difficult to compare these results with other studies using the WV2 sensor 

and LiDAR for tree species identification.  Different study sites, optical sensors, tree 

species, number of tree classes, seasons, and the sampling designs vary by study 

(Keempeneers et al. 2009).  The WV2 sensor is still relatively new and few studies have 

been carried out to test its efficiency in forest mapping using OBIA (Ozdemir and 

Karnieli 2011, Zhang et al. 2012b).  The only comparable study was conducted by Zhang 

et al. (2012b) in a mixed evergreen temperate rainforest of Australia. Zhang et al. 

(2012b) similarly used airborne LiDAR (at 4 returns per laser pulse) and all WV2 bands 

in a CART decision tree classifier.  Results showed that the combined use of both 

datasets exhibited more discriminatory power for five tree species.  Overall accuracy was 

82%, and kappa was 77%.  
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 The statistical analysis in this study revealed that the usage of the CHM was not 

strongly supported, primarily due to similar mean heights particularly between these four 

tree classes.   However, it was found that the CHM is most effective, albeit minimal, in 

classifying the CR class which has moderately but significantly higher mean and median 

CHM values than other tree classes. A trial-and-error approach revealed that Kappa 

results improved when assigning all CHM values equal-or-greater than 50m to the CR 

class.  Anything lower than 50m increases the chance that DF and CBL classes are 

misclassified as CR. 

 As suggested by the scientific literature, the kappa results indicate that the OBIA, 

through the use of the multi-resolution segmentation and feature-spaced optimized 

classification, offers the best accuracy over the ML and SAM classifications. The 

inclusion of the LiDAR point cloud, in the form of a CHM, improved Kappa results for 

all classifications by boosting the accuracy of the CR class, albeit minimal by an average 

of 4.6%.  Similar results were discovered by Dalponte et al. (2009), Geerling et al. 

(2007), Jones et al. (2010), and Ke et al. (2010) when LiDAR was applied in arboreal 

classifications.  The z-statistic for comparing matrices determined that the ML-CHM 

(52%) and SAM-CHM (32%) classifications are significantly different, but not between 

the OBIA-CHM (Kappa 62%) and ML-CHM classifications even though the Kappa for 

the OBIA-CHM is 8%. higher.   
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 If given the choice of utilizing only these two approaches (i.e OBIA-CHM and 

ML-CHM), one could argue for the easiest and most efficient approach because the 

accuracy may not differ too much.  Yet from the perspective of conducting this research, 

the difficulty in utilizing both approaches are similar, along with computational 

requirements. Therefore the OBIA-CHM approach is favored for its better accuracy in 

more accurately representing the environment under study. Thus, an OBIA for forest 

species classification and inventory in topographically heterogenous and species rich 

forests of the Pacific Northwest is most creditable of further investigation, but caution is 

advised when utilized a CHM in conjunction with optical imagery due to similar inter-

species tree heights and spectral signatures.  

 Ozdemir et al. (2011) argues that spectral information alone is generally not 

sufficient for detailed forest mapping.  They discovered that relations between first order 

texture (standard deviation of gray levels) and structural parameters, i.e. basal area and 

stem volume, are variables that are positively associated with canopy cover type in 

plantation forests where trees are planted at regular intervals. Although such variables 

may not have a strong association with canopy cover type in a natural old growth 

temperate rainforest of the Northwest Pacific coast, Ozdemir et al. (2011) believe an 

OBIA should consider texture variables such as homogeneity, dissimilarity, angular 

second moment, correlation, and those based on Gray Level Co-occurrence Matrix 

(GLCM) for improved forest mapping.  
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 The tree shadow effect, caused by trees of varying height, sun angle, and 

topography within close proximity to each other, further compounded misclassification. 

Although tree shadow was easily classified and was placed in its own class, such a class 

only represented dark black tree shadows, not a wide spectrum of shadow color and 

texture. Depending upon the amount of shadow incident upon a tree by another, the 

spectral range per band of a given tree can fall within the range of other tree classes more 

profoundly, as pixels within a tree crown will display varying illumination. Thus, it is 

probable that tree shadows was a main contributer of confusion in tree classification, as 

CR was repeatedly confused as DF in all classifications.   

 Zhang et al. (2011) discovered that topographic correction methods (i.e. Cosine 

correction, Minnaert correction, C-correction, Sun-canopy-sensor correction, two-stage 

topographic normalization, and slope matching technique) actually decreased oak and 

mixed forest accuracies using corrected images in the rugged mountainous terrain of 

Southern China. For more profound forest mapping of the Pacific Northwest, future 

research has to strongly consider the negative effect of tree shadows for accurate forest 

mapping by improving upon available topographic normalization techniques.  

 The FSO-NN procedure has not been previously used in forest applications.  This 

non-parametric rule, independent of a normal distribution, has been applied in both urban 

(Myint et al 2011) and arid (Liliberte et al.2007) environments. Due to better results over 

the ML and SAM classifications, parametric classifiers should be avoided.  Future 
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research should consider testing several different non-parametric classifier in Pacific 

Coastal rainforests. Decision tree and support vector machine (SVM) are attractive 

classifier models to test; they are increasingly being used in conjunction with OBIA 

because they are non-parametric methods, which require no assumptions for data 

distribution and feature independency (Ke et al. 2010).  
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APPENDIX 1:    The Pacific Coast Temperate Rainforest

 

 
 

 

 

The Pacific Coast temperate rainforest 

biome is  a region with a broad range of 

physiological landscape types that 

influence many varied ecological 

processes (Lawford et al. 1996).  The 

old-growth temperate rainforests thrive 

in the coastal mountain ranges from the 

San Francisco Bay Area to Southern 

Alaska.  The montane landscape 

ensnares the  maritime air masses full of 

moisture arising from the Pacific Ocean. 

As this moisture condenses into rain it 

creates lush rainforests with the largest 

tree in the world -- the coastal redwood 

(DellaSalla et al. 2011).  According to 

Alaback (1996), this biome has the 

following characteristics: 

 

 - Gradient from 38⁰N to 61⁰N 

 - A maritime and coastal montane    

   climates with 1400mm rainfall or   

   greater 

 - Cool temperatures throughout the year 

   (4  to 20 ) 

 

Legend 

 
 Image Source:  Ecotone (www.inforain.org/)



 
95 

 
 
 
 
 

 
 

APPENDIX 2:  Map of Muir Woods 

 

 

 
Source: Auwaerter and Sears 2006. 
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APPRENDIX 3:  Calibration Coefficients of WV2 Image 

 

 

 Sensor calibration is a procedure to pertaining to spectral properties, where 

channel center positions or radiometric properties, (i.e., the offset (  ) and slope (  ) 

coeffcients, relating the digital number to the at-sensor radiance) may have changed. For 

multispectral imagery, spectral calibration problems are difficult to detect (Richter and 

Schlapfer 2012). This calibration fixes possible problems in the spectral response curve 

of each band.  Only    is corrected per WV2 image, and each image will have different 

   coeffcients .  The calibration file is located in the metadata file of the raw image file.  

   was corrected and calculated as follows (taken from Richter and Schlapfer 2012):   

        = 0.1 * radiometric gain factor [k] / effective Bandwidth  [3]   
 

 

        Calibrated Gain Settings for WV2 Image over Redwood Canyon  

Band        (mW/cm2 sr micron] 

1 0.0 0.0196525 

2 0.0 0.0328467 

3 0.0 0.0216539 

4 0.0 0.0155877 

5 0.0 0.0192268 

6 0.0 0.1320136 

7 0.0 0.1237998 

8 0.0 0.0090786 
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APPENDIX 4:  Tools Used for Collecting Training Samples 

 

 

 The stratified random samples were collected in the summer of 2012.  Tools and  

 

references used for the sampling included the following: 

 

 Bushnell Falcon 10x50 Wide Angle Binoculars  

 Tree Finder:  A Manual for the Identification of Trees by their Leaves, by 

May Watts  (1998) 

 Pacific Coast Tree Finder:  A Pocket manual for identifying Pacific 

Coast trees, 2nd Ed. by Tom Watts (2004) 

 The Laws Field Guide to the Sierra Nevada, by John Laws (2007).  

 2 JUNO GPS Receivers by the manufacturer Trimble, using the pre- 

installed Terrasync software for GPS data collection and maintenance. 

 Muir Woods and Mt. Tamalpais State Park trail maps  

 A notebook for data entry and to sketch  maps to aid is visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


