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Artisanal and small-scale gold mining activities (ASM) have grown significantly with a 

spike in markets over the past few decades. However, the spatial extent and environmental 

impacts of these activities are poorly known. Some recent studies suggest the need for 

appropriate scientific techniques to estimate these impacts. The study area of Jawalla 

village in Guyana’s Upper Mazaruni River Basin was selected for the following reasons:  

1) documented growth in ASM-based production, 2) the country’s leading role in REDD+ 

forest protection, and 3) extremely low reported rates of forest clearance. The primary 

objectives of this study were to quantify the extent and total area of ASM, and to analyze 

and estimate the forest loss caused by these activities from 1986-2011. The changes in 

artisanal gold mining activity over a 25-year time period were studied based on available 

and suitable Landsat data with acceptable low cloud cover and a RapidEye image of 2011 

with 5m resolution. Maximum-Likelihood supervised classification and knowledge 

engineer classifier were applied to the Landsat images. Object-based image analysis was 

used to segment and classify the RapidEye image. Post-classification comparisons were 

performed to estimate the changes in landuse and landcover. Accuracy of the classified 

images of 2010 and 2011 was then assessed against the RapidEye. High-Resolution Global 

Maps of Forest Change was also used to verify forest changes between 2000 and 2010. The 

results indicate that deforestation from gold mining increased between 1986 and 2011. The 

findings also highlighted the advantage of using high-resolution images and object based 

image classification technique to obtain accurate estimates.  
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1. INTRODUCTION 

Globally vast tracts of forests are lost every year especially in developing countries 

of the tropics due to various human activities such as lumbering, farming, bush fires, 

surface mining and urbanization (Kusimi, 2008). One of these major landuse transitions is 

the expansion of mining sites by cutting down trees. In many instances the economic 

benefits of mining are considered more important than the presence of forest cover. If a 

potential mining site is located in a forested region, the initial exploration stage of that 

mining would certainly involve the clearance of forests from the area. This includes the 

clearance of trees for road construction and related infrastructure that would support the 

mining project. Although some may argue that the area of land involved in mining is quite 

small and is not seen as a major cause of primary deforestation (Chakravarty, et al., 2012), 

if it is not properly managed and controlled it can be very harmful and destructive to the 

environment. Moreover, in the region around mining sites, change and development often 

occur rapidly due to the extensive socioeconomic opportunities that mineral production 

brings to a region (Sonter, et al., 2013). This can pose serious environmental and social 

problems to the affected area.  

In a broad sense, there are three types of mining. These are the industrial mining, 

medium-scale mining and artisanal small scale mining. The practice and level of 

environmental problems caused by these three types of mining differ in relation to their 

scale. Industrial mining is widely practiced in developed countries, whereas small scale 
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artisanal mining is predominantly practiced in developing countries. The impacts of mining 

activities on deforestation and forest degradation are more common in developing 

countries. Many of these countries have only recently implemented national environmental 

legislation, and of the laws pertinent to mining, many often fail to effectively regulate all 

aspects of the industry (Hilson, 2002). 

In the Philippines for instance, mining, along with logging, has been among the 

forces behind the country’s loss of forest cover: from 17 million hectares in 1934 to 3 

million hectares in 2003, which is an 82% decline (Docena, 2010). In some countries like 

Peru, miners use explosive devices to clear large sections of forest. Such techniques have 

been used extensively in the Madre de Dios region, where some 7,000 hectares of forests 

and wetlands were cleared by miners between 2003 and 2009 (Swenson, et al., 2011). 

Artisanal and small scale mining (ASM) can be defined as a low-tech, low-

mechanized mining operations with predominantly manual (artisanal) work (Hruschka & 

Echavarria, 2011). Artisanal small scale mining sites are different from middle sized and 

large scale mining activities because of their small and compact area of average 27.5 acres. 

Small scale mining is accomplished in different ways. Land dredging and river dredging 

are two common methods. Land dredging is essentially the expansion of mining sites by 

cutting down trees and digging pits. River dredging on the other hand is the suctioning of 

alluvial sediments from river beds. 
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Figure 1: Aerial photo of a mining site in Upper Mazaruni River Basin (source: Hennessy and Blesius) 

ASM is not a new phenomenon and many of the now developed countries have 

gone through the stage of mineral production from artisanal small scale miners at some 

time in their history. Today, ASM occurs in approximately 80 countries and there are 

roughly 100 million artisanal miners engaged in the sector globally (World Bank, 

2013). Despite the long-history of ASM, there has been a significant increase in the volume 

of production and amount of capital invested in the last few decades. Many of these 

countries have recognized ASM as a means to help fight poverty, increase foreign 

exchange earnings or reduce rural-to-urban migration. (ILO, 2003). Artisanal and small 

scale gold mining in particular has existed and been part of people’s life for thousands of 

years. In terms of production volume, the most important periods in the history of ASM 

gold production are, the 19th century gold rushes from 1849 to 1929, and the modern 

ongoing gold rush – roughly 1970 to present (Persaud & Telmer, 2013).  
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However, the above benefits are not without consequences. If ASM is not properly 

regulated and controlled it can cause severe environmental, ecological, social and health 

problems to the land and the people who live near mining sites. Within the substantial 

literature on different problems associated with ASM (Drake et al. 2001;  Hilson 2009; 

Gibb & O’Leary  2014), the environmental risks caused by the sector are relatively 

neglected, yet the consequences of ASM on the environment can be enormous. It is argued 

that the environmental costs of ASM are in general higher than those of other types of 

mining or ASM is dirtier per unit of output than medium-sized or large and modern mining 

operations (Hentschel, et al., 2003). Besides deforestation, other examples of the most 

common problems are land degradation, mercury pollution, river siltation and erosion.  

In Guyana, different studies indicate that there has been an expansion of small scale 

mining sites in recent decades. It is estimated that there are between 10,000 to 12,000 

artisanal small scale miners in the country (Lowe, 2005). However, the growth of ASM in 

Guyana has received little attention in the literature, despite its rapid growth and being of 

central importance to the country’s socioeconomic status (Clifford, 2011). Both forms of 

ASM which are the land dredging and river dredging are mostly exercised in the thick 

Amazon forest along rivers and streams. An example of land and river dredging is shown 

in figure 2: 
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Figure 2: Land dredging and river dredging in the study area (source: Hennessy and Blesius) 

Forest conservation is very critical in Guyana, mainly after the signing of the 

Reduced Emissions from Deforestation and Forest Degradation (REDD+) Memorandum 

with the Norwegian government in 2009. This essentially commits both governments to an 

inclusive policy making process in all activities related to forest and climate protection 

(Dooley & Griffiths, 2014). However, according to the Guyanese Ministry of Natural 

Resources and Environment, mining is the main driver of forest change in Guyana (MNRE, 

2013). Mining activities are at the forefront of causing serious impacts on the surrounding 

environment such as: river and land pollution, erosion, forest loss, ecological disturbance 

and other related problems. The deforestation rate due to mining activities from 2000 to 

2008 increased by 2.77 times according to an assessment by the World Wildlife Fund-

Guianas (Staff, 2010). In 2012 alone, 92% or 13,516 hectares of the total deforestation in 
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the country was caused by small scale mining activities (MNRE, 2013). Estimating and 

monitoring these losses on a regular basis is one step towards controlling the damages. 

However, acquiring the necessary data is not always simple. Natural and man-made 

hindrances are very common issues associated to getting data from the ground. Geographic 

Information Science (GIS) and Remote Sensing (RS) tools and techniques play major roles 

in solving this limitation. Remote sensing in particular plays a significant role in mine 

monitoring to sustain safe and effective operations and mitigate the risks associated with 

them (Düzgün & Demirel, 2011).  Remote sensing in the form of satellite images in 

particular provides a great range of spatial and temporal information that can be used to 

analyze, quantify or monitor land cover transformation from forest cover to sites of small 

scale mining.   

Furthermore, the acquired images need to be processed appropriately in order to 

convey the most accurate estimate of the forest loss caused by ASM. Two of the commonly 

used approaches to analyze satellite images are the traditional pixel-based and the more 

recent object-based image analysis (OBIA) processing strategies.  

The pixel-based approach which was developed in the 1970’s, makes use of spectral 

information of the pixels to classify the image into different classes.  However, the fact that 

only the spectral information of an image is considered is a major drawback of the 

approach. 
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In Object-based image classification approach, image objects are generated and 

classified according to their physical (color and texture), spatial (location, shape, 

neighborhood, distances etc.) and scale (structures and embedding) properties 

(Marschallinger and Hofmann 2010). The two main stages in OBIA are segmentation and 

classification.  Segmentation is the clustering or grouping of pixels into meaningful areas. 

Expert knowledge is essential in the segmentation stage. Segmentation is done in numerous 

scales in order to allow the differentiation of object categories into various levels. Only 

good segmentation results can lead to object-oriented image classification out-performing 

pixel-based classification (Gao, et al., 2006). Classification in OBIA is done by the 

formation of classes based on rulesets. According to the user’s ruleset, the segmented 

objects of the image are clustered together to form homogenous classes. 

The Object Oriented Image Classification approach is an effective way of 

classifying satellite images. Many comparative studies of pixel-based and object oriented 

image classification techniques have shown that an object-based approach provides better 

results than traditional image processing techniques (Sarmadian, et al., 2007; Myint, et al., 

2011). However, OBIA requires high user interaction in selecting appropriate parameters 

for example to perform segmentation. 

Numerous studies have demonstrated the application of remote sensing data 

acquired at different observation scales for monitoring mining activities and their 

implications on the environment. For instance, Ieronimidi, et al. (2006) used different 

image fusion techniques on QuickBird images to maximize spectral and spatial resolution 
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of the original image for studying mined areas. Pagot, et al. (2008) applied an object-

oriented, maximum likelihood classification scheme to process bi-temporal IKONOS 

images of diamond mines in west-Africa.  

Therefore, this study builds on previous research by examining the effectiveness of 

both pixel-based and OBIA in classifying small scale mining sites from Landsat and 

RapidEye satellite images. The final results from these analyses are intended to 

demonstrate the patterns of ASM in quantitative and spatial forms.  

The main goal of this research paper is to detect, quantify and analyze the state of 

ASM in the Jawalla village area in Upper Mazaruni River Basin located in western Guyana. 

In order to achieve this aim, multi-temporal Landsat images and a high resolution 

RapidEye image were used as primary sources. Pixel-based and object based image 

analyses approaches were then applied to the images. The pixel-based image processing 

solely focused on the Landsat images of 30 meter resolution. Initially 45 Landsat images 

were considered between the years 1986-2011. However, only the images from 1986, 1999 

and 2010 that had relatively low cloud cover were selected for further processing. 

Geometric and atmospheric corrections were performed in Erdas Imagine 2013 and Atcor 

2. Then both maximum-likelihood supervised classification and Knowledge Engineer 

Classifier were implemented to attain the final results. On the other hand, object-based 

image analysis (OBIA) approach was mainly focused on the RapidEye image from 2011 

that had a resolution of 5m.  
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The specific research goals of this study are, by developing robust image processing 

approaches to: 

1. Classify the study area into different landuse and landcover (LULC) categories 

2. Quantify the extent and total area of ASM in forests and rivers 

3. Analyze the extent of forest loss and river sedimentation over the study period 

The research study was based on the premise that ASM has been increasing in the 

Upper Mazaruni River basin in the last three decades causing deforestation and high 

sedimentation in rivers. The study closely examines two major assumptions: 

1. Pixel-based and OBIA can be used to quantify the extent of forest loss from 

ASM. 

2. OBIA can be more effective than pixel-based in distinguishing different levels 

of ASM activities. 
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2. STUDY AREA 

2.1 General Description of Study Site 

 

Guyana is a small country located at the north east coast of South America and has 

a population of about 750,000. Eighty percent of its 214, 969 square km total area is 

covered with forests. The major types of forests in Guyana are rainforest, seasonal forest, 

dry evergreen forest, marsh forest and mountain forest (ITTO, 2011). 

Of the many rivers and streams in the Guyana, the Mazaruni River which is an 

important source of alluvial gold and diamond, is a tributary of the Essequibo River and 

has a length of 560 km (The Columbia Encyclopedia, 6th ed., 2014). The Mazaruni River 

together with the Cuyuni and Potaro rivers account for 80% of ASM activities (Hennessy, 

2014). 

This research is focused around the Jawalla village of the Upper Mazaruni River 

Basin which is located in the western-part of Guyana (figure 3). The total area of this study 

area is approximately 361 square km extending from 5°46’N to 5°38’N and 60°35’W to 

60°20’W. This region is predominantly covered by montane forests and upland shrub 

savanna (Huber, et al., 1995). The Upper Mazaruni River Basin which borders Venezuela 

and Brazil is part of the Guyana Shield which is known to be one of the ancient and most 

vulnerable ecosystems in the world (George & Almås, 2015).   

The Amerindians are the very first settlers of Guyana and they account for 7% to 

8% of the total population in the county (IHRC, 2007). The Upper Mazaruni River Basin 
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region is the home of the Akawaio tribe. Although there is no reliable census, it is estimated 

that there were about 6000 Akawaio in the Upper Mazaruni River Basin and nearby areas 

(Colson, 1996). The Upper Mazaruni District was formally created as an Amerindian 

district in 1945, twenty one years before the independence of Guyana from Britain 

(Brosius, et al., 2005). The region is extensively covered by rainforests. Artisanal small 

scale gold mining is a significant activity in the area. There are about 12,000 persons, 

mostly Amerindians that are directly engaged in the sector in the interior parts of Guyana 

including the Upper Mazaruni River Basin (Colchester, et al., 2002).  

 

Figure 3: Overview of study area with location inset (satellite image shown is the 2011 RapidEye image) 
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2.2 Historical Background of Small Scale Gold Mining in Guyana 

Gold mining has a long history in Guyana. According to Brosius et al. (2005), the 

first concerted attempt to mine gold was carried out on the Mazaruni in 1863 and 1864. 

Production was estimated to be 40 ounces in 1882, but thirty years later reached 138,000 

ounces. The activity therefore became a lucrative option to retreat from working in 

plantations. However, a decline in production was registered once the easiest deposits were 

taken out (Brosius, et al., 2005).  

According to Clifford (2011), small scale gold production has been increasing 

steadily since 1970’s. This was caused by the increase in global gold prices and decline in 

socio-economic conditions in the country.  Figure 4 shows the increasing trend of gold 

production since 1979. 

  

Figure 4: Guyana gold production 1979–2011 (Guyana Geology and Mines Commission, 2011) 

Amerindian communities and the government of Guyana have had numerous 

disagreements over titling of lands. Amerindian peoples have been demanding full control 
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of their lands and all activities done there, including mining. However, the 1989 Guyana 

Mining Act highlighted that all minerals within the lands of the Guyana shall be under the 

control of the State (Ministry of Legal Affairs , 1989). Hence, the government of Guyana 

expanded state-sponsored mining developments particularly after designating 6 mining 

districts in the country which included the Upper Mazaruni River Basin. The government 

also allowed foreign mining companies to conduct exploratory study in the region and 

allowed small scale mining (Brosius, et al., 2005).  

Amerindian communities felt neglected and blamed the government for lack of 

transparency, despite the government’s policy to involve them in decisions about mining 

in their lands (Colchester, et al., 2002). They argue that because of mining activities, many 

of which were permitted to foreigners and coastal persons, they continually suffer from 

environmental and social consequences.  

More than 90% of Amerindians live under the poverty line and they suffer from 

different sorts of social problems caused by small scale mining that mostly take place in 

interior lands where they live. Some of the social effects are the rise in crime, prostitution, 

rapid spread of social diseases, and disruption of their traditional life-style (IHRC, 2007; 

Thomas, 2009). Most of the rivers where they depend on for drinking, bathing and fishing 

are contaminated because the miners dispose their waste into the river.  

Although, the Guyanese government signed a UN declaration in 2007 that allowed 

indigenous peoples to have the right to the lands, territories and resources which they have 
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traditionally owned, occupied or otherwise used or acquired  (Colchester and La Rose, 

2010), there has been little change on the ground according to the Amerindians.  

2.3 Mining and Deforestation 

Generally the rate of deforestation in Guyana is very low when compared to other 

countries. The government of Guyana continuously rejects claims of an increase in mining 

activity in Guyana, leading to an increase in deforestation (Guyana Times, 2013). 

However, different studies argue otherwise. Studies have shown that gold-mining is a 

significant cause of forest degradation and environmental pollution in the country (ITTO, 

2011). Between 2010 and 2011 94% of identified deforestation was caused from mining 

(Conservation International, et al., 2013).  

Mining in the Upper Mazaruni is responsible for extensive deforestation, land 

degradation (figure 2) and damage to water resources according to George & Almås 

(2014). Forest loss and expansion of small scale mining activities have been increasing in 

this part of the country. Annual deforestation attributable to mining and related 

infrastructure has increased from over 1,000 ha per year between 1990 and 2000 to nearly 

10,000 ha in 2010, before falling slightly to 7,000 ha in 2011 (Conservation International, 

et al., 2013). Evidently a team of researchers that flew over the region in 2005 observed 

extensive deforested scars dotting the rainforest that signify small scale mining sites 

(International Human Rights Clinic, 2007). Figure 1 shows this to be still the case in 2014. 

On the other hand, Guyana’s involvement in Reduced Emissions from 

Deforestation and Degradation (REDD+) have enabled the country get financial assistance 
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from Norway, while forcing the government to quantify and reduce impacts of mining 

(Hennessy, 2014). However, the build-up to and launch of Low Carbon Development 

Strategy (LCDS) and REDD+, has caused clashes between government authorities and 

miners, because the small scale miners see this strategy as a threat to their livelihood 

(Clifford 2011; Dow et al., 2009).  
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3. METHODOLOGY 

3.1 Data and Tools Used 

This study in general and the processing stage in particular focused on 30m Landsat 

and 5m RapidEye images.  Two types of image classification approaches were used to 

create final results. The workflows for the pixel-based and object-based classification 

approaches are displayed in figures 5 and 6 respectively. 

As mentioned before, a total of 45 Landsat satellite images were evaluated and 3 

images from 1986, 1999 and 2011 with minimum cloud cover were selected for further 

analysis. After geometric and atmospheric corrections were applied, maximum-likelihood 

classifier method was used for supervised classification. In an effort to further improve 

results, knowledge engineer classification technique was performed.  

 

Figure 5: Pixel-based classification workflow 
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Figure 6: Object-based classification workflow 

In order to minimize the effects of solar illumination and related factors, all the 

images were acquired from the same season. The months of acquisition were October, 

November and December for the Landsat TM images of 1986, 1999 and 2010 respectively.  

The RapidEye image which had 5 spectral bands, was acquired in September 2011. 

In almost all the images cloud cover was inevitable, mainly due to the geographical 

location of Guyana. The list of satellite images used in this study is listed below: 

Table 1: List of images used in the study 
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Several software packages were used to conduct this study. Erdas Imagine 2013 

and Atcor 2 were used to perform geometric and atmospheric corrections as well as pixel-

based classification. ArcGIS 10.2 was used to create a thematic layer that masks out cloud 

cover in the RapidEye image. Finally, eCogntion was used to accomplish segmentation, 

extraction of image information and object- based classification of the RapidEye image.  

The RapidEye image used for this study needed to be georeferenced and it was re 

corrected using image to image registration with reference to the Landsat images. This 

correction was completed using nearest neighbor resampling technique in Erdas Imagine 

2013. Atmospheric Correction was applied to correct the atmospheric distortions of a 

satellite image related to haze, sun angle and skylight, which can be important factors in 

multi-temporal analysis.  Although, the inclusion of Digital Elevation Model (DEM) in 

Atcor 3 of Erdas Imagine significantly increases the quality of the atmospheric correction, 

due to the lack of high resolution DEM of the study area, instead the Atcor 2 workstation 

of Erdas Imagine 2013 was used.  

Finally in the pre-processing stage, a thematic vector map that masked out clouds 

in the RapidEye image was created. The main use of this thematic map for clouds was to 

avoid misclassification with bright white mining sites. Pagot et. al., (2008) also applied the 

same technique to prevent misclassification of built-up areas, roads and industrial dykes 

from excavation materials and mining pits. 
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3.2 Classification of Landsat Images 

The traditional maximum-likelihood classification was applied, as it is still the most 

widely used technique. Training areas were selected using the high-resolution RapidEye 

image as a reference, because field surveys could not be conducted. A total of 8 landuse 

/landcover (LULC) classes were considered. The list of the classes are: Sedimented pits, 

mining sites, river sediments, river, grassland, forest, cloud and shadows.  

This initial classification was followed by the Knowledge Engineer application in 

order to attain better results. The main use of knowledge engineer is that users can develop 

methodology, define variables, set rules and design a hierarchical decision tree (Jensen, et 

al., 2007). In addition to the spectral bands of the images, other indicators such as NDVI 

(Normalized Difference Vegetation Index) and the result of the supervised classification 

image were also incorporated to set rules of classification for separation between classes.  

3.3 Classification of RapidEye Image 

The procedures of segmentation and classification for the RapidEye image were 

performed in eCognition 9.0.1. This is a software used for object based image analysis. For 

high resolution image such as RapidEye, it may be a better choice for detection of mining 

pits which normally are small in size.  

The RapidEye image and the thematic map of the cloud mask were loaded as image 

layers into eCognition. The Near Infrared Red (band 5) layer was given a slightly higher 

layer weight than the other layers. Scale values for segmentation were set at different levels 
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(for example scale of 20 for mining pits and scale of greater than 200 for vegetation). These 

levels were set according to the size of the objects of interest.  

The shape and color factors were very essential in spotting the mining sites. The 

difference in color implies the different levels and stages of a mining activity. For instance, 

an orange or yellow color in a river signifies a mining activity, while a dark and translucent 

color means the river is undisturbed. The RapidEye image clearly shows potential mining 

pits with distinct color and usually a round shape. Therefore, based on the visual 

interpretation of the images, the shape/color values were given equal weights, as both 

factors were essential in identifying the objects of interest.  

After the above parameters were set, the image was segmented using the multi-

resolution segmentation technique (figure 7). Spectral difference segmentation was later 

applied to merge neighboring objects according to their mean layer intensity values. 

 

Figure 7: The segmented RapidEye image 



21 

 

In the classification stage, the classes were created in relation to the supervised and 

knowledge engineer classification results so that they can be compared. Therefore, a 

hierarchy of a classification tree was established in eCognition. Various indicators or 

factors were used to classify all the classes (see example in figure 8). More emphasis was 

given to alluvial pits, mining sites and river sediments, because these classes were assumed 

to have direct relation with artisanal small scale gold mining activities in the region. 

Classification explicitly incorporated numerous scales in order to accommodate different 

real-world objects. Arithmetic variables such as NDVI and NDWI, and spatial relationships 

such as Euclidian distance between features were also taken into consideration.  

  

Figure 8: Some of the indicators used to separate classes 

 

Accordingly, the following classes were formed:  

i. Forest: This class was the most dominant one. Despite the fact that different sub classes 

of various tree types could have been extracted, for the sake of simplification all different 

vegetation types in the study area were generalized in one class, because tree species 
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classification was not the focus of the investigation. Normalized Difference Vegetation 

Index (NDVI) was used as an important distinctive element in differentiating the vegetated 

and non-vegetated areas.  All features with NDVI values of 0.7 or higher were categorized 

in this class. 

ii. Grassland: had similar characteristics to the forest. But the NDVI value of 0.4 to 0.7 

was used to differentiate it from the forest class. 

iii. Barren land: initially constituted all the unclassified (non-vegetated) areas that do not 

belong to forests and grasslands. It served as a base of classification for the rest of the 

classes except for the river class, until it finally formed a class. 

iv. River: The Near Infrared (NIR) band and brightness values of the image were used in 

clarifying the river from other features. These two alone were not absolutely sufficient. 

Therefore, new sub-class (river edge) that was formed using other indicators, was used 

before merging it back to the main river class.  

v. River sediments: The Normalized Difference Water Index (NDWI) was appropriate 

factor to delineate this class. Non-vegetated objects with NDWI value of 0.423 or less with 

a limited distance to the river were categorized as River Sediments class. 

v. Clouds and Cloud shadows: were masked out using the thematic image created in 

ArcGIS. There were some leftover shadows which were later separated from similar 

features using NDVI and “border to” classification rules.  
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vi. Mining sites: are clusters of tiny pits which can be recognized on the image by their 

high brightness and texture. Some pits can be filled with water, however the presence of 

the dry pits which signify high mining intensity, is the key identifying factor. This class 

was very essential to clearly delineate, as it was one of the three classes of interest for this 

study. Therefore objects with brightness values of 1618 or more with close distance to the 

river class were grouped in to this class. This brightness level considered all the bands. 

vii. Alluvial Pits: are characterized by pits filled with water. They are round in shape and 

are located with close proximity of the river class. The presence or absence of water, 

sediments and excavated materials were used as classification indicators for (Pagot, et al., 

2008) in their research to detect diamond pits. For this project, these indicators were taken 

into account in addition to the unique blue color of the alluvial pits which could be visually 

detected. Then objects with HIS Transformation (Hue, Intensity and Saturation) Hue value 

between 0.72 and 0.91 of the Green, Blue and NIR bands were categorized as alluvial pits. 

These values were obtained after several trial and error adjustments of the HIS levels. 

viii. Sedimented Pits: are usually isolated and individual pits characterized by their dryness 

and moderate level of brightness. They signify high level of activity. Spatial variables (such 

as relative distance to a river) were mostly applied to detect this class. 

ix. Built-up (Settlements): included both residential areas and farm lands. Spatial 

relationships (e.g. their spatial location) and brightness values were used to form this class. 

The final classification scheme is displayed in figure 9. 
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Figure 9: OBIA classification scheme
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4. RESULTS 

4.1 Interpretation of LULC Obtained from Landsat  

The results of the landuse/landcover (LULC) classification are presented in tables 

2 and 3 as well as figure 10..Table 2 displays the changes of LULC between the years of 

1986, 1999 and 2010 in square kilometers which were obtained from Landsat images, while 

table 3 shows the results of classification acquired from the RapidEye image.  

It is also important to point out that the presence of clouds and shadows had 

impacted the total area of several classes. In order to observe the results of the areas that 

were not affected by clouds in all the 4 images, section 5 of this research evaluates the 

results in a form of a graph (figure 14) and descriptive statistics. 

Table 2: Classification results of LULC 1986, 1999 and 2010  

 Landsat Images 

1986 1999e 2010 

Landuse/Landcover Area in  
Square km 

Area in 
Square km 

Area in 
Square km 

Sedimented Pits 0.26 0.57 0.75 

Mining Sites 0.70 0.70 0.65 

River sediments 0.16 1.09 1.94 

River 2.82 2.46 3.8 

Grassland 7.7 6.76 2.75 

Forest 343.95 349.42 328.70 

Cloud 4.69 0.16 14.87 

Shadow 1.94 0.83 8.37 

Total 361.8 361.8 361.8 
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Figure 10: LULC maps of 1986, 1999 and 2010  
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Out of the eight classes, the three  main categories that directly imply mining 

activities were, the sedimented pits (small, bright and isolated mining spots), mining sites 

(the clusters of dry pits characterized by their bright surface) and river sediments (parts of 

the main river that signify sedimentation).  

 The classification results show that there was an increase of 188% in the total area 

of the sedimented pits class from 0.26 square km in 1986 to 0.75 square km in 2010. The 

rate of increase was higher from 1986-1999 (0.31 square km) than from 1999-2010 (0.18 

square km). On the other hand, the mining sites class registered no change between 1986 

and 1999 with 0.7 square km. From 1999 to 2010 the total area of these sites declined by 

7% to 0.65 square km. However, visual interpretation of the Landsat 2010 showed that 

significant portions of the mining sites class were blocked by clouds and shadows.   

The class that showed substantial changes over the 24 years period was the River 

sediments class. This class went up from 0.16 square km in 1986 to 1.09 square km in 1999 

and then to 1.94 square km in 2010. High sedimentation was mostly notable in areas where 

mining sites were in close proximity to the main river. This is reasonable given the mining 

site development.  

Another significant change that can be observed from the results is the decline in 

vegetation cover. The grassland area slowly declined by 12% from 7.7 square km in 1986 

to 6.76 square km in 1999.  The decline continued to 2.75 square km in 2010. Based on 
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these findings, grassland cover fell by 64% from 1986 to 2010. The reason for this could 

be that the area classified as grassland in some Indian lands could have been crop lands, 

and with the shift from agriculture to gold mining, the class may have shrunk. Recently, 

the abandonment of agriculture for gold mining has been recognized as a major problem 

in Guyana (Guyana Times, 2014). 

 The forest class is the largest LULC class in the classification. In 1986, this class 

had covered 343.95 square km of the study area, excluding the areas covered by significant 

clouds. After 13 years, the total area it accounted grew to 349.42 square km, registering 

1.6% increase. The total area of this class plummeted by 6% to 328.70 square km in 2010. 

However, as can be visually interpreted from the 1986 and 2010 images in figure 2, 

majority of the cloud and shadow classes fell on forest covers. On the contrary, the 1999 

image has the lowest cloud and shadow cover. Therefore it is assumed that, the total area 

of the forest class in 1986 might have been larger than 343.95 square km.  

4.2 Interpretation of LULC Obtained from RapidEye  

The RapidEye image of 5m was processed and classified in eCognition using the 

object based image classification technique (figure 11). A total of 11 classes were created. 

Alluvial pits, settlement and barren land classes were the three additional classes. The high 

resolution of the image and the robust nature of OBIA in separating similar classes were 
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the two main reasons for the addition of these classes. Table 3 presents the descriptive 

results of the LULC of the classified map.  

Table 3: Classification results of LULC 2011 

Landcover/Landuse Area in Square km 

Alluvial Pits 0.06 

Sedimented Pits 0.44 

Mining Sites 1.4 

River sediments 0.44 

River 3.34 

Settlement 0.10 

Barren Land 0.36 

Grassland 6.2 

Forest 330.8 

Cloud 18.9 

Shadows 0.06 

Total   361.8 
 

As it was mentioned in the previous chapter, clouds were masked out to avoid 

misclassification with mining sites class. They stood out as the second largest class next to 

forest class by covering 5.2% of the study area. 
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Figure 11: LULC map of 2011 

 

4.3 Accuracy Assessment Results 

For this study, the RapidEye image of 5m resolution and a High-Resolution Global 

Maps of Forest Change which was developed by quantifying forest change between 2000-

2010 (Hansen, et al., 2013) were used as reference data for accuracy assessment. Despite 

the fact that field observations undoubtedly offer reliable information for accuracy 

assessment, collection of ground points was not possible for this study. Two members of 
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the research team for this study who flew to Guyana to collect data were not able to do that, 

due to collection restrictions sanctioned by the authorities in Guyana. The very few ground 

control points (majority of them in river banks) they were permitted to collect were 

unfortunately insufficient to make any conclusions. 

Accuracy assessment could not be done for the LULC of 1986 and 1999 since there 

were no any reliable maps or supplemental information that could serve as reference. 

Hence, the accuracy assessment was focused on the LULC of the 2010 (classified using 

pixel-based) and the LULC of 2011 (classified using OBIA), because of the smaller time 

difference. 

4.3.1 Sample Sizes 

For this study, the number of samples was determined using the following Worst-

case scenario formula adopted from (Congalton & Green, 2009): 

n=B/4b2 

Where: 

 n = total samples of all classes 

 B = the upper (α/k) x 100th percentile of the Chi-Squared distribution with 1 degree of 

freedom 

 b = significance level  
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B was 6.24 and 6.6 for the 2010 and 2011 images respectively. Moreover, a 90% 

significance level was used for both images. 

Thus, 160 samples for the 2010 and 155 samples for the 2011 images were 

determined. Next, the selection of proper sampling scheme is significant in obtaining an 

error matrix that is representative of the entire classified image (Luneta, et al., 1991). 

Stratified random distribution technique was used to allocate the samples to all classes.  

4.3.2 Descriptive Analysis of Accuracy Assessment Results 

Error matrix is a widely used form of representing accuracy results. Erdas Imagine 

2013 was the software used for accuracy assessment. The overall accuracy, kappa statistic 

and user’s and producer’s accuracy were accomplished for the LULC maps of 2010 and 

2011.  The Kappa statistic is an alternative measure of classification accuracy that 

quantifies how much better a particular classification is in comparison with a random 

classification (Giri, 2012). 

In table 4, the LULC 2010 which was derived using supervised classification and 

knowledge engineer, registered an overall accuracy of 70%. In table 5, the overall accuracy 

of the LULC 2011 which was derived using OBIA was 83.2%.   

The Producer’s accuracy indicates the probability of a reference pixel being 

correctly classified and the user's accuracy refers to the probability that a pixel classified 
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on the map represents that category on the ground (Congalton, 1991). For the LULC 2010, 

the user’s and producer’s accuracy results were between 22.2% - 100% and 32%-100% 

respectively. The highest user’s accuracy was registered for the forest class. Whereas 

Sedimented Pits and River classes had the lowest user’s accuracy. This could be due to 

similarities of spectral properties with grassland and river sediments. Similarly, forest class 

attributed the highest producer’s accuracy, while the river class recorded the lowest 

producer’s accuracy: This was mainly because of the misclassification of some parts of the 

river as river sediments. 

 The image classified using OBIA attributed higher producers and users accuracies 

when compared to the LULC of 2010. The user’s accuracy was in the range of 50%-100% 

while the producer’s accuracy ranged from 67%- 100%. The classes with highest user’s 

accuracy were forest and mining sites, while grassland and sedimented pits resulted in low 

user’s accuracy. The reason for this could be misclassification caused by similarities of 

spectral signature with other classes such as settlement and barren land. On the other hand 

river sediments and river classes recorded the highest producer’s accuracy, whereas mining 

sites and grassland classes attributed lower producer’s accuracy with 67.7% and 70% 

respectively. 

Another way to assess classification accuracy is kappa coefficient. It expresses the 

proportionate reduction in error generated by a classification process compared with the 
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error of a completely random classification (Whitaker & Amlaner, 2012).  The LULC of 

2010 attained an overall Kappa Statistic of 66%. While the LULC of 2011 registered an 

overall Kappa statistic of 82%.  

Finally, the High-Resolution Global Maps of Forest Change was used to assess the 

difference in vegetation between the years of 1999-2010. This was aimed at inquiring if 

the forest class of 2010 was correctly classified to represent the state of forest cover in the 

Global Maps of Forest Change. For this purpose, an accuracy assessment that only focused 

on the forest class was accomplished. A total of 58 reference samples were used to conduct 

the accuracy assessment. The users and producers accuracy were 94% and 86% 

respectively. The kappa statistic was 92%. Based on these findings, it can be inferred that 

the forest cover in the LULC 2010 was consistent with the results acquired by the High-

Resolution Global Maps of Forest Change (Hansen, et al., 2013). 
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Table 4:  Accuracy Assessment Results of LULC 2010 

C
la

ss
if

ie
d

 D
at

a 
Reference Data   

 Grassland Mining sites Sedimented 
 Pits 

Forest River River 
Sediments 

Cloud Shadow 

Grassland 17 2  1     

Mining sites  18   2    

Sedimented Pits 10 2   4 1  1   

Forest    20     

River 1 5 2 1 7 2   

River Sediments     13 7   

Cloud    1   19  

Shadow        20 

Producers  
Accuracy (%) 

61 67 67 77 32 70 100 91 

Users 
 Accuracy (%) 

85 90 22 100 35 35 95 100 

Kappa  
Statistic (%) 

82 88 19 100 25 31 94 100 

 

 

 

 

Totals  

Overall Classification Accuracy 70.00% 

Overall Kappa Statistics 65.7% 
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Table 5: Accuracy Assessment Results of LULC 2011 

C
la

ss
if

ie
d

 D
at

a 

Reference Data 

 River 

Sediments 

Grassland Sedimented 

Pits 

Mining 

sites 

Alluvial 

Pits 

Shadow Barren 

Land 

Forest River Settlement 

River 

Sediments 
12   2       

Grassland  7  2   1 1 1 2 

Sedimented 

Pits 

 1 8 1 1  4    

Mining sites    14       

Alluvial Pits   2 1 11      

Shadow      14     

Barren Land    1   12 1   

Forest        14   

River 1     1   12  

Settlement  2        12 

Producers 
Accuracy (%) 

92 70 80 67 92 93 71 82 92 86 

Users 
Accuracy (%) 

86 50 57 100 79 100 86 100 86 86 

Kappa 
Statistic (%) 

84 47 54 100 77 100 84 100 84 84 

Totals  

Overall Classification Accuracy 83.23% 

Overall Kappa Statistics 81.6% 
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5. DISCUSSIONS 

In this study, the amount of cloud cover in each image was considerably different 

from another one. The classes affected by clouds were also not the same for each image. 

Thus, in order to minimize this issue, the clouds and shadows of all images were extracted 

and aggregated in ArcGIS to form a separate layer. Then this layer was overlayed on each 

image so that the effect of clouds and shadows remains the same for every image. Finally, 

from the 316 square km cloud free area, total area of each class was calculated and 

compared. Figure 14 shows the changes in total areas for mining, river sediments, forests 

and grasslands between 1986 and 2011. However, it should be noted that, this comparison 

might not represent the actual changes overtime, since many of the LULC changes might 

have taken in the cloud covered regions. 

In figure 14:a, the classes that indicate mining activities (mining sites, sedimented 

pits and alluvial pits) were combined to show the trend of artisanal gold mining activities 

between 1986 and 2011. Between 1986 and 2011, the total area of mining activities 

increased by 77% from 0.96 square km to 1.7 square km. In a similar manner, there had 

been a steady increase in the level of sedimentation between 1986 (0.13 square km), 1999 

(0.93 square km) and 2010 (1.76 square km). But this rate of increase was not demonstrated 

in the LULC 2011. The reason for this was that, substantial portions of the sediments class 

from the Landsat image of 2010 were actually detected as mining areas in the high 

resolution image of 2011. This type of mining activity that takes place in rivers is referred 
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as river dredging. Separation of river dredging from river sediments using course resolution 

images is therefore, a difficult task. 

 

 

 

Figure 12: Vegetation cover and mining activities in 1986, 1999, 2010 and 2011 

Similarly, figures 14:b and 14:c show the change in total area of forest and 

grassland respectively. In figure 14:b, the increase in artisanal mining activities might be 

one cause for the decline in vegetation cover. The forest class fell by 1 square km in those 
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25 years. The increase of forest area in 2010 may be due to the misclassification of 

grassland as forests, since the grassland area in 2010 was 3.5 square km less than the 2011 

grassland class. Meanwhile, the gradual decline in grassland area between 1986 and 2011 

may signify the conversion from grassland cover to other activities such as mining. For the 

most part, croplands were basically incorporated and classified in the grassland class, 

therefore drop in grasslands could be attributed to the shift of practice from agriculture to 

mining. 
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6. CONCLSION 

Artisanal small scale gold mining activities have substantial effects on the 

environment. Among other problems, the loss of vegetation cover due to the expansion of 

mining sites has been a significant problem in the Amazonian Guyana. The area selected 

for this study is around the village of Jawalla, in the Upper Mazaruni river basin which is 

located in the western part of the country. This area has undergone considerable landuse 

and landcover changes over the past few decades.  

As the Guyanese government strives to achieve the REDD+ goals and control 

deforestation, there have been disputes between the indigenous people and the authorities 

which has made the annual forest loss in the area difficult to estimate. Given these 

situations, the main objective of this study was to 1. detect, classify and map 

landuse/landcover changes between 1986 and 2011, 2. quantify the expansion of mining 

areas over those years and 3. estimate the forest or vegetation loss in those 25 years. 

In order to achieve these goals, a two folded methodology was implemented. In the 

first phase, the Landsat images of 1986, 1999 and 2010 were processed using maximum-

likelihood supervised classification approach to produce LULC maps. In order to enhance 

the classification, the results were further processed using knowledge engineer classifier. 

Although, these LULC maps provided helpful information on the spatial and temporal 

expansion of mining areas and decline of vegetation cover in the study area, the overall 
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accuracy was low. This is mainly due to the relatively course resolution (30 meter) of the 

input images and the presence of persistent cloud cover, which undermined the total areas 

of several classes.  

In the second phase, the RapidEye image with 5m resolution was segmented and 

classified in eCognition using an object based image analysis approach. Even if the 

emphasis was on mining sites and vegetation cover, a total of 11 LULC classes were 

produced.  The use of higher resolution imagery coupled with OBIA’s capability in 

considering both spectral and spatial components provide a means to distinguish the 

different sized pits with better accuracy. The 67%-100% producer’s accuracy and 79%-

100% users’ accuracy achieved with this technique also reflects this fact.  

Finally examining the research assumptions was essential. The first assumption was 

that pixel-based and OBIA can be used to quantify the extent of forest loss from ASM. 

This was evident from the results that showed artisanal small scale mining areas have 

doubled from 0.96 square km in 1986 to 1.9 square km in 2011, while vegetation cover fell 

down by 13.5 square km over the same period of time. Therefore, it was reasonable to 

support the first assumption of the study. 

The second assumption predicted that OBIA can be more effective than pixel-based 

in distinguishing different levels of ASGM activities. The robust nature of the approach 

coupled with the ability of adding an expert knowledge has resulted in a higher overall 
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accuracy when compared to the pixel-based approach. It should also be noted that, a higher 

resolution image was used with the OBIA, which further substantiated the accuracy. Hence, 

as was evident from the inclusion of additional class (alluvial pits, settlements and barren 

land), it was realistic to support the second assumption as well. 

Finally, although the results of the LULC presented a fair accuracy, it should be 

noted that, without actual ground control points, it is difficult to be certain and the results 

may not provide accurate information about the conditions on the ground. This is because, 

the researchers were not able to take ground control points in the study area. However, the 

future work will consider addressing these limitations to obtain better output. Furthermore, 

the fact that some mining sites along the river were abandoned, would lead to further 

research on the conversion of LULC from mining to other classes.  
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