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This research evaluates and compares the use of a terrain stability model with a 

statistical method in developing landslide susceptibility maps.  The conceptual approach 

was to model slope stability in a geographical information system for a wide area.  The 

study area is a 75.4 km2 area due east of Tomales Bay in Marin County (California) 

characterized by rugged terrain underlain by competent bedrock to areas of hilly terrain 

with chaotic bedrock.  The primary methods were a mathematical model (SINMAP – 

Stability Index Mapping) based on the infinite slope equation and a steady state 

hydrology and statistical models based on binomial variance (using logistic regression). 

The terrain stability model worked well in rugged terrain with well-defined drainages 

where SINMAP could model threshold saturation and resulting instability but did not 

work well in areas with less-rugged terrain and immature drainages.  In such areas the 

statistical models offered greater detail regarding areas of potential hazard given the 

variance of the sample.     
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I. INTRODUCTION 

 

Landslide hazard is important for Marin County, California, given the amount of 

housing and infrastructure built upon the steeper slopes and uplands of a geologically 

young landscape. The USGS conservatively estimated that in the county of Marin there 

were 442 damaging landslides over a 40 year period with an estimated loss of $71.35 

million dollars (Crovelli & Coe, 2009).  One landslide inventory recording impacts in 

eastern Marin County from a single storm (January 3rd through 5th, 1982) listed 124 

landslides with 14 destroyed structures, 17 structures damaged, three deaths and three 

serious injuries (Davenport, 1984).  During that storm it was estimated that there were 

roughly 18,000 debris flows for the entire San Francisco Bay Area resulting in 15 deaths 

(out of a total of 25 deaths from landslides and of 33 deaths overall) and damage to at 

least 100 homes (Ellen et al., 1988).  These events clearly show that the hazard exists to 

both property and life and that debris flows are particularly dangerous given the rapidity 

of the flow and the potential force the flow may carry.  Knowledge of areas susceptible to 

landslides provides the basis for mitigation of the hazard.   

Maps of areas susceptible to landslides have been made through heuristic, 

statistical and physically-based methods.  Statistical models provide a way to 

incorporate past landslide history comprehensively in an analysis of a landscape.  

Methods include multiple regression (Campbell et al., 1996), discriminant analysis 

(Dhakal, et al. 1999) and logistic regression (Dai et al., 2001; Ohlmacher & Davis, 2003).  

Statistical probability of a landslide event is the probability of an event occurrence given 
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the input parameters and, therefore, the output is constrained by the sampled landslide 

data.  The completeness and accuracy of landslide inventory data is therefore essential 

for a valid statistical study (Van Westen et al., 2008).  For this research logistic 

regression is used, given that the method provides a (constrained) range of values 

indicating landslide probability from 0 (not probable) to 1 (probable) which is a more 

useful output than linear regression methods which tend to be unconstrained (Dai et al., 

2001; Ohlmacher & Davis, 2003) or discriminate analysis which does not state 

probability (Ohlmacher & Davis, 2003).  Physically-based models focus on a measure of 

the factor of safety given soil shear strength parameters coupled with a hydrologic model 

(Santini et al., 2009).  These approaches typically employ an infinite slope analysis with 

either a simplified hydrological model (Montgomery & Dietrich, 1994; Pack, et al., 1998) 

or a transient hydrological model (Baum et al., 2002; Wu & Sidle, 1995).  For this 

research a model based on a simplified hydrological model is used (SINMAP - Stability 

Index Mapping) given that a transient model requires detailed rainfall data with high 

spatial and temporal resolution and more complete hydrological data for study area soils 

than is available (Godt et al., 2008).   

In the San Francisco Bay Area landslide susceptibility maps have been 

developed for hazard awareness.  Geologic field mapping of lands in and near towns 

and cities of Marin County including the location of relict landslides, was completed by 

the California Department of Conservation, Division of Mines and Geology, in the 1970s 

(Wagner, 1976).  Such documents were created to inform land-use planning and 

engineering design (Wagner, 1976) because geology (Van Westen et al., 2008) and 

relict landsides (Ellen et al., 1988b) are considered factors in landslide susceptibility.  
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These documents are referenced in a relatively recent county planning document (Marin 

County, 2002).  Bay Area regional work in identifying landslide susceptibility was done 

by the USGS in preparation for the 1997-1998 El Niño winter season (USGS, 1997).  

Maps created included areas deemed susceptible to landslides due to the presence of 

relict landslides (Wentworth et al., 1997), areas where debris flows could initiate given 

slope (20° or greater), and curvature (+0.01 and less) (Ellen et al., 1997) and maps of 

rainfall thresholds for debris flows to occur (Wilson & Jayko, 1997).  These maps were to 

be used by local government along with the National Weather Service rain gauge data in 

monitoring more extreme storm events and resulting local landslide occurrence in areas 

considered prone to such phenomena (Wilson & Jayko, 1997).   

Even though these maps provide general information regarding landslide hazard, 

they are not comprehensive in their analysis nor do they take advantage of current 

computing technologies.  The intent of this research is to explore methods that lead to 

the development more effective susceptibility maps. The questions addressed here are: 

Would logistic regression and physically-based models provide greater and more useful 

specificity in mapping areas susceptible to landslides in Marin County than what has 

already been completed?  How does the surface morphology of Marin County affect the 

output of these models?  What are the limitations and strengths of each of these 

approaches and when is it more appropriate to use one or the other?   
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II. STUDY AREA 

Geomorphic Setting 

The study area (Figure 1) is located in western Marin County, California, due 

east of Tomales Bay and southwest of the city of Petaluma.  It is 75.4 km2 (13 km north 

to south and 5.8 km east to west) in area and is part of the coastal range of mountains 

that run from Humboldt County to Santa Barbara County.  Elevations are near sea level 

in the southeast corner of the study area, where Lagunitas Creek enters a flood plain 

before draining into Tomales Bay to a maximum height of 421.5 m in the northwestern 

part.  About half of the terrain is characterized by gently sloping grassy hills, with most of 

that land in the southern to southwestern part.  Over 35% of the area, mostly in the 

northern part, has steeper and more mountainous morphology.  The mountains trend 

west/northwest to east/southeast, forming narrow valleys often with the drainage 

following the structural grain of faults or folds (Norris & Webb, 1976).  In the southeast 

corner is the 400 m tall Black Mountain which is characterized by distinctive rounded 

ridges and attached spurs.  Much of the remaining land consists of alluvial basins.   

The entire study area is part of the Tomales Bay watershed.  There are three 

major divisions of this watershed that intersect with the area.  Half of the area, located 

north, is a sub-watershed that drains into Tomales Bay through Walker Creek.   The 

Walker Creek drainage is 194 km2 in size of which the upper 20% resides in the study 

area.  In the south to southeast there is a portion of the Lagunitas Creek sub-watershed 

and in the central-southwest there is an area that drains directly into Tomales Bay. 
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Figure 1: Research study area 
 

Much of the lower hills and adjacent valley bottoms are predominantly 

grasslands.  The upper reaches of south-facing slopes also tend to be grassy with the 

north-facing slopes tending towards sclerophyllous woodlands.  Often the higher ridges 

have areas that are relatively bare or hard surfaces.  Sclerophyllous chaparral may be 

found in the upper drainages of the steeper hillsides with oak woodland on the lower 

slopes.  Riparian woodland can be found at the bottom of the steeper drainages and 
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along creeks.  Outside of protected areas, land use has been and is currently agricultural 

with the primary activity being raising cattle for beef (MCCDA, 2004).   

Geology 

The entire study area is underlain by the Franciscan Complex, an accreted 

terrain of heterogeneous clastic sedimentary and volcanic rocks.  The most common 

lithological component is greywacke sandstone which may be interbedded with shale. 

Other rocks found are reddish radiolarian chert, limestone, and mafic volcanic rock 

(pillow basalt and greenstone) (Norris & Webb, 1976; Sloan, 2006).  The Franciscan 

complex is a remnant of the Franciscan trench which was formed as the ancient Farallon 

plate was being subducted under the North American plate.  The rocks of the Franciscan 

complex are estimated to be 100 to 80 million years old.  It is theorized that in this 

process semi-coherent blocks were episodically scraped off and accreted onto the North 

American plate.  This material was eventually thrust up to form the Coast Range 26 to 

20 million years ago as the Farallon plate was being completely subducted.  Material 

stacked in this way resulted in the structurally highest rocks in the eastern side of the 

Coastal Range being the oldest.  The Franciscan Complex can have either unsheared 

bedrock or bedrock of sheared and more highly fragmented mélange (Rice et al., 1976; 

Alt & Hyndman, 2000; Elder, 2001).   

In the study area, the steep ridges are underlain by coherent bedrock of 

greywacke interbedded with shale, except for Black Mountain, which is underlain by 

bedrock of greenstone with some outcroppings of pillow basalt.  These hard terrains are 

characterized by regular steep, sharp crests alternating with flutes.  The area 

characterized by more gentle terrain is underlain by Franciscan mélange (Blake et al., 
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2000).   A mélange is composed of competent blocks of rock within weakly bonded and 

intensely sheared matrix rocks which can be somewhat soil like.  These blocks of rock 

have a variety of sizes and placements and can be common and somewhat massive in 

the local area (Medley & Rehermann, 2004).   

Soils 

Soils in the steeper uplands tend to be thinner, to have low available water 

capacity and moderate permeability and to be subject to rapid runoff.  These soils are 

often more gravelly near the ridge, thickening on side slopes and in the drainage.  They 

are derived from sandstone and sometimes sandstone and shale with relatively low clay 

content and generally low plasticity.  The Felton Variant-Soulajule complex soils on 

Black Mountain are somewhat different, being deeper with low to moderate clay content, 

low to greater plasticity at depth and moderate shrink-swell capacity.  These soils have 

moderate to very high water capacity and are subject to moderate runoff.  The expansive 

soils found in the more gently sloped areas underlain by Franciscan mélange tend to 

have greater clay content with low to high plasticity at depth.  Available water capacity is 

generally higher but runoff may also be rapid if transmissivity is very slow (Kashiwagi et 

al., 1984).   

Climate 

Marin County is situated along the Pacific Ocean and is subject to the influence 

of the south-flowing cold California current whose cooling effect brings in coastal fog in 

the cool summers, in a general Mediterranean precipitation regime of wet winters and 

dry summers. Rainfall averages are higher on the coast and on higher elevations 

whereas temperature averages are higher inland closer to the San Francisco Bay than  
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Figure2: Average monthly rainfall from the Kentfield Weather Station, Marin County compared to 
rainfall totals during the 1982 season (NWS, ND). 

 

 
Figure 3: Rainfall totals in reference to years where landslides were deemed significant according 

to the Marin County Sheriff’s Office of Emergency Services (Marin County, 2005).   
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on the coast.  The average high temperature for the (inland) Kentfield weather station is 

28.5°C (July) with the low at 13.1°C (January).  The average high rainfall amount is 

265.9 mm in January with an average low of 1.3 mm in July (Figure 2) (NWS, ND).  

Rainfall totals from the Kentfield weather station for a 40 year period are found in Figure 

3, with periods of significant landslide activity marked.   

Landslides 

Landslides in the study area tend to be either fast-moving slides and debris flows 

or slow-moving slumps and earthflows (Ellen et al., 1988b).  Slow-moving slumps and 

earthflows tend to occur in highly plastic (high clay content) and expansive soils and 

occur after prolonged periods of saturation when pore water pressure increases through 

accretion (Sidle & Ochiai, 2006).  Areas where they occur are characterized by gently 

rolling hills and immature drainages.  They were considered the principle hazard until the 

1982 storm (Ellen et al, 1988).   Debris slides and flows typically occur in steep terrain 

(>25°) during the height of storm intensity in a period of prolonged rainfall (Sidle & 

Ochiai, 2006); in the 1982 storm debris flows were found most often in slopes between 

27.5° to 37.5° (Ellen et al., 1988b).   

Ellen et al. (1988b) classified landslides inventoried on Hicks Mountain (a 

mountain in western Marin County) according to the natural condition, or habitat, in 

which the landslide would occur (Figure 4).  Almost half of the landslide scars were 

found at the top of first-order drainages on the hillsides above the flutes in the steeper 

uplands (habitat 1).  Another 37% of the landslide scars on Hicks Mountain were found 

in areas without well-defined erosional surfaces that slope down to nonalluviated 

drainages (habitat 2).  About 13% of the landslide scars were found in areas without 
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well-defined erosional surfaces that abut alluviated surfaces (habitat 3).  A sampling of 

other landslide scars found in the steeper uplands from the January 1982 storm found 

an even greater percentage (71%) of landslides occurred in habitat 1 (Ellen et al., 

1988b).  This phenomenon may reflect the presence of colluvial hollows that sit on top of 

the drainage and may be filled scars from relict landslides.  The subsurface morphology 

would tend to concentrate the water in the hollow (Dietrich et al., 1982).  Landslide scars 

were almost never found in the drainages, although debris flow trails would be found 

there.   

 
Figure 4: Landslide habitats (Ellen et al., 1988b). 

For debris flow activity in the San Francisco Bay area, rainfall has to be of 

substantial duration and intensity (Cannon & Ellen, 1985; Cannon, 1988).  Slow and 

steady rainfall does not produce debris flows, as the amount of water passing through 

the established drainage does not create positive pressure heads (Campbell, 1975).  
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Mature drainages develop in accordance to the historical climate and thus establish 

patterns of drainage that are sufficient for normal throughput (Carlston, 1963).  However, 

when soils near or at saturation are subject to intense bursts of rainfall, areas where 

water concentrates may accumulate a perched water table in which water entering will 

be greater than the amount that is exiting (Campbell, 1975; Ellen et al., 1988c).  With 

continuing intense rainfall positive pressure heads in the perched water table will 

develop and a debris slide and flow will follow (Ellen et al., 1988).   

An analysis of the storm rainfall patterns during the January 1982 storm in Marin 

County found that the density of debris flows in the entire San Francisco Bay Area 

increased substantially with rainfall totals above 250 mm and where storm rainfall totals 

normalized to mean annual precipitation was more than 30 percent.  Pre-storm totals 

above 300 mm and below 400 mm (not normalized to historical patterns) were found to 

be correlated to landslide density (Mark et al, 1988).   
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III. METHODS 

The initial approach taken was to look at data sources and then at the distribution 

of phenomena using samples taken from debris flow and random points in order to 

understand the difference between what is typical for the study area to what would be 

found at a debris flow initiation point.   

Data Sources  

Data for geomorphic surfaces such as elevation, slope and curvature were 

derived from digital elevation model (DEM) datasets acquired from the Golden Gate 

LiDAR Project.  This project consisted of an aerial survey of over 2162.6 km2 of Marin 

and San Francisco counties and parts of San Mateo and Sonoma counties between 

April 23rd, 2010 and July 14th, 2010.  Data collected were aerial photography, LiDAR 

data and hyperspectral data.  LiDAR data was collected at an average density of 2 

points per square meter.  A 32-bit bare earth surface DEM with a grid resolution of 1.0 

meter was derived from the processed LiDAR data (Hines, 2011).   

Landslide inventory data is essential for both the calibration and the evaluation of 

the SINMAP and statistical models. Landslide inventory data was acquired from a study 

completed by the USGS in 1988 (Professional Paper 1434 - Landslides, Floods, and 

Marine Effects of the Storm of January 3-5, 1982, in the San Francisco Bay Region, 

California).  Paper maps were completed for the USGS study, with debris slide/flow 

initiation points and debris flow trails marked.  These points and trails were drawn from 

black and white stereoscopic pairs of vertical aerial photographs of the study area taken 

midday, January 6th and 7th, 1982 (two days after the historic 1982 storm).  The drawn 
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maps were scaled at 1:24,000 for the entire 10-county Bay Area and at 1:12,000 for the 

study area (Ellen et al, 1988b).  The maps, aerial photographs and high resolution (1 

meter) orthorectified images of the land cover, dated 2004, available from a county 

government website (Marin Map, 2004) were used to digitize the locations of debris slide 

scarps (source locations for the debris flows).  A total of 808 landslides were digitized in 

the study area.    

Due to the shadows created by the low angle of the midday winter sun it was 

difficult for the USGS to identify landslides in north-facing slopes from the aerial 

photographs.  The USGS concluded in their 1988 report that landslides on north-facing 

slopes were underrepresented in the resulting inventory (Ellen et al, 1988b).  Of the 808 

digitized slides, only 33 were found to have a northern aspect.  After the initial 

exploration of the data, these slides were removed from the sample and random sample 

points were only generated for slopes without a northern aspect.   

For the analysis certain parameters had to be developed.  Before any datasets 

were derived the original DEM received from the Golden Gate LiDAR Project was run 

through a low-pass filter in order to reduce potential noise in the data.  The drainage 

surface referred to in this study is a raster dataset that represents the Euclidean distance 

to hillside drainage in its base 10 logarithm derivative.  Hillside drainage is a polyline 

shapefile which represents a potential line of drainage given water flow accumulation.  

This polyline shapefile was derived using ArcGIS 10.x hydrological modeling tools.  

Slope and curvature were derived from the DEM using the slope and curvature ArcGIS 

Spatial Analysis tools.   
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In order to understand the general distribution of land cover over the study area 

and how land cover differs at landslide initiation points from what is typical for the area, 

the 1 meter land cover imagery from Marin Map (Marin Map, 2004) was first classified in 

ArcGIS 10.x using an ISO cluster unsupervised classification with a specification of 50 

classes.  Observation of the classification showed that areas in the higher classification 

bins included grassy to bare land cover whereas areas with low numbered classification 

bins included dark forest land cover, water and shadow.   After this initial exploration, 

land cover was approached as categorical data and classified with a specification of 5 

classes (greener and thinner forests, chaparral and brown grasses, green grass, hard 

surfaces, bare ground or bright surfaces and not significant (water and dark forests were 

found to be not significant)).   

Slope, curvature, classification data and the Euclidean distance drainage raster 

were sampled using digitized landslide initiation points and generated random points.  

An equal amount of random points was used to landslide points, given that an unequal 

random to landslide sampling would produce bias to the more common event (Lobo et 

al., 2007).  Slope and curvature data was sampled using bilinear interpolation in order to 

take into account the surrounding cells.   

Other available data included elevation, geology and soil classification.  Geology 

and soil data was acquired from the county government GIS website (Marin Map) 

(MarinMap, ND) and elevation data was derived from the Golden Gate LiDAR dataset.  

Using the generalized linear modeling (glm) program in R (open-source statistical 

programming language and environment (http://www.r-project.org/)) with binomial 
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variance in a logistic regression analysis, based on landslide and random point 

sampling, it was found that these variables did not have significance.   

Data Variance  

The pairs chart (Figure 5) does not show any obvious correlation between the 

different parameters other than some correlation that would naturally exist between 

curvature and drainage.  The histograms (Figure 6a) and sample statistics (Table 1) 

from slope data for landslide and random points both have the mean value close to 

equal the median value, indicating a tendency towards normality.  The kurtosis value (as 

calculated in Excel 2010) for landslide points is slightly greater than 3, indicating 

normality, whereas the kurtosis value for random point slope values is negative, 

indicating a broad distribution of values.  Landslide point values are negatively skewed, 

whereas random point data is positively skewed, as it takes in values from flat areas.  

Slope values for landslide points are more tightly clustered around the mean (35°), with 

a lower standard deviation and a smaller range than that for random points (mean of 

19°).  Landslide point data for curvature has similar mean and median values and a 

negative kurtosis value, indicating a somewhat uniform and broad distribution.  This 

contrasts to the very peaked distribution of values for random points (Figure 6b, Table  
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slope curvature 

  landslide pts random pts landslide pts random pts 

Mean 35.1850074 19.4375131 -8.537791781 0.125146048 

Median 35.541401 18.42675 -8.43903 0.2044825 

Std Dev 6.694399501 10.95227199 7.690553454 4.821758269 

Kurtosis 0.311124707 -0.792715947 -0.315173806 8.343496196 

Skewness -0.285149227 0.204984461 -0.118433332 -1.504534895 

Range 42.675898 47.928683 40.408199 44.864901 

Minimum 11.5589 0.017919 -29.858299 -28.319901 

Maximum 54.234798 47.946602 10.5499 16.545 

drainage class 

  landslide pts random pts landslide pts random pts 

Mean 8.553996744 16.09545146 37.13242574 26.96144279 

Median 5.724465 12.18285 43 30 

Std Dev 8.418908493 13.84130384 13.0512682 14.62055585 

Kurtosis 4.028833851 1.089737772 0.633139818 -1.167650419 

Skewness 1.75048423 1.146772064 -1.325705342 -0.369689231 

Range 53.1119 69.708504 48 48 

Minimum 0 0 1 1 

Maximum 53.1119 69.708504 49 49 

Table 1: Descriptive statistics for slope, curvature, drainage and land cover classification 

1).  The mean value for landslide points is -8.5, indicating concave curvature, whereas 

the mean value for random points is .13, indicating a slightly convex surface.  Drainage 

(Figure 6c) has an overall positive skew for both landslide and random point data, with 

landslide point data having a larger skew and a smaller range (Table 1).  Values  

representing land cover classification from the landslide point sample has a high 

negative skew and a positive kurtosis (Figure 6d, Table 1).  This contrasts with the 

random point land cover classification sample which has a low, negative kurtosis 

indicating a flat, somewhat uniform, distribution.  Both the mean and median bin values  



18 
 

 
 

 
Figure 6a: Comparison of data distribution for slope degree, landslide and random point samples. 

 
Figure 6b: Comparison of data distribution for curvature, landslide and random point samples. 

 
Figure 6c: Comparison of data distribution for distance to drainage values, landslide and random 

point samples. 

 
Figure 6d: Comparison of data distribution for vegetation classification bin values, landslide and 

random point samples. 
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for landslide point samples are higher than that for the random sample.  The sampling 

indicates that the landslides found in the inventory tend to occur in grassy and bare 

ground areas.   

Terrains  

In order to understand how the statistical model works given the different input 

parameters and to have a common terminology in describing the land surface for both 

the statistical and the SINMAP models, the concept of terrains, based on surface 

morphology, is used.  A hard terrain is steep topography with regularly placed ridges and 

flutes underlain by unsheared bedrock (often interbedded sandstone and shale) and 

covered by a granular soil.  These areas have well-defined drainages.  A soft terrain has 

gently rolling topography underlain by a highly sheared mix of bedrock materials within a 

matrix of crushed rocks covered by a clayey soil.  These areas are characterized as 

having immature drainages.  Intermediate terrain has features of both hard and soft 

terrain.  In these areas, there are pockets of well-defined drainages interspersed with 

rolling hills (Ellen et al., 1988b).  Terrain mapping based on these qualifications of the 

study area was done by the USGS (Reneau et al., 1988) and they were hand drawn on 

a paper map.  The terrain markings were digitized for the study.  Afterwards, parts of the 

study area classified as hard to hard intermediate terrains were reclassified to hard 

terrain and soft to soft intermediate terrains were reclassified to soft terrain.  Figure 7 

shows the hard and soft terrains with landslide points.  Looking at the figure 7 suggests 

that debris flows tend to occur in predominately hard terrain.   
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Figure 7: Study area mapped terrains, study subareas and sampling/validation areas 

One-Dimensional Physically-Based GIS Models  

In order to determine the Factor of Safety (FS) a limit equilibrium analysis was 

done.  Limit equilibrium analysis determines the equilibrium between the shear stress or 

disturbing forces and the shear strength or the stabilizing forces.  This approach uses a 

one-dimensional simplification of slope hydrology.  Specific events in time are not 

considered (such as a day of heavy rainfall) other than to consider a worst-case 

scenario.  The hydrology of the slope is assumed to be both isotropic and homogeneous 

in that the saturated hydraulic conductivity of the vertical component matches that of the 

horizontal component (only saturated flow is considered).  The heterogeneity of slope 
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hydrology represented by wedge-shaped unsaturated zones and the resulting variation 

of different pore-water pressure heads is not accounted for (Rulon & Freeze, 1985).   

One way to measure slope stability based on limit equilibrium principles is to use 

the infinite slope equation. The infinite slope equation assumes a sliding surface parallel 

to the ground surface.  The term ‘infinite slope’ is applied to uniform slopes with a 

shallow soil mantle in relation to the length of the slope and a potential slip surface 

parallel to the soil surface (Sidle et al., 1985).  The equation for the infinite slope 

equation is defined as the FS ratio (not accounting for groundwater): 

𝐹𝑆 =  
𝑐 ′ + (𝑃𝑠  𝑧 𝑐𝑜𝑠2 𝜃 − 𝑢)𝑡𝑎𝑛∅′

𝑃𝑠 𝑧 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
 

where 𝑃𝑠 is the bulk density of soil, z is the soil thickness, θ is the slope angle, Ø is the 

soil friction angle, u is the pore water pressure and c’ accounts for effective cohesion.  

The nominator accounts for effective normal stress whereas the denominator accounts 

for shear force.  For fully saturated cohesionless soils the FS can be simplified as: 

𝐹𝑆 =  
(𝑃𝑠 −  𝑃𝑤)

𝑃𝑠
𝑡𝑎𝑛∅
𝑡𝑎𝑛𝜃

 

where 𝑃𝑤 is the bulk density of water.  This is due to the assumption that 𝑡𝑎𝑛∅ is the 

principle strength component and 𝑡𝑎𝑛𝜃 represents shear gravitational force (Graham, 

1984).   

Hydrology is simplified for the one-dimensional mathematical models used in GIS 

for slope stability studies as: 

𝑊 =  𝑅𝐴 𝑏𝑇� sin𝜃 

  

(1) 

(2) 

(3) 
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Here, saturation, or wetness (W), is determined by taking into account the area upslope 

(A) from a point on the slope (b) given recharge (R), soil transmissivity (T) and the 

steepness of the slope (sin θ) (Montgomery & Dietrich, 1994).  Note that soil 

transmissivity is hydraulic conductivity multiplied by soil thickness (Pack, et al., 1998).   

Montgomery and Dietrich (1994) employed the infinite slope equation with a 

simplified hydrological model in the development of a process-based model named 

SHALSTAB (Shallow Landsliding Stability Model). SHALSTAB is a relatively simplistic 

model that is used as a way to isolate topographic controls on slope stability 

(Montgomery & Dietrich, 1994).  SHALSTAB provides a critical effective rainfall value in 

which the slope becomes unconditionally unstable (FS equals 1) (Montgomery & 

Dietrich, 1994; Meisina & Scarabelli, 2007) and thus can be considered deterministic.  

Pack et al. (1998) created the SINMAP model (Stability Index Mapping) which is similar 

to SHALSTAB in that it is based on directional flow and flow accumulation (Sidle & 

Ochiai, 2006) and it also employs an infinite slope equation assuming a steady state 

hydrology (Pack, et al., 2005).  SINMAP provides a stability index with each breakpoint 

representing lower and upper thresholds of a qualitative ‘predicted state’.  Probabilities 

are distributed in a uniform manner and range from ‘Stable slope zone’ to ‘Defended 

slope zone’ (Pack, et al., 1998; Meisina & Scarabelli, 2007).   
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SINMAP Theory and Application  

SINMAP was created to map slope stability in broad areas of forests in British 

Columbia (Pack, et al., 1998; Pack et al., 2005).  The function of SINMAP is to identify 

areas prone to instability where slides and flows may be initiated.  Like SHALSTAB, 

SINMAP was created to be used in areas where only sparse information is available and 

to be used beyond the local scale.  The model output is not meant to be taken as a 

precise quantitative measure of stability.  Instead it is meant to show relative hazard and 

should be used in conjunction with other terrain stability mapping methods (Pack et al., 

1998).   

SINMAP incorporates topographic patterns, saturation and physical soil 

properties in order to primarily derive a stability index map, as well as other maps, 

including a map showing saturation given input parameters.  The tool also provides a 

way of modeling a landslide inventory given the derived stability index summary 

statistics and therefore can be calibrated by adjusting parameters for a ‘best fit’ with the 

mapped landslide inventory points.   

The stability index (SI) for the minimum FS, worst-case value is found through 

the following equation:  

𝑆𝐼 =  𝐹𝑆𝑚𝑖𝑛 =  
𝐶1 + 𝑐𝑜𝑠𝜃 [1 − min �𝑅 𝑇� 2

𝑎
𝑠𝑖𝑛𝜃 , 1�𝑃𝑤𝑃𝑠

 ] 𝑡𝑎𝑛∅1 

𝑠𝑖𝑛𝜃
 

For the worst-case scenario, C1 is the minimum cohesion value, 𝑅 𝑇� 2
 (water recharge 

over soil transmissivity) is the highest value, a is the specific catchment area and ∅1 is 

(4) 
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the smallest soil friction angle.  Recharge or R is in m/hr.  The value for 𝑃𝑤
𝑃𝑠

 is set to a 

constant (.05).  After saturation �𝑅 𝑇� 2
𝑎

𝑠𝑖𝑛𝜃
, 1� is reached, overland flow occurs.   

The SI for the maximum FS, best-case value as found through the following 

equation: 

𝑆𝐼 =  𝐹𝑆𝑚𝑎𝑥 =  
𝐶2 + 𝑐𝑜𝑠𝜃 [1 − min �𝑅 𝑇� 1

𝑎
𝑠𝑖𝑛𝜃 , 1�𝑃𝑤𝑃𝑠

 ] 𝑡𝑎𝑛∅2
𝑠𝑖𝑛𝜃

 

For the best-case scenario, C2 is the maximum cohesion value, 𝑅 𝑇� 1
 (water recharge 

over soil transmissivity) is the lowest value and ∅2 is the largest soil friction angle (Pack 

et al., 1998).  

SI values represent a range of FS values from 1.5 (unconditionally stable) to 0 

(unconditionally unstable) (Table 2).  Areas labeled ‘stable’ are areas that would not fail 

given the conservative end of the input parameter range.  The terms ‘lower threshold’ 

and “upper threshold’ represent a qualification of instability, either less than 50% 

potentially unstable or greater than 50% potentially unstable respectively.  Areas labeled 

‘defended’ are areas where SINMAP cannot model stability.  These rankings are 

qualitative, as they can be calibrated given different input parameters (Pack et al., 2005).   

After the stability index map is created SINMAP has a function to create a slope 

area (SA) plot.  The SA plot tool generates random points (2,000 is the default) and 

displays these points along with the landslide points.  The graph plots the tangent of the 

slope on the X axis and the area of moisture accumulation on the Y axis (Figure 8).   

(5) 
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Condition  Class Predicted State Parameter Range 
Possible Influence of 
Factors Not Modeled 

SI > 1.5 1 
Stable slope 
zone 

Range cannot model 
instability 

Significant destabilizing 
factors are required for 
instability 

1.5 > SI > 
1.25 2 

Moderately 
stable zone 

Range cannot model 
instability 

Moderate destabilizing 
factors are required for 
instability 

1.25 > SI > 
1.0 3 

Quasi-stable 
slope zone 

Range cannot model 
instability 

Minor destabilizing 
factors could lead to 
instability 

1.0 > SI > 
0.5 4 

Lower 
threshold slope 
zone 

Pessimistic half of 
range required for 
instability 

Destabilizing factors are 
not required for 
instability 

0.5 > SI > 
0.0 5 

Upper 
threshold slope 
zone 

Optimistic half of 
range required for 
instability 

Stabilizing factors may 
be responsible for 
stability 

0.0 > SI 6 
Defended slope 
zone 

Range cannot model 
stability 

Stabilizing factors are 
required for stability 

Table 2: Stability Class Definitions (Pack et al., 1998) 

Different regions represent the threshold values for the FS and points are plotted given 

the slope, area of accumulation and region.  Additional boundary lines indicate whether 

or not the area is saturated given slope and catchment area.  The FS value is derived 

by: 

𝐹𝑆 =  
𝐶 +  cos𝜃(1 − 𝑧𝑤

𝑧
𝑃𝑤
𝑃𝑠

) tan∅

sin𝜃
 

where 𝑧𝑤
𝑧

 is the relative wetness (height of saturated zone divided by soil thickness).   

 

(6) 
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Figure 8: Slope Area Plot (Pack et al., 1998) 

Grid size processing capacity for SINMAP is limited to 7000 x 7000 cells (Pack et 

al., ND).  Lower cell counts resulted in faster SINMAP completion rates.  Therefore, for 

the purpose of this study, SINMAP was run on two subsets of the study area (Figure 7).  

Sub-setting of the study area was based on a similarity of terrain.  An area that is 

composed of a northern part of a valley in the Tomales Bay east shore watershed was 

selected as representative of soft terrain as it is mostly composed of soft terrain with 

most soils classified in the soil survey map as containing swelling clays. Black Mountain 

was the second area selected as the mountain is mostly a hard terrain with well-defined 

strike-ridges interspersed with incised flutes and a soil mantle composed mainly of 

sandy clay with low plasticity (NRCS, ND).   

SINMAP was created as a plugin for Environmental Systems Research Institute, 

Inc. (ESRI) GIS application ArcView and ArcGIS 9.x (Pack et al., 2005).  There is no 
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SINMAP plugin for the ArcGIS versions above 9.x.  For this research, SINMAP, version 

2.0, was utilized in ArcGIS 9.3.1.  All other GIS processes employed were run in ArcGIS 

10.x.   

Logistic Regression 

Another approach to determining susceptibility to debris slides and flows is to 

look at what characterizes those slopes that are prone to failure.  Conditions that lead to 

slope instability may be inherent to the landform and may make it more likely for an area 

to be subject to episodic mass-wasting when a threshold is crossed (Schumm, 1979).  

These conditions can be sampled from a landform and then analyzed statistically given 

the historical record in order to determine susceptibility.   

Logistic regression is a statistical method that provides a (constrained) range of 

values indicating landslide susceptibility from 0 (not susceptible) to 1 (susceptible) (Dai 

et al., 2001).  The log-likelihood (probability) is expressed as: 

Pr(𝑒𝑣𝑒𝑛𝑡) =
1

1 + 𝑒−𝑧
 

where z = b0 + b1x1 + b2x2 . . . + bnxn (with b0 being the intercept, bn the slope 

coefficient for the nth independent variable and xn the independent variable).  The 

probability being defined in this research is the likelihood of the slope being 

susceptible to a landslide given the input parameters.  The parameters to be used as 

coefficients in the logistic regression model are those most likely to produce observed 

results (maximum likelihood method) (Dai, et al., 2001; Ohlmacher & Davis, 2003; 

(7) 
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Pradhan, 2010).  The input parameters are considered to be independent to the 

resulting dependent variable (Can et al., 2005). 

In this study the dependent probability of instability is determined by slope, 

curvature, drainage and land cover classification.  Slope, curvature and drainage are 

continuous variables, whereas land cover classification is categorical. The logistic 

regression model using these variables is stated as: 

1
1 +  𝑒−(𝛽0+ 𝛽1𝑠𝑙𝑜𝑝𝑒+𝛽2𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒+𝛽3𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒+∑𝛽𝑘 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑘) 

 

where 𝛽𝑘𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑘is the coefficient value for land cover classification k. Since each 

cell value will have only one land cover classification, the indicator value for the present 

land cover classification is set to 1, whereas for all other land cover classifications the 

indicator value is set to 0.  Slope, curvature and drainage are variable, whereas land 

cover classification is constant for the specific classification (Ohlmacher & Davis). 

A generalized linear modeling program (glm) in R was employed to derive 

coefficients for the logistic regression model based on sampled data from equal numbers 

of random points and landslide points in the sample area (Figure 7).  The model output 

provides estimated coefficients for each parameter and the intercept, with associated 

probability values.  The intercept is the log –odds of a landslide given the input data, 

converted into odds by using the exponential function, with each coefficient a measure of 

the contribution of the associated parameter to the probability of slope instability (Can et 

al., 2005).   

(7) 
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Hard and soft terrains were sampled separately in the northern part of the study 

area in order to create a statistical model for each.  The logistic regression model was 

then run in ArcGIS 10.x as described in equation 8 above with a resulting probability 

raster.  This probability raster was then sampled from an equal number of landslide and 

random points in the validation area (Figure 7) for the purpose of validating the result. 

Validation on the probability output was done by examining the sensitivity and 

specificity of the model.  Taking the cutoff point at 50% (Lobo et al., 2007), sensitivity is 

indicated by the percentage of landslide points with values equal or above the 50% 

cutoff point (true positives).  Specificity is 1 minus the number of random point sample 

data with values above that cutoff point (false positives) (Das et al., 2010; Zweig & 

Campbell, 1993).  A polygon feature file was derived from the probability raster based on 

the 50% cutoff point in order to visually examine the results of different models.   

Comparison between SINMAP and Logistic Regression Models 

Confusion matrixes were used to compare SINMAP and Logistic Regression 

models in order to capture and compare true and false positives and true and false 

negatives, thus showing sensitivity in relation to specificity.  Polygon features derived 

from the logistic regression models showing greater probability for landslides were then 

overlaid onto the SINMAP SI raster output in order to identify patterns of similarity and 

difference.   
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IV. RESULTS 

Logistic Regression Terrain Based Models 

The glm function output for the soft terrain model indicated that drainage and 

land classification for hard surfaces were insignificant (p-value above .05) (with brown 

grasses/shrubs, green grass and bare ground or bright surfaces significant).  This may 

have to do with the lack of well-defined drainages and less rock outcroppings and other 

hard surfaces in the hilly areas.  Slope, curvature and areas of grass and small shrubs 

were most significant.  The derived coefficients for significant values were used in the 

logistic regression model to derive a probability surface.  Probability values for both 

landslide and random points were then sampled from the validation area (Figure 7) to 

determine model sensitivity and specificity.  As indicated in the results (Table 3), the 

model output has slightly greater specificity than sensitivity (with fewer false positives 

than false negatives).  The model values decreased deviance by 35% below what would 

be found using just the intercept (null deviance).  

Coefficient Values  Classification  

  Estimate Pr(>|z|) 0: absence 
 

prediction 

(Intercept) -8.78689 6E-08 1: 
presence 

p=0.
5 0 1 

Curvature -0.26901 6.09E-07 
data 

0 228 28 

Slope 0.26536 2.5E-10 1 35 221 

Hard surfaces 2.31864 0.0175 
  

Sensitivity: 0.8633 
Brown grasses, 
shrubs 1.81878 0.0145 

  

Specificity: 0.8906 

Green grass 1.64579 0.0221     ≥ 0.5: 0.877 

Null deviance: 329.94  on 237  degrees of freedom 

Residual deviance: 115.97  on 230  degrees of freedom 
Table 3: Soft terrain logistic regression model coefficient values and probability output 
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The glm function output for the hard terrain model found slope, curvature, 

drainage and 4 land surface classifications all significant.  As with the soft terrain model, 

probability values for both landslide and random points were then sampled from the 

validation area (Figure 7).  The results (Table 4) show the model to be more specific 

than sensitive.  The model values decreased deviance by 46% below what would be 

found using just the intercept (null deviance). 

Coefficient Values  Classification  

  Estimate Pr(>|z|) 0: absence prediction 
(Intercept) -6.04059 < 2e-16 1: presence p=0.5 0 1 

Curvature -0.12476 < 2e-16 
data 

0 252 4 

Slope 0.14463 < 2e-16 1 82 174 

Drainage -0.94971 9.56E-05    Sensitivity: 0.6797 

Hard surfaces 1.65313 4.51E-07 
  

Specificity: 0.9844 
Brown grasses, 
shrubs 1.63949 4.35E-08 

  

≥ 0.5: 0.832 

Green grass 2.40895 4.14E-14 
   

  
Bare ground or 
bright 3.18658 1.26E-12         

Null deviance: 1067.4  on 769  degrees of freedom 
Residual 
deviance: 577.9  on 762  degrees of freedom 

Table 4: Hard terrain logistic regression model coefficient values and probability output 

Analysis of Subareas Using SINMAP and Logistic Regression 

The first study area subset completed was Black Mountain (Figure 9).  This area 

is principally composed of a hard terrain of well-defined and rounded strike ridges 

interspersed with incised flutes.  Lagunitas Creek borders the mountain to the south.  

According to the SSURGO soil database, the soil is mainly classified as Felton Variant-

Soulajulie Complex (NRCS, ND).  Using the Unified Soil Classification System (USCS) 

textural classification, the soil’s classification is mainly CL (sandy clay of low plasticity).  
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Values for the bulk density of soil, soil cohesion and soil friction angle were chosen 

based on reported constitution of the soil as well as consideration that the model tends 

to over-predict (Messina & Scarabelli, 2006).  Bulk density was set at 1500 kg/m3 which 

is the highest value in the range given for moist bulk density in the SSURGO database.  

The range of soil friction angle was set from 20° to 40° given the range of soil granules 

(clay to some gravel) (Das, 2008) and the range of values for cohesion was set from 0 to 

0.2 to account for clay content and vegetation (Kenney, 1984).  The maximum recharge 

value (144 mm day) was acquired from the USGS rainfall threshold map for landslide 

initiation (Wilson & Jayko, 1997) and the minimum threshold value was acquired from 

the National Weather Service station records in Kentfield, with the value (8.6 mm) being 

an average daily value for the rainiest month (NWS, ND).  The maximum saturated 

hydraulic conductivity value from the SSURGO database for the soil classification was 

used along with a soil depth of 2 meters in order to derive the range of values for 

transmissivity over recharge (104m to 1688m).   

Even though there are measures of soil depth in the SSURGO database, these 

values are very general and may not be accurate nor represent variations in the surface 

morphology (Tesfe et al., 2009).  For example, in Tennessee Valley along the Marin 

County coast, Montgomery and Dietrich (1994) measured soil depths of 0.1 to 0.5 m in 

convex areas to a maximum of 4 m in topographic hollows (Montgomery & Dietrich, 

1994).  The SSURGO database listed soils in this area with up to ~1.4 meters in depth 

(NRCS, ND).  Given this uncertainty, soil depth is held constant at 2 meters for the entire 

study area.   
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Figure 9: Black Mountain, west Marin County.  Landslide inventory points marked. 

The statistics from the model (Table 5) run show ~24% of the Black Mountain 

subarea more likely than not to be unstable given the input values (areas found in the 

upper threshold or defended regions as described in the SINMAP tool) (Figure 10).  This 

captures 84% of the inventoried landslide points.  Looking at the resulting confusion 

matrix (Table 6) based on landslide and random point sampling of SINMAP stability 

index (SI) data, the model has greater sensitivity to the landslide hazard than specificity, 

given that the false positive value is less than the false negative value.   

The output for the hard terrain logistic regression model on the mostly hard 

terrain landform of Black Mountain showed the same high sensitivity and specificity and 

an overall correct prediction rate of 88% (Table 7).  This contrasts with the output for the 

soft terrain logistic regression model which shows very high sensitivity but low specificity  



34 
 

 
 

 
Figure 10: SINMAP stability analysis for Black Mountain 

 

  Stable               Mod Stable           
Quasi- 
Stable              

Lower 
Threshold              

Upper 
Threshold                Defended                Total                

Area(km^2) 0.40825 0.116271 0.232532 2.115941 0.865449 0.020063 3.7585 

% of Region 10.8621 3.09354 6.186813 56.297336 23.026385 0.533802 100 

#Landslides 0 0 0 12 69 4 85 

% of Slides 0 0 0 13.953488 80.232558 4.651163 98.837 

LS Density 
(#/km^2) 0 0 0 3.192755 18.358339 1.064252 22.615 

Table 5: SINMAP data for Black Mountain subarea 
 

Classification  
  

 
Prediction 

  p=0.5 less likely more likely 

data 
less likely 66 19 

more likely 12 73 

    Sensitivity: 0.8588 

  
 

Specificity: 0.7765 

    %Correct: 0.8176 

Table 6: Confusion matrix, SINMAP results for Black Mountain subarea.  Points where upper 
threshold values are found are areas more likely to fail.   
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and a lower prediction rate (79%).   About 10% of the Black Mountain subarea is more 

likely than not to be unstable using the hard terrain model, whereas about 33% of the 

subarea was found tending towards instability using the soft terrain model.  The greater 

sensitivity of the soft terrain logistic regression model and greater specificity of the hard 

terrain model can be seen in the resulting probability maps (Figure 12).   

 

Hard Terrain Model Classification  Soft Terrain Model Classification  

0: absence 
 

prediction   
 

prediction 

1: presence p=0.5 0 1   p=0.5 0 1 

data 
0 75 10 

data 
0 56 29 

1 10 75 1 7 78 

    Sensitivity: 0.8824     Sensitivity: 0.9176 

  
 

Specificity: 0.8824   
 

Specificity: 0.6588 

    %Correct: 0.8824     %Correct: 0.7882 
Table 7: Logistic regression model outputs for Black Mountain 

 

Figure 11: SINMAP output SA 
plot for Black Mountain.  Plot 
clearly shows landslide points 
mostly plotted in the upper 
threshold.  The two points 
found in the defended area are 
located in the drainage.  Points 
in areas deemed partially wet 
(not saturated) tend to be on 
the higher slopes.    
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Figure 12: Logistic regression terrain models probability outputs Black Mountain 

The second area evaluated using the SINMAP tool was the northern 5.2 km2 of a 

valley that is part of the Tomales Bay east shore sub-watershed (Figure 13).  Much of 

the valley is composed of soft terrain and is underlain by Franciscan Mélange.  There 

are areas of harder terrain and these are the areas where debris flows are more likely to 

occur (Figure 13, inset).  The major classified soil for the valley (75% of the spatial 

extent of three mapped soils) is the Los Osos-Bonnydoon Complex which a fine loamy 

claypan (Figure 13).  This soil has some swelling clay content and is described in the 

SSURGO database as being a meter to half a meter in depth with medium drainage.  

Two other classified soils are mapped for the southeast facing slopes above the 

drainage.  The Yorkville clay loam (16% of the area) is a deeper soil with greater 
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swelling clay content and moderately low saturated hydraulic conductivity.  North of the 

mapped Yorkville clay loam is the Tocaloma-Saurin Association (8% of the area).  This 

soil is a somewhat thin and sandy soil that is gravelly at depth and is described as 

having a high saturated hydraulic conductivity (NRCS, ND).  Of the 36 debris flows in 

this area, two-thirds were in the area classified as Los Osos-Bonnydoon with all but 2 of 

the rest in areas classified as the Yorkville clay loam.  Given the predominance of the 

Los Osos-Bonnydoon soil and given that the majority of the landslides occurred in this 

soil, parameters selected were based on this soil’s constituents.   The parameters 

chosen are very similar as those for the Black Mountain subarea, as the soils are similar, 

with the Los-Osos-Bonnydoon soil described in the SSURGO database as having 

slightly more clay content and not as deep (NRCS, ND).  To account for the higher clay 

content a higher cohesion values is set (the cohesion value range was set at 0 to .25) 

(Kenney, 1984) and a lower soil friction angle was set from 20° to 35°) (Das, 2008). 

The statistics from the model (Table 8) run show ~18% of the Tomales Bay east 

shore subarea more likely than not to be unstable given the input values (areas found in 

the upper threshold or defended regions as described in the SINMAP tool) (Figure 14).  

This captures ~93% of the inventoried landslide points (one landslide point fell outside of 

the area analyzed by the SINMAP tool).  Looking at the resulting confusion matrix (Table 

9) based on landslide and random point sampling of SINMAP stability index (SI) data, 

the model has greater sensitivity to the landslide hazard than specificity, given that the 

false positive value is higher than the false negative value.   

The output for both hard and soft terrain logistic regression models on the 

subarea in the Tomales Bay east shore sub-watershed showed high specificity given  
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Figure 13: Watershed subarea in Tomales Bay east shore watershed 

there was only one false positive for each model (Table 10).  The hard terrain model was 

less sensitive as it only captured 70% of the landslide sample.  For the soft terrain 

model, the area with probability values 50% or greater constituted ~8% of the subarea 

(Figure 16).  For the hard terrain model, the area in this range constituted only ~1.5% of 

the subarea.   
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Figure 14:  SINMAP stability analysis for Tomales Bay East Shore subarea 

 
  

Stable               
Mod 
Stable           

Quasi- 
Stable              

Lower 
Threshold              

Upper 
Threshold                Defended                Total                

Area(km^2) 0.404524 0.124326 0.234134 3.390613 0.93947 0.007297 5.100364 

% of Region 7.931277 2.437591 4.590535 66.477863 18.419666 0.143068 100 

#Landslides 0 0 0 2 33 1 36 

% of Slides 0 0 0 5.405405 89.189189 2.702703 97.2973 

LS Density 
(#/km^2) 0 0 0 0.392129 6.470126 0.196064 7.058319 

 
Table 8: SINMAP data for Tomales Bay East Shore subarea 

 

Classification  

  
 

prediction 

  p=0.5 less likely more likely 

data 
less likely 29 7 

more likely 2 34 

    Sensitivity: 0.9444 

  
 

Specificity: 0.8056 

    %Correct: 0.8750 
 

Table 9: Confusion matrix, SINMAP results for Tomales Bay East Shore subarea.  Points where 
upper threshold values are found are areas more likely to fail.   
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Hard Terrain Model Classification  Soft Terrain Model Classification  

0: absence 
 

prediction   
 

prediction 

1: presence p=0.5 0 1   p=0.5 0 1 

data 
0 36 1 

data 
0 36 1 

1 11 26 1 5 32 

    Sensitivity: 0.7027     Sensitivity: 0.8649 

  
 

Specificity: 0.973   
 

Specificity: 0.973 

    %Correct: 0.8378     %Correct: 0.9189 
 

Table 10: Logistic regression model outputs for Tomales east shore subarea 
 

Figure 15: SINMAP output SA 
plot for Tomales Bay east shore 
subarea.  Plot clearly shows 
landslide points mostly plotted 
in the upper threshold.  There 
are a greater number of 
landslides in areas determined 
to be not fully saturated than for 
Black Mountain. 
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Figure 16: Logistic regression terrain models probability outputs Tomales East Shore subarea 
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V. ANALYSIS 

In observing the results of the different models on Black Mountain, it can be seen 

how the models match up.  The output of the soft terrain logistic regression model of 

50% probability or greater more or less matches the extent of the area deemed prone to 

instability as indicated by the SINMAP tool (Figure 17).  This result indicates how much 

slope influences both the soft terrain model and the SINMAP model.    Running the glm 

in R as a function of slope only decreased deviance by 44% than what would be found 

using just the intercept.   

The output of the hard terrain logistic regression model shows the greater  

 
Figure 17: Model comparison for soft terrain logistic regression model and SINMAP, Black 

Mountain 
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influence of curvature on the output. Running the glm in R as a function of curvature only 

decreased deviance in about 25%.  Slope had less influence, decreasing deviance about 

17%.  Although the inventoried debris flows tended not to occur directly in the drainage, 

they do occur in proximity to the drainage in areas which tend towards convex curvature 

along with significant slope.  Additionally, the hard terrain model reflects the greater 

significance of land surface cover (Figure 18).  As the probability extent indicates, debris 

flows tend not to occur in forested areas.  This terrain model captured some of the extent 

of the upper colluvial hollows in very steep areas, and in other areas tended to follow the 

drainage, especially when the area is not forested.   

 
Figure 18: Hard terrain logistic regression model output, Black Mountain 
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The SINMAP tool output has lower specificity than the hard terrain logistic 

regression model.  However it does provide information regarding where the slope will 

become saturated.  Figure 19 shows the area in the upper threshold range of instability 

(indicated by dark green).  The upper threshold is within the area of threshold saturation.  

Threshold saturation is one output of the SINMAP model, as it models shallow 

subsurface flow convergence given the input physical soil parameters and recharge rate 

(Pack et al., 1998).   

This compares with the output of the hard terrain logistic regression model where 

curvature and slope have a more specific effect (Figure 20) on predicted instability.  The  

 
Figure 19: Saturation values and slope instability Black Mountain 
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Figure 20: Slope Values and Hard Terrain Model Logistic Regression Black Mountain 

 

question is does saturation as measured through SINMAP a more exact predictor of 

slope instability than what can be found through a statistical analysis of surface 

morphology?  The hard terrain model is more sensitive and specific to the debris flow 

inventory than the SINMAP tool.  This is most likely the result of the model coefficients 

being derived from sampling similar, but more rugged terrain as the validation area.  The 

soft terrain model is more sensitive but lass specific as it overstates the influence of 

slope.   

In looking at the output of the soft terrain model in the Tomales Bay East Shore 

subarea (Figure 21) we can see why slop is the primary determinant in the soft terrain 

logistical regression model.  It is only where slope is significant that we have probability 

values equal or greater than 50%.   
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The hard terrain model output (Figure 22) has the same specificity as the soft 

terrain model (Table 10), yet the extent of the area in the 50% probability range is only 

19% of that for the soft terrain model.  It may be that curvature, which has greater weight 

in the hard terrain model, gives more definition to the output.  The area in the northeast 

on that map is forested (not shown) and therefore weighted against greater probability.   

The SINMAP model does not work well in these immature drainages.  SINMAP 

tends to overstate instability as seen in the mapped output of upper threshold polygons 

overlaying saturation values (Figure 23).  The SINMAP model indicated ~18% of the 

Tomales Bay East Shore subarea as more likely to be unstable than not whereas the 

soft terrain logistic regression model indicated ~8% of the subarea with probability 

values equal or greater than 50% and the hard terrain model ~2%.  It is not clear from 

the output why a larger area would be prone to instability.   

 
Figure 21: Slope Values and Soft Terrain Model Logistic Regression Tomales Bay East 
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Figure 22: Slope Values and Hard Terrain Model Logistic Regression Tomales Bay east shore 

 
Figure 23: Saturation values and slope instability Tomales Bay east shore 



48 
 

 
 

 

VI. CONCLUSIONS 

Both SINMAP and logistic regression bring greater specificity to the delineation of 

areas prone to landslide susceptibility than what was developed previously.  They both 

provide detailed information that can inform decision makers as to why an area in 

susceptible to landslide hazard.   

The SINMAP model requires a simplification of the subsurface and subsurface 

flow.  It is therefore unable to accommodate heterogeneous environments, account for 

antecedent moisture or variations of rainfall intensity.   However, for areas of hard 

terrain, the SINMAP tool does provide information on saturation given slope and soil 

parameters.  Using this tool, areas where threshold saturation is reached are often found 

to be unstable.  Such information can be used on the steep hillside housing communities 

in towns like Mill Valley in Marin County.  The high resolution of publicly available digital 

elevation models (DEMs) provides good information on slope and curvature.  For Marin 

county a sandy soil with some clay is the norm for the steeper slopes.  Given this 

generalization, the SINMAP model could be provided with soil parameters with some 

justification.  Model output could be used with other GIS datasets to determine areas 

and housing at risk.  However to understand if the areas indicated by the tool are truly 

prone to elevated risk would require a longer historical record than the landslide 

inventory used for this research.   

For areas of soft terrain, the SINMAP tool is limited.  The tool performed 

adequately, given the confusion matrix.  However the sample size was small for the soft 
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terrain area and it most likely does not represent how well the model works in such 

areas.  Pack et al. noted that SINMAP was developed as a study of shallow debris flows 

that arise due to groundwater flow convergence (Pack et al., 1998).  These types of 

slides are more likely to occur in hard terrains given the morphology and the underlying 

coherent bedrock (Ellen et al., 1988b).  Areas underlain by Franciscan Mélange tend to 

have irregular bedrock configurations (Medley & Rehermann, 2004) which would lead to 

more localized hydrology and, thus, could not be addressed with an infinite slope 

equation.  SINMAP tended to overstate hazard in such areas, given the landslide 

inventory and the results of the statistical models.   

A logistic regression model in GIS does provide a way to take in a landslide 

inventory and create probability surfaces from that inventory.  If the data are highly 

accurate and there are a number of different parameters being used, then the output 

probability surface can provide good detail as to areas of potential instability.  The 

models cannot be considered independent of the areas where the samples were taken 

and coefficients derived since the output of the model is bound by the variance of the 

sample.  Therefore, it is not a systematic approach outside of the area where the sample 

was taken, since the variance indicated by the coefficients is only relative to that area.  

Valuable information can be gained when applying the tool outside of the sample area if 

one understands the reasons for that variance.  For example the hard terrain model 

worked well in an area similar to the sample area and in order to understand why the 

model worked, it is important to understand how that model was constructed and what 

variance it represents.   
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If there is a comprehensive landslide inventory for an area that takes into account 

multiple meteorological events over time and there is high resolution DEM data then a 

logistic regression model could be very useful for delineating hazard in the area in which 

the model was developed.  The probability surface from the model would be more 

detailed if areas in which landslides would never occur were removed from the sampling 

area.  Detailed information and history about human activities possibly causing or 

accentuating landslide hazard could be detailed statistically and information derived 

could be used to modify such activity thus mitigate against hazard.  Such modifications 

to the landslide susceptibility model would not be possible with a SINMAP approach. 

However, finding adequate landslide inventory data is problematic.  In this 

research acquired landslide inventory data proved to be inaccurate.  Data had to be 

digitized from paper maps due to the paucity of information.  If there is no recorded and 

detailed history of landslides for an area, a physical model may be the only means to 

identifying hazard, outside of generalizing the hazard given the surface morphology.   
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